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1. INTRODUCTION

In 1973, Das [4] defined semi-interior point and semi-
limit point of a subset. The semi-derived set of a subset of a
topological space was also defined and studied by him. In
2016, K.Bala Deepa Arasi and G.Subasini [1] introduced
b*g-closed sets and studied some of its properties. In 2017,
we [2] introduced b*g-continuous functions and b*g-open
maps. Further some of their basic properties are studied and
compared with the other known existing functions. Also, in
2017, we [3] introduced Contra b*g-continuous functions and
its properties are discussed. Also, we relate this function with
the other known existing functions.

Now, we define a new class of sets namely b*g-limit
points, b*g-derived sets, b*g-border, b*g-frontier
and b*g-exterior of a subset of a topological space and studied
some of their properties. Also, we prove some of the
properties of . b*g-closure and b*g-interior of a subset  of
a topological space.

2.PRELIMINARIES

Throughout this paper (X,7) (or simply X) represents
topological space on which no separation axioms are assumed
unless otherwise mentioned. For a subset A of (X, 1), CI(A),
Int(A), D(A), b(A)  and Ext(A) denote the closure, interior,
derived, border and exterior of A respectively. We are giving
some basic definitions.

Definition 2.1: [1] A subset A of a topological space (X, T) is
called
1) b*g-closed set if b*cl(A) € U whenever A € U and U
is g-open in X. The collection of all b*g-closed sets in
(X,7) is denoted by b*g-C(X,T).
2) b*g-open set if X\A is b*g-closed in A. The
collection of all b*g-open sets in (X,1) is denoted by
b*8-0O(X,7).

Definition 2.2: Let A be the subset of a space (X,t). Then

© 2018 IJJRRA All Rights Reserved

1) The border of Ais defined as b(A) = A\ Int(4).

2) The frontier of A'is defined as Fr(4A) = CL(A) \
Int(A).

3) The exterior of A is'defined as Ext(A) = Int(X \
A).

Theorem 2.3:[1]
1) Every closed set is b*g-closed.

2) Every open set is b*g-open.

3. Properties of b*g-interior and b*g-closure

Definition 3.1: The b*g-interior of A is defined as the union
of all b*g-open sets of X contained in A. It is denoted by
b*g Int(A).

Definition 3.2: A point x € X is called b*g-interior point of
A if A contains a b*§-open set containing x.

Definition 3.3: The b*g-closure of A is defined as the
intersection of all b*g-closed sets of X containing A. It is
denoted by b*g CI(A).

Theorem 3.4: If A is a subset of X, then b*g Int(A) is the set
of all b*g-interior points of A.

Proof: If x € b* g Int(A), then x belongs to some b*g-open
subset U of A. That is, x is a b*g-interior point of A.

Remark 3.5: If A is any subset of X, b*g Int(A) is b*g-open.
In fact b*g Int(A) is the largest b*g-open set contained in A.

Remark 3.6: A subset 4 of X is b*g-open < b*g Int(A) = A.

Result 3.7: For the subset A of a topological space (X,1),
Int(A) < b*g Int(A).
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Proof: Since Int(A) is the union of open sets and by theorem
2.3 (2), Int(A) is b*g-open. It is clear from the definition
3.1 that Int(A) € b*g Int(A).

Theorem 3.8: Let A and B be the subsets of a topological
space (X,1), then the following result holds:

1) b*g Int(®) = D;
2) b*gInt(X) = X;
3) b*g Int(A) C 4;
4) A C B = b*gInt(4) S b*g Int(B);
5) b*g Int(4 U B) 2 b*g Int(A) U b*g Int(B);
6) b*g Int(A N B) S b*g Int(A) N b*g Int(B);
7) b*g Int(Int(A)) = Int(A);
8) Int(b*g Int(A)) < Int(A);
9) b*g Int(b*g Int(A)) = b*g Int(A);
Proof: (1), (2) and (3) follows from definition 3.1.

(4) From definition 3.1 we have, b*g Int(4) < A.
Since A € B, b*g Int(4) € B. But b*g Int(B) € B. By remark
3.5, b*g Int(4) < b*g Int(B).

(5) Since A < AU B; B < A U B and by (4) we have,
b*g Int(A) S b*g Int(A U B) and b*g Int(B) < b*g Int(4 U B).
Therefore b*g Int(A) U b*g Int(B) < b*g Int(4 U B).

(6) Since AN B < A; AN B € B and by (4) we have,
b*g Int(4 N B) € b*g Int(A) and b*g Int(A N B) € b*g Int(B).
Therefore b*g Int(A N B) € b*g Int(A) N b*g Int(B).

(7) Since Int(A) is an open set and by theorem 2.3 (2),
Int(A) is b*g-open. By remark 3.6, b*g Int(Int(A)) = Int(A).

(8) From definition 3.1 we have, b*g Int(4) < A.
Clearly, it follows that Int(b*g Int(A)) € Int(A);

(9) Follows from remark 3.6-and 3.5.

Remark 3.9: If A is any subset of X, b*g CI(A) is b*g-closed.
In fact b*g CI(A) is the smallest b*g-closed set containing A.

Remark 3.10: A subset 4 of X is
b*g CI(A) = A.

b*g-closed &

Theorem 3.11: Let A and B be the subsets of a topological
space (X,1), then the following result holds:
1) b*g Cl(D)=d;

2) b*aCIX)=X;
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3) A< b*gCI(A);
4) AC B = b*g CI(4) < b*g CI(B);
5) b*g Cl(b*g CI(4)) = b*& CI(A);
6) b*3Cl(A U B) 2 b*g CI(4) U b*g CI(B);
7) b*g CI(4 N B) € b*g CI(4) N b*g CI(B);
8) b*g CI(CI(4)) = CI(A):;
9) Cl(b*g CI(A)) = CI(A):
Proof: (1), (2) and (3) follows from definition 3.3.

(4) From definition 3.3 we have, A < b*g CI(A).
Since A € B, b*g CI(A) < B. But b*g CI(B).is the smallest
b*g-closed set in X containing B. Therefore b*g CI(A) S b*g
CI(B).

(5) Follows from remark 3.9 and 3.10.

(6) Since A< AU B; B< A U B and by (4) we have,
b*g CI(4) < b*g CI(4 U B) and b*g CI(B) < b*g CI(4 U B).
Therefore b*g Cl(A) U b*g CI(B) < b*g CI(4 U B).

(7) Since AN B < A; AN B < Band by (4) we have,
b*g CI(A N B) < b*g CI(4) and b*g CI(A N B) < b*g CI(B).
Therefore b*g CI(A N B) € b*g CI(A) N b*g CI(B).

(8) Since CI(A) is a closed set and by theorem 2.3 (1),
Cl(A) isb*g-closed. Therefore by remark 3.10, b*g CI(CI(A))
= CI(4).

(9) Follows from remark 3.9 and 3.10.
4. Applications of b*g-Open Sets

Definition 4.1: Let A be a subset of a topological space X. A
point x € X is said to be b*g-limit point of A if for every b*g-
open set U containing x, U N (A\{x}) # ®@. The set of all b*g-
limit points of A is called an b*g-derived set of A and is
denoted by b*g (4).

Example 4.2: Let X = {ab,c} with the topology 7
{X,@,{a},{c},{b,c},{a,c}} and b*g 0(X)
{X,®,{a},{c},{a,c},{b,c} }. If A ={c}, then b*g (A) = {b}.

Result 4.3: Let A be a subset of a topological space X. Then,
(1) b*g CI(X \A) = X \ b*g Int(A)
(if) b*g Int(X \A) = X \ b*g CI(A)

Proof: (i) Letx € X \ b*g Int(A). Then, x € b*g Int(A). This
implies that x does not belongs to any b*g-open subset of A.
Let F be a b*g-closed set containing X\ A. Then X\F is b*g-
open set contained in A. Therefore, x ¢ X\F and so x € F.
Hence, x € b*g CI(X\A). This implies X \ b*g Int(A) € b*g
CI(X\A). On the other hand, let x € b*g CI(X\A). Then x
belongs to every b*g-closed set containing X\A. Hence, x
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does not belongs to any b*g-open subset of A. That is x & b*g
Int(A). This implies x € X\ b*g Int(A). Therefore, b*g
CI(X\A) € X \ b*g Int(A). Thus, b*g CI(X\A) = X\ b*§
Int(A).

(i) can be proved by replacing A by X\A in (i) and
using set theoretic properties.

Theorem 4.4: For subsets A, B of a space X, the following
statement holds:

1) D(A) < b*g D(A), where D(A) is the derived set of 4;

2) b*g D(D) = @;

3) If A c B, then b*g D(A) C b*g D(B);

4) b*g D(A U B) 2 b*g D(A) U b*§ D(B);

5) b*g D(A N B) S b*g D(A) N b*g D(B);

6) b*g D(A) S b*g D(A\{x});
Proof: (1) Let x € D(A). By the definition of D(A), there exist
an open set U containing x such that U N (A\{x}) # ®. By
theorem 2.3(2), U is an b*g-open set containing x such that U
N (A\{x}) # ®@. Therefore, x € b*§ (A). Hence, D(A) S b*§
(4).

(2) For all b*g-open set U and for all xeX, U N (D
\{x}) = ®. Hence, b*g (D) = D.

(3) Let x € b*g (A). Then for each b*g-open set U
containing x, U N (A\{x}) # ®. Since A € B, U N (B\{x}) #
@. This implies that x € b*g (B). Hence, b*g (4) S b*g (B).

(4) Let x € b*g (A) U b*g (B). Then x € b*§ (A)
or x € b*g (B). If x € b*g (A), then for each b*g-open set U
containing x, UN(A\{x}) # ®. Since A S AUB,
UN(AUB\{x}) # @. This implies that x € b*g (AUB). Hence,
b*§ (4) S b*g (AUB) ..o (1). Otherwise, if x € b*g (B),
then for each b*g-open set U containing x, UN(B\{x}) # @.
Since B € AUB, UN(AUB\{x}) # ®. This implies that x €
b*g (AUB). Hence, b*g (B) € b*§ (AUB) ........... (2). From
(1) and (2), b*g (A) U b*g (B) < b*§ (AUB).

(5) Let x € b*g (A N B). Then for each b*g-open set U
containing x, UN(ANB\{x}) # ®. Since ANB < A,
UN(A\{x}) # ®. This implies that x-€ b*g (A). Also, since
ANB < B, UN(B\{x}) # ®. This implies that x € b*g (B).
Therefore, x € b*g (A) N b*g (B). Thus, b*g (ANB) <
b*g(4)Nb*gD(B).

(6) Let x € b*g (A). Then for each b*g-open set U
containing x, U N (A\{x}) # ®. This implies that U N
((A\{xXH)\{x}) # @. This implies x € b*g (A\{x}). Hence,
b*g (4) € b*g (A\{x}).

Definition 4.5: If A is a subset of X, then the b*g-border of
A is defined by b*g (A) = A\ b*g Int(4).

Theorem 4.6: For a subset A of a space X, the following
statement holds:

1) b*g b(d)=d;

2) b*g b(X)=D;

3) b*g b(A) € A;
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4) b*gb(A) < b(A), where b(A) denotes the border of 4;
5) b*g Int(A) U b*g b(A) = 4;
6) b*g Int(A) N b*g b(4) = D;
7) b*g b(b*g Int(4)) = ;
8) b*g Int(b*g b(A)) = D;
9) b*gb(b*g b(4)) = b*3 b(A);
10) b*g b(b*g Cl(A)) = @;
11) b*g Cl(b*g b(A)) = @.
Proof: (1), (2) and (3) follows from definition 4.5.

(4) Let x € b*g (A). Then by definition 4.5, x €
A\b*g Int(A). This implies that x € A and x & b*g Int(4). By
result 3.7, x € A.and x ¢ Int(A). This implies that x € A \
Int(A). This implies that x € b(A). Hence, b*g (4) < (4).

(5) and (6) follows from definition 5.5.

(7)b*g b(b*g Int(4)) = b*g Int(A) \ b*gInt(b*gInt(A4))
= b*g Int(A)\b*g Int(A) (by theorem 3.8(9)) which is ®.
Hence, b*g (b*g Int(4)) = @.

(8) Let x € b*g Int(b*g b(A)). By theorem 3.8 (3), X
€ b*g b(A). On the other hand, since b*g (4) < A, we have X
€ b*g Int(A). Therefore, x € b*g (4) N b*g Int(4) which is a
contradiction to (6). Hence, b*g Int(b*g b(4)) = .

(9) b*g b(b*3b(4)) = b*g b(A)\ b*gInt(b*g b(A)) =
b*g b(A)\® = b*§ b(A) (from (8)). Hence, b*g (b*g b (4)) =
b*g (A4).

(10) b*& b(b*g CI(4)) = b*& CI(A)\ b*g Int(b*& CI(A))
C b*g CI(A)\ b*g CI(4) (by (6)) = D.

(11) b*g Cl(b*g b(A)) = b*g CI((A \b*g Int(4)) € b*§
Cl((A\A) (by (6)) = b*g CI(D) = @ (by theorem 3.11(1)).

Definition 4.7: If A is a subset of X,  then the b*g-frontier
of A is defined by b*g (A) = b*g C(A) \ b*§
Int(4).

Theorem 4.8: Let A be a subset of a space X. Then the
following statement holds:
1) b*§ Fr(®) =,
2) b*g Fr(X)=d;
3) b*g Fr(A) € b*§ CI(A);
4) b*gCl(A) = b*gInt(A) U b*§ Fr(4);
5) b*g Int(A) N b*g Fr(A) = ®;
6) b*g b(A) € b*g Fr(A);
7) b*g Fr(b*g Int(4)) € b*g Fr(A);
8) b*g Cl(b*g Fr(A)) € b*g CI(A);
9) b*gInt(A) € b*g Cl(A);
10) b*g Int(b*g Fr(A4)) € b*g Cl(A);
11) b*g Fr(b*g Fr(A)) = ®;
12) X =b*g Int(4) U b*g Int(X\A) U b*g Fr(A);
13) b*g Fr(A) =b*g Cl(A) N b*g CI(X\A);
14) b*g Fr(A) = b*g Fr(X\A).
Proof: (1), (2), (3) and (4) follows from definition 4.7.
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(5) b*g Int(A) N b*g Fr(A) = b*g Int(4) N (b*g
CIL(A)\b*g Int(4)) € A N (b*g CI(A)\A) (by theorem 3.8(3)).
b*g Int(A) N b*g Fr(A) S b*g CI(A) N (b*g CL(A)\b*g CI(A))
(by theorem 3.11(3)). b*g Int(4A) N b*g Fr(A4) = b*g Cl(A) N
@ = ®. Hence, b*g Int(A) N b*g Fr(A) = ®.

(6) Let x € b*g (A). Then x € A \ b*g Int(A). By
theorem 3.11(3), x € b*g (A4) \ b*g Int(4) = b*g Fr(4).
Hence, b*g (A) < b*g (A).

(7) b*g Fr(b*g Int(A)) =b*g CI(b*g Int(A))\ b*g Int(
b*g Int(4)) € b*g CIL(A) \ b*g Int(A) (by theorem 3.8 (3), (9))
which is b*g Fr(A). Hence, b*g (b*g Int(A)) S b*g Fr(A).

(8) From (3) we have, b*g ( b*g Fr(A4)) € b*g Cl( b*g
Cl(A)) = b*g Cl(A) (by theorem 3.11(5)). Hence, b*g (b*g
F(A)) € b*g CI(A).

(9) follows from (4).

(10) From (9), b*g Int( b*g Fr(A)) < b*g Cl(b*g Fr(4))
C b*g CI(4) (from (8)). Hence, b*g Int( b*g Fr(A)) S b*g
Cl(4).

(11) b*g Fr(b*g Fr(A)) =b*g Cl(b*g Fr(A)) \ b*g Int(
b*g Fr(A)) € b*g Cl(A) \b*g CI(A) = @ (from (8), (10)).
Hence, b*g (b*g Fr(A4)) = .

(12) b*g Int(4) U b*g Int(X\A) U b*g Fr(A) =b*g Cl(A)
U b*g Int(X\A4) (from (4)) = b*g CI(A) U {X\b*g CI(A)} (by
result 4.3 (ii)) which is X. Hence, X = b*§ Int(4) U b*g
Int(X\A) U b*g Fr(4).

(13) b*g CI(A) N b*g CI(X\A) = b*g Cl(A) N (X\b*g
Int(A4)) (by result 4:3 (i)) =b*g
CL(A)\b*g Int(A) (from (9)) = b*g Fr(A).

(14) b*g Fr(X\A4) = b*g CUX\A)\ b*g Int(X\A) =
(X\b*& Int(A))\ (X\b*& CL(A)) (by result 4.3). b*g Fr(X\A)
= b*g CI(A)\ b*g Int(A) = b*g Fr(A).

Definition 4.9 If A'is a subset of X,
of A is defined by

(X\A).

Theorem 4.10: Let A be a subset of a space X. Then the
following statement holds:

then the b*g-exterior
b*g Ext(A) = b*g

1) b*§ Ext(®)=X;

2) b*g Ext(X) = @;

3) Ext(A) € b*g Ext(4);

4) b*g Ext(A) = X\b*g CI(A);

5) Aisb*g-closed iff b*g Ext(A) = X\A4;

6) If ACB, then b*g Ext(A) 2 b*§ Ext(B);

7) b*g Ext(AUB) € b*g Ext(A) N b*g Ext(B);
8) b*g Ext(ANB) 2 b*g Ext(A) U b*g Ext(B);
9) b*g Ext(A) is b*g-open;

10) b*gExt(X\b*gExt(A))=b*sExt(A) ;

11) b*g Ext(b*g Ext(A)) = b*§ Int(b*§ CI(A));
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12) b*g Int(A) S b*g Ext(b*g Ext(A));

13) X =b*g Int(A) U b*g (A) U b*§ Fr(4).
Proof: (1) b*g (@) = b*§ Int(X\®) = b*§ Int(X) = X (by
theorem 3.8 (2)).

(2) b*§ Ext(X) = b*g Int(X\X) =b*§ Int(®) = @ (by
theorem 3.8 (1)).

(3) Let x € Ext(A). Then by definition 2.2 (3), x €
Int(X\A). By theorem 3.7, x € b*g Int(X\A) = b*g Ext(4).
Hence, Ext(A) € b*g Ext(A).

(4) Let x € b*§ Ext(A) © x € b*g (X\4) © x €
X\b*g CIl(A) (by result 4.3 (ii)). Hence, b*§Ext(A) = X\b*g
Cl(A).

(5) Let A be b*g-closed. Then X\A4 is b*g-open. By
remark 3.6, b*g Int(X\A4) = X\A. This implies that b*g
Ext(A) = X\A. Conversely, let b*g Ext(A) = X\A. Then b*g
Int(X\A) = X\A. Again by remark 3.6, X\A is b*g-open.
Hence, A is b*g-closed.

(6) b*gExt(4) = b*g Int(X\A) = X\b*g CI(A) (by
result 4.3)

(V]

X\b*g(B) (since A < B and by
theorem 3.11(4))

= b*g Int(X\B) = b*§ (B) (by
definition 4.9).
Hence, b*g Ext(A) 2 b*g (B).

(7) Since A € AUB and by (6), b*g Ext(AUB) < b*g (4).
Similarly since B € AUB and by (6), b*g Ext(AUB) S b*g
(B). Hence, b*g Ext(AUB) C b*g Ext(A) N b*§ Ext(B).

(8) Since ANB € A and by (6), b*§ Ext(A) € b*g (ANB).
Similarly since A N B € B and by (6), b*g Ext(B) < b*g (A
N B). Hence, b*g Ext(A) U b*g (B) € b*g Ext(ANB).

(9) follows from definition 4.9 and theorem 3.8(2).

(10) b*g Ext(X\b*§ Ext(A)) = b*§ Ext(X \
b*aInt(X\A4)) = b*gint(X \ {X \ b*aInt(X\A4)}) = b*g
Int(b*g Int(X\A)) =b*g Int(X\A) (by theorem 3.8 (9)) which
is b*g Ext(A). Hence, b*§ (X\b*§ Ext(A)) = b*g Ext(A).

(11) b*gExt(b*gExt(A)) = b*gint(X \ b*8Ext(4)) =
b*sint(X\b*gint(X\A)) = b*gint (b*sCl (X\(X\4)) =
b*gInt(b*g CI(A)) (by result 4.3 (i)). Hence, b*g Ext( b*g
Ext(A)) = b*g Int( b*§ CL(A)).

(12) Since A C b*3(4), b*&Int(A) C b*gInt(b*aClL(A))
= b*gExt(b*3Ext(A) ) (from (11)).

(13) b*g Int(A) U b*g Ext(A) U b*g Fr(A) =b*§ Int(A4)
U b*g Int(X\A) U b*g Fr(A) = X (from theorem 4.8 (12)).
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