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Abstract - Malicious intruders on networks have been the major concerns since last one decade or more, to gain the 

focus of many researchers. Inspired from human immune system, Dendritic Cell Algorithm has already been 

implemented for intrusion detection systems. Dendritic cells are the sole of human immune system which are 

responsible for combining signals in the tissue and reporting to the immune system of any variation in the signal 

concentration. In this paper an intrusion detection system is proposed and implemented for KDD data set using 

probabilistic dendritic cell algorithm. Besides taking statistically derived input signal concentration, probabilistic 

measure based on Shanon’s entropy are taken as input signal concentration to compute the output cytokines. Proposed 

method has shown significant improvement as compared to other existing techniques used in intrusion detection 

system. 
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I. Introduction 

An intrusion detection system (IDS) is a system to keep eyes on the network traffic and identifies suspicious 

patterns, called as intruders. It then generates the security alerts accordingly. Earlier, this task was performed 

manually where system administrator used to sit for hours with the log files to identify the potential threats to the 

computer system. Machine learning techniques have made this task easy by paving the way for automated IDS. 

Several machine learning techniques has been applied to anomaly detection, including neural networks and 

statistical learning algorithms. IDS can be categorized in several ways; one such categorization is signature based 

IDS and anomaly based IDS. A signature-based IDS monitors traffic on the network and compares them with 

already known malicious threats. Signatures (i.e. characteristics) of such known threats are stored in a database 

for reference. In anomaly-based IDS, network traffic is monitored and compared with an established profile of 

the traffic. The profile indicates whether network traffic is normal or not. It generally monitors that how much 

bandwidth is being used, what protocols are used, what ports and devices generally connect to each other and 

generates an alert when traffic is found anomalous (i.e. deviated significantly from the established profile) [1].  

A huge amount of research work has been contributed to the area of anomaly detection because of its large 

application domains such as system health management, intrusion detection, health-care, bio-informatics, fraud 

detection, and mechanical fault detection [2]. Anomaly detection systems based on evolutionary and statistical 

techniques have large rate of false alarms (false positives), generally; but on the other hand they are capable of 

identifying even novel attacks. Artificial Immune Systems (AIS), inspired from human immune system, have also 

been applied to anomaly detection.  In [3], Denning provided a model with the expectation that model will provide 

a sound basis for developing a powerful real-time intrusion detection capable of detecting a wide range of 

intrusions related to attempted break-ins, masquerading (successful break-ins), system penetrations, Trojan 

horses, viruses, leakage and other abuses by legitimate users, and certain covert channels. [4] Presents the results 

of a research effort that investigated the application of an adaptive neural network in the detection of network 

attacks which demonstrate the potential for a powerful new analysis component of a complete intrusion detection 

system that would be capable of identifying priori and a priori denial of service attack patterns.  

A prototype presented in [5] demonstrates that IDS can be viewed as multiple function entity and can be 

encapsulated as autonomous agents. It is further demonstrated in this paper that genetic programming can be used 

as a learning paradigm to train our autonomous agents to detect potentially intrusive behaviors. Paper [6] proposes 

a novelty detection method inspired from human immune system. This method notices changes in normal behavior 

without requiring prior knowledge of the changes for which it is looking.  

An artificial immune system framework (ARTIS) is described in [7], which incorporates many characteristics of 

natural immune system, including diversity, distributed computing, error tolerance, dynamic learning and 

adaptation and self-monitoring. Traditional anomaly detection techniques analyze each data instance (as a uni-

variate or multivariate record) independently and ignore the sequential aspect of the data. But it is noticed that 

anomalies in sequences can be detected only by analyzing data instances together as a sequence, and hence cannot 
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be detected by traditional anomaly techniques [8]. In [9] a technique inspired from negative selection mechanism 

of the immune system is applied to detect foreign patterns in the complement (nonself) space. In [10], Hofmeyr 

developed an artificial immune system based on ‘negative selection’: detectors forming the normal profile are 

deleted if they match a string denoting normal behavior.  

At the time, it was perceived to function in a similar way to the selection of T-lymphocyte cells in the thymus. 

Problems with negative selection were highlighted in [11] and more recently in [12]. [13] Proposes that the 

negative selection algorithm could not work because it was based on a simplified version of the immunological 

self-nonself theory. This theory has been challenged within immunology itself and an alternative theory has been 

proposed - the Danger Theory [14]. The Danger Theory states that the immune system does not discriminate on 

the basis of self or nonself, but on the balance between the concentration of danger and ‘safe’ signals within the 

tissue of the body. Idea of danger theory is applied in this paper to detect the intrusions.  

In [15], dendritic cell inspired algorithm on two datasets is demonstrated and advocated with promising results 

that DCA plus libtissue framework can be used for the purpose of anomaly detection under real-time conditions. 

An approach in [16] is applied to detect anomalous activity in the network, using detectors generated by the 

genetic algorithm. The Minkowski distance function is tested against the Euclidean distance for the detection 

process. It is shown that Minkowski distance gives better results with 81.74% overall average detection rate than 

the Euclidean distance which gives 77.44% detection rate. 

This presented paper focuses on the development of IDS, built on the foundation of immune inspired system. 

Dendritic cells are the sole of human immune system which are responsible for combining signals in the tissue 

and reporting to the immune system of any variation in the signal concentration. The signal concentration is 

determined using a weighted function with fixed suggested weight values obtained from empirical data based on 

immunologists’ wet lab results (Dr Julie McLeod, Dr Rachel Harry and Charlotte Williams - University of the 

West of England). In this paper an intrusion detection system is proposed and implemented for KDD data set 

using probabilistic dendritic cell algorithm besides taking statistically derived initial concentration, probabilistic 

initial concentrations based on Shanon’s entropy are taken into account to compute the output signal 

concentration. Rest of the paper is organized as follows: In section II, brief insight of immune system is presented. 

This section also talks about the integration of IDS and AIS. In section III, simulation design along with the 

implementation details are discussed. Section IV presents the results obtained and concluding remarks have been 

put in the section V followed by the references. 

 

II. Immune System 

Immune system is a body-wide network of cells, tissues, and organs that has evolved to defend us against foreign 

invasions. Earlier theory of human immune system was based on discrimination between antigens (proteins) 

belonging to ‘self’ versus antigens belonging to infectious agents called pathogens - ‘nonself’ [15]. At the heart 

of the immune response is the ability to distinguish between self and non-self. Every cell in our body carries the 

same set of distinctive surface proteins that distinguish us as self. Any non-self substance capable of triggering an 

immune response is known as an antigen. The organs of our immune system are positioned throughout our body. 

They are called lymphoid organs because they are home to lymphocytes--the white blood cells that are key 

operatives of the immune system.  

Within these organs, the lymphocytes grow, develop, and are deployed. The thymus is an organ that lies behind 

the breastbone; lymphocytes known as T lymphocytes, or just T cells, mature there [17]. T cells contribute to your 

immune defenses in two major ways. Some help regulate the complex workings of the overall immune response, 

while others are cytotoxic and directly contact infected cells and destroy them. Chief among the regulatory T cells 

are helper T cells. They are needed to activate many immune cells, including B cells and other T cells.  

Recently, several questions have been raised regarding the validity of this model. Definition of ‘self’ actually 

varies throughout the lifetime of an individual, e.g. a pregnant woman’s immune system does not react against 

her unborn fetus despite consisting of ‘nonself’ proteins [15]. A modification to the self-nonself theory was 

proposed in [18], by the name ‘infectious non-self’ model. This states that an antigen must be associated with a 

PAMP (pathogen associated molecular patterns) in order to trigger a response, as recognized by the first line of 

defense (i.e. innate immune system) against invading organisms. Though this model could provide the logic for 

adding stimulatory adjuvant to vaccines yet it could still not answer pertinent questions relating to autoimmunity. 

Danger Theory [14] provides an alternative view of the activation of the immune system. According to danger 

theory the immune system detects the presence of danger signals, released as a result of necrotic cell death within 

the host tissue.  

 

A. Danger Theory 

The Danger Theory proposes that the immune system is sensitive to changes in the danger signal concentration in 

the tissue. Conversely, when then tissue is healthy, cells die in a controlled manner, known as apoptosis. 

Immunosuppressive molecules (safe signals) are released as an indicator of normality in the tissue. In essence, the 

Danger Theory consists of active suppression while the tissue is healthy (apoptosis), combined with rapid 
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activation on receipt of necrotic danger signals. Necrosis is the result of cellular damage and stress caused by 

pathogenic infection or exposure to extreme conditions. The metabolites of internal cell components are thought 

to form the danger signals and are released into the surround buffer fluid. The cell membrane loses its integrity, 

releasing its contents (e.g. DNA, mitochondria) into the surrounding tissue fluid [19]. This property is abstracted 

to form artificial tissue, as conceptualized in a software framework in [20].  

 

B. Dendritic Cells 

Dendritic cells (DCs) are white blood cells that reside in tissue in immature state. DCs function is to collect antigen 

from pathogens, experience danger signals from necrosing cells and ‘safe’ signals from apoptotic cells. Maturation 

of DCs occurs in response to the receipt of these signals. Once DC is reached in mature state, it stops further 

collection of antigen; expresses the costimulatory molecules (CSM) and cytokines; migrate from the tissue to 

lymph node; and present antigen to T-lymphocytes. If there is a greater concentration of danger signals in the 

tissue at the time of antigen collection, the DC will become fully mature (mDC), and will express mDC cytokines; 

if the DC is exposed to ‘safe’ signals; it becomes semi-mature and expresses smDC cytokines [21].  

 

C. The DC Algorithm 

Some functions of DCs are abstracted to form an algorithm. Key functions used in dendritic cell algorithm (DCA) 

are as bellow; 

 Immature DCs collect antigens from multiple sources and are exposed to signals in the host tissue. 

 DCs are capable to combine signals from multiple sources to generate different output concentrations of 

CSM, smDC cytokines and mDC cytokines. 

 Capable of increasing CSMs that lead to migration of DCs to the lymph node. 

 Exposure to signals causes the maturation of DCs into either mature and semi mature states.  

A simple interpretation of the input signals has been derived. There are four signals in the model given in [15], 

each from a different source and producing different output cytokines: 

 PAMPs (P) are based on pre-defined signatures. Exposure to PAMPS causes an increase in mDC 

cytokines. PAMPs are suppressed by safe signals. 

 Danger signals (D) cause an increase in mDC cytokines. Danger Signals can also be suppressed by safe 

signals. Danger signals have a lower potency than PAMPs. 

 Safe signals (S) cause an increase in smDC cytokines and have a suppressive effect on both PAMPS and 

danger signals. 

 Inflammatory cytokines (IC) amplify the effects of the other three signals, but are not sufficient to cause 

any effect on DCs when used in isolation. 

Their data and method of processing is very different from other AIS, which rely on negative selection [23] or on 

pattern matching of antigen to drive their systems [24]. In their algorithm, representation of the antigen can be a 

string of either integers or characters. Signals are represented as real-valued numbers, proportional to values 

derived from the context information of the dataset in use. The signal values are combined using a weighted 

function with suggested values of the weights derived from empirical data based on immunologists’ wet lab results 

(Dr Julie McLeod, Dr Rachel Harry and Charlotte Williams - University of the West of England). The function 

itself is a weighted sum of PAMP, danger and safe signal concentration values, multiplied by a value for 

inflammation (in the range of 0 and 2).  

The resulting value is then normalized through division by the sum of the weights. The function is used three 

times to calculate the output cytokines of CSMs, mDC and smDC cytokines. Transition to the mature state depends 

on the CSM value. Each cell is assigned an individual migration CSM threshold value, which can vary between 

cells. When a cell’s CSM value exceeds the migration threshold, the status of the cell changes and migration from 

the tissue is initiated. In figure1 migration of DCs are shown diagrammatically.  

The DCA is a population based algorithm; where population size (i.e. number of DCs) is defined by the user create 

a pool. Each DC in the pool is exposed to current signal values and selects a slot in the antigen store. If an antigen 

is present in the antigen store, the DC collects the antigen and ingests it in the DC internal antigen storage. Each 

DC has the opportunity to sample multiple antigens. Antigen collection is done repeatedly and each DC re-

calculates its output signal concentration. Migration is initiated by the removal of a DC from the pool and occurs 

when the cell’s internal CSM value exceeds the DC’s migration threshold.  

At this point, the output cytokines of each DC are measured. Antigen presented by cells predominantly expressing 

mature cytokines is labeled ‘mature context antigen’, where as antigen from cells expressing predominantly semi-

mature cytokines is labeled as ‘semimature’. Each presented antigen’s context is recorded and finally a mean 

antigen context value (between 0 and 1) is derived. In our model, Shanon entropy is taken as a probabilistic 

measure for input signal concentration combined with conventional DCA as discussed above to investigate the 

performance of IDS.  
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Figure1: Behavior of DCs 

 

III. Simulation design and implementation details 

A. Shanon’s Entropy  

It is an information-theoretic measure of uncertainty, variability or complexity of a collected data set. For a system 

X with a finite set of M possible states,{𝑥1, 𝑥2, 𝑥3, …… . 𝑥𝑀} the Shanon entropy of X is defined as; 

𝐻(𝑋) = −∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔(𝑃(𝑥𝑖))
𝑀
𝑖=1   

where, 𝑃(𝑥𝑖) is the probability that the system X is in state 𝑥𝑖. Shanon entropy typically interpreted as average 

information content of the data source. Entropy value is smaller when data distribution is skewed that is when 

data exhibits a pattern. Entropy is larger when data is symmetric, that is, when data exhibits randomness [25].   

 

B. Probabilistic DCA 

Probabilistic dendritic cell algorithm as given below is a modified form of DCA given in [15 & 22]. An 

information-theoretic measure, Shanon entropy is computed for the data items (also referred as antigens in 

immune system terminology) categorized into three types of signals, named PAMP, Danger signal & Safe signal 

and is denoted by 𝐶𝑝, 𝐶𝑑 ∧ 𝐶𝑠 respectively by using eqns 1-3. Corresponding output concentrations for three input 

signals are computed using eqns 4-6. On the basis of output computed cytokines, migration of dendritic cell from 

immature state to mature state or to semi-mature state takes place. Finally, count of mature and semi-mature 

antigens decides whether the antigen is malicious or normal. Below mentioned algorithm is implemented using 

Java. 

 

P_DCA() 

{ 

1.  Define an empty DC pool with no cell defined internally. 

2. L=Length(AvailableDataItems) 

3. For i=1 to L 

4. { 

5. Select CurData=AvailableDataItems(i) 

6. compute_mean(AvailableDataItems(i)) 

7. Classify the classes into PAMP, Safe and Danger on the basis of deviation in the mean from normal 

class. 

8. Compute initial concentration by Shanon’s formula for PAMP, safe and Danger signals;𝐶𝑝, 𝐶𝑠 ∧ 𝐶𝑑 . 

9. Compute the signal concentrations for CSM, mDC and smDC. 

10. If (OutputCytokines>SafeLimit) 

11. { 

12. Migrate Signal to Safe Signal Dataset 

13. } 

14. Else If(OutputCytokines<SafeLimit And OutputCytokines<PAMPLimit) 

15. { 

16. Migrate Signal to PAMP Signal Dataset 
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17. } 

18. Else 

19. { 

20. Migrate Signal to Danger Signal Dataset 

21. } 

22. Obtain MeanDangerSignal from Derived OutputCytokines 

23.  If semi>mature 

24. { 

25. Set AntigenContext=Semi 

26. } 

27. Else 

28. { 

29. Set AntigenContext=Mature 

30. } 

31. For i=1 to length(AntigenContext) 

32. { 

33. Identify the number of appearances of antigen as semi or mature 

34. If semi>mature 

35. { 

36. Set Antigen=normal 

37. } 

38. Else 

39. { 

40. Set Antigen=malicious 

41. } 

42. } 

 

C. Data set 

KDD data set is considered for the purpose of simulation in this paper. It has total 110570 records with 39 attribute 

out of which last attribute is the class label. There are 23 classes in which all data items are classified including 

the class ‘normal’. In table 1 & 2, means of some of the attributes class-wise is shown and is also depicted in the 

figure 2 & 3 respectively. This is done for the purpose of categorizing data items into three signal categories, 

named PAMP, Safe and Danger. Normal classed data items are mapped to safe signals. Data items with large 

deviated mean values as compared to normal classed data are mapped to PAMP and rest to danger signals. 

 

Table1: Attribute means for some classes. 
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Figure2: Deviation of means for some classes as compared to normal class 
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Figure3: Deviation of means for some classes as compared to normal class. 

 

D. Entropy as Input Signal 

 Shanon entropies for all three signals are computed by using eqns 1-3. Entropy of whole data set computed is 

shown the table 3. 

𝑝𝑖(𝑋)𝑙𝑜𝑔(𝑝𝑖(𝑋))(1)

𝐶𝑝 = −∑

𝑙

𝑖=1

 

where X is collection of l data items categorized as PAMP. 
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𝑝𝑖(𝑌)𝑙𝑜𝑔(𝑝𝑖(𝑌))(2)

𝐶𝑠 = −∑

𝑚

𝑖=1

 

where Y is collection of m data items categorized as safe. 

𝑝𝑖(𝑍)𝑙𝑜𝑔(𝑝𝑖(𝑍))(3)

𝐶𝑑 = −∑

𝑛

𝑖=1

 

where Z is collection of n data items categorized as dander. 

 

Table3: Entropy of the system. 
Data Item 

Count P(X) log(P(X)) P(X)*log(P(X)) 

2.0000 0.0000 -4.7426 -0.0001 

839.0000 0.0076 -2.1199 -0.0161 

26.0000 0.0002 -3.6287 -0.0009 

7.0000 0.0001 -4.1985 -0.0003 

42.0000 0.0004 -3.4204 -0.0013 

11.0000 0.0001 -4.0022 -0.0004 

3171.0000 0.0287 -1.5424 -0.0442 

15.0000 0.0001 -3.8675 -0.0005 

7.0000 0.0001 -4.1985 -0.0003 

7.0000 0.0001 -4.1985 -0.0003 

36221.0000 0.3276 -0.4847 -0.1588 

1294.0000 0.0117 -1.9317 -0.0226 

59057.0000 0.5341 -0.2724 -0.1455 

3.0000 0.0000 -4.5665 -0.0001 

3.0000 0.0000 -4.5665 -0.0001 

168.0000 0.0015 -2.8183 -0.0043 

2570.0000 0.0232 -1.6337 -0.0380 

10.0000 0.0001 -4.0436 -0.0004 

3203.0000 0.0290 -1.5381 -0.0446 

2324.0000 0.0210 -1.6774 -0.0353 

789.0000 0.0071 -2.1466 -0.0153 

18.0000 0.0002 -3.7884 -0.0006 

783.0000 0.0071 -2.1499 -0.0152 

Entropy of the System,H(X)= 0.5450 

 

E. Signal Concentration and Maturation Table: The signal values are combined using a weighted function 

(Equation 4-6) with suggested values of the weights derived from empirical data based on immunologists’ wet 

lab results (Dr Julie McLeod, Dr Rachel Harry and Charlotte Williams - University of the West of England). These 

empirically derived weights are shown in table 4. 

 

𝐶𝐶𝑆𝑀 =
(𝑤𝑝,𝑐𝑠𝑚 × 𝐶𝑝) + (𝑤𝑠,𝑐𝑠𝑚 × 𝐶𝑠) + (𝑤𝑑,𝑐𝑠𝑚 × 𝐶𝑑)

(𝑤𝑝,𝑐𝑠𝑚 + 𝑤𝑠,𝑐𝑠𝑚 + 𝑤𝑑,𝑐𝑠𝑚)
(4) 

 

𝐶𝑚𝐷𝐶 =
(𝑤𝑝,𝑚𝐷𝐶 × 𝐶𝑝) + (𝑤𝑠,𝑚𝐷𝐶 × 𝐶𝑠) + (𝑤𝑑,𝑚𝐷𝐶 × 𝐶𝑑)

(𝑤𝑝,𝑚𝐷𝐶 + 𝑤𝑠,𝑚𝐷𝐶 + 𝑤𝑑,𝑚𝐷𝐶)
(5) 
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𝐶𝑠𝑚𝐷𝐶 =
(𝑤𝑝,𝑠𝑚𝐷𝐶 × 𝐶𝑝) + (𝑤𝑠,𝑠𝑚𝐷𝐶 × 𝐶𝑠) + (𝑤𝑑,𝑠𝑚𝐷𝐶 × 𝐶𝑑)

(𝑤𝑝,𝑠𝑚𝐷𝐶 + 𝑤𝑠,𝑠𝑚𝐷𝐶 + 𝑤𝑑,𝑠𝑚𝐷𝐶)
6 

 

 

 

Table 4: Empirically derived weights. 

W csm semi mat 

PAMPs(P) 2 0 2 

Danger Signals(D) 1 0 1 

Safe Signals(S) 2 3 -3 

 

IV. Result Discussion 

As shown in figure 4 & 5, classification accuracy of the proposed P-DCA based IDS is higher most as compared 

to some well known techniques earlier used in IDS like; support vector machine (SVM), Multi layer perceptron 

(MLP), Random tree and Naïve Bays. P-DCA based IDS is simulated and tested for KDD+ and KDD21 the two 

versions of KDD data set and the superiority of proposed algorithm is hence validated. Proposed P-DCA based 

model gives 92.58% accuracy for KDD+ data set which is highest amongst the considered technologies. This 

result is validated by the result for KDD21 data set where 61.05% accuracy is achieved. No other technique 

considered for comparison could provide accuracy even upto 60%. 

            
      Figure 4: For data set KDD+ 

 

 
                               Figure5: For data set KDD21 

 

V. Conclusions 

Probabilistic DCA based intrusion detection system proposed and implemented in this paper for two versions of 

KDD data set. In this paper functionalities of dendritic cells are abstracted to model the P-DCA where input signal 

concentration is actually the Shanon entropy for respective categories (i.e. PAMP, Safe & Danger) of signals. 

Results advocate that P-DCA based method implemented and validated in this paper for intrusion detection 

improves the detection accuracy significantly as compared to the earlier techniques being used for the same. 

Proposed IDS gives 92.58% detection accuracy where as SVM, MLP, Random tree and Naïve Bays based IDS 

give 65.01%, 92.26%, 92.53% and 81.66% respectively when implemented on KDD+ data set.  For KDD21 data 

set detection accuracy for proposed method was found to be 61.56% where as for SVM, MLM, Random Tree and 

Naïve Bays based methods, it was 42.29%, 57.34%, 58.21% and 55.77% respectively. 
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