A New Notion of b*g-Closed Sets in Topological Spaces

K.Bala Deepa Arasi 1, M.Mari Vidhya 2

¹ Assistant Professor of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi, TN, India.

² M.Phil Scholar, St. Mary's College (Autonomous), Thoothukudi, TN, India

Abstract- The determination of this paper is to define b*\hat{g}-limit point, b*\hat{g}-derived set, b*\hat{g}-border, b*\hat{g}-frontier and b*\hat{g}-exterior of a subset of a topological space using the concept of b*\hat{g}-open sets and study some of their properties.

Keywords: b*ĝ-border, b*ĝ-closed, b*ĝ-closure, b*ĝ-derived set, b*ĝ-exterior, b*ĝ-frontier, b*ĝ-interior, b*ĝ-limit point, and b*ĝ-open.

1. INTRODUCTION

In 1973, Das [4] defined semi-interior point and semi-limit point of a subset. The semi-derived set of a subset of a topological space was also defined and studied by him. In 2016, K.Bala Deepa Arasi and G.Subasini [1] introduced b*ĝ-closed sets and studied some of its properties. In 2017, we [2] introduced b*ĝ-continuous functions and b*ĝ-open maps. Further some of their basic properties are studied and compared with the other known existing functions. Also, in 2017, we [3] introduced Contra b*ĝ-continuous functions and its properties are discussed. Also, we relate this function with the other known existing functions.

Now, we define a new class of sets namely b*ĝ-limit points, b*ĝ-derived sets, b*ĝ-border, b*ĝ-frontier and b*ĝ-exterior of a subset of a topological space and studied some of their properties. Also, we prove some of the properties of b*ĝ-closure and b*ĝ-interior of a subset of a topological space.

2.PRELIMINARIES

Throughout this paper (X, τ) (or simply X) represents topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of (X, τ) , Cl(A), Int(A), D(A), b(A) and Ext(A) denote the closure, interior, derived, border and exterior of A respectively. We are giving some basic definitions.

Definition 2.1: [1] A subset *A* of a topological space (X, τ) is called

- 1) $b*\hat{g}\text{-}closed$ set if $b*cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in X. The collection of all $b*\hat{g}$ -closed sets in (X,τ) is denoted by $b*\hat{g}\text{-}C(X,\tau)$.
- 2) $b*\hat{g}$ -open set if $X \setminus A$ is $b*\hat{g}$ -closed in A. The collection of all $b*\hat{g}$ -open sets in (X,τ) is denoted by $b*\hat{g}$ -O (X,τ) .

Definition 2.2: Let A be the subset of a space (X,τ) . Then

- 1) The **border** of A is defined as $b(A) = A \setminus Int(A)$.
 - 2) The *frontier* of A is defined as $Fr(A) = Cl(A) \setminus Int(A)$.
- 3) The *exterior* of A is defined as $Ext(A) = Int(X \setminus A)$.

Theorem 2.3:[1]

- 1) Every closed set is b*ĝ-closed.
- 2) Every open set is b*ĝ-open.

3. Properties of b*g-interior and b*g-closure

Definition 3.1: The $b*\hat{g}$ -interior of A is defined as the union of all $b*\hat{g}$ -open sets of X contained in A. It is denoted by $b*\hat{g}$ Int(A).

Definition 3.2: A point $x \in X$ is called $b*\hat{g}$ -interior point of A if A contains a $b*\hat{g}$ -open set containing x.

Definition 3.3: The $b*\hat{g}$ -closure of A is defined as the intersection of all $b*\hat{g}$ -closed sets of X containing A. It is denoted by $b*\hat{g}$ Cl(A).

Theorem 3.4: If A is a subset of X, then $b*\hat{g}$ Int(A) is the set of all $b*\hat{g}$ -interior points of A.

Proof: If $x \in b^* \hat{g}$ *Int*(A), then x belongs to some $b^*\hat{g}$ -open subset U of A. That is, x is a $b^*\hat{g}$ -interior point of A.

Remark 3.5: If *A* is any subset of *X*, $b*\hat{g}$ *Int*(A) is $b*\hat{g}$ -open. In fact $b*\hat{g}$ *Int*(A) is the largest $b*\hat{g}$ -open set contained in A.

Remark 3.6: A subset *A* of *X* is $b*\hat{g}$ -open $\Leftrightarrow b*\hat{g}$ Int(A) = A.

Result 3.7: For the subset *A* of a topological space (X,τ) , $Int(A) \subseteq b^*\hat{g} Int(A)$.

Proof: Since Int(A) is the union of open sets and by theorem 2.3 (2), Int(A) is $b*\hat{g}$ -open. It is clear from the definition 3.1 that $Int(A) \subseteq b*\hat{g}$ Int(A).

Theorem 3.8: Let A and B be the subsets of a topological space (X,τ) , then the following result holds:

- 1) $b*\hat{g} Int(\Phi) = \Phi;$
- 2) $b*\hat{g} Int(X) = X;$
- 3) $b*\hat{g} Int(A) \subseteq A$;
- 4) $A \subseteq B \Longrightarrow b^*\hat{g} \operatorname{Int}(A) \subseteq b^*\hat{g} \operatorname{Int}(B)$;
- 5) $b*\hat{g} Int(A \cup B) \supseteq b*\hat{g} Int(A) \cup b*\hat{g} Int(B);$
- 6) $b*\hat{g} Int(A \cap B) \subseteq b*\hat{g} Int(A) \cap b*\hat{g} Int(B)$;
- 7) $b*\hat{g} Int(Int(A)) = Int(A);$
- 8) $Int(b*\hat{g} Int(A)) \subseteq Int(A)$;
- 9) $b*\hat{g} Int(b*\hat{g} Int(A)) = b*\hat{g} Int(A);$

Proof: (1), (2) and (3) follows from definition 3.1.

- (4) From definition 3.1 we have, $b*\hat{g}$ $Int(A) \subseteq A$. Since $A \subseteq B$, $b*\hat{g}$ $Int(A) \subseteq B$. But $b*\hat{g}$ $Int(B) \subseteq B$. By remark 3.5, $b*\hat{g}$ $Int(A) \subseteq b*\hat{g}$ Int(B).
- (5) Since $A \subseteq A \cup B$; $B \subseteq A \cup B$ and by (4) we have, $b*\hat{g} Int(A) \subseteq b*\hat{g} Int(A \cup B)$ and $b*\hat{g} Int(B) \subseteq b*\hat{g} Int(A \cup B)$. Therefore $b*\hat{g} Int(A) \cup b*\hat{g} Int(B) \subseteq b*\hat{g} Int(A \cup B)$.
- (6) Since $A \cap B \subseteq A$; $A \cap B \subseteq B$ and by (4) we have, $b*\hat{g}$ $Int(A \cap B) \subseteq b*\hat{g}$ Int(A) and $b*\hat{g}$ $Int(A \cap B) \subseteq b*\hat{g}$ Int(B). Therefore $b*\hat{g}$ $Int(A \cap B) \subseteq b*\hat{g}$ $Int(A) \cap b*\hat{g}$ Int(B).
- (7) Since Int(A) is an open set and by theorem 2.3 (2), Int(A) is $b*\hat{g}$ -open. By remark 3.6, $b*\hat{g}$ Int(Int(A)) = Int(A).
- (8) From definition 3.1 we have, $b*\hat{g}$ $Int(A) \subseteq A$. Clearly, it follows that $Int(b*\hat{g}$ $Int(A)) \subseteq Int(A)$;
 - (9) Follows from remark 3.6 and 3.5.

Remark 3.9: If A is any subset of X, $b*\hat{g}$ Cl(A) is $b*\hat{g}$ -closed. In fact $b*\hat{g}$ Cl(A) is the smallest $b*\hat{g}$ -closed set containing A.

Remark 3.10: A subset *A* of *X* is $b*\hat{g}$ -closed \Leftrightarrow $b*\hat{g}$ Cl(A) = A.

Theorem 3.11: Let A and B be the subsets of a topological space (X,τ) , then the following result holds:

- 1) $b*\hat{g} Cl(\Phi) = \Phi;$
- 2) $b*\hat{g} Cl(X) = X;$

- 3) $A \subseteq b * \hat{g} Cl(A)$;
- 4) $A \subseteq B \Longrightarrow b*\hat{g} Cl(A) \subseteq b*\hat{g} Cl(B);$
- 5) $b*\hat{g} Cl(b*\hat{g} Cl(A)) = b*\hat{g} Cl(A);$
- 6) $b*\hat{g} Cl(A \cup B) \supseteq b*\hat{g} Cl(A) \cup b*\hat{g} Cl(B)$;
- 7) $b*\hat{g} Cl(A \cap B) \subseteq b*\hat{g} Cl(A) \cap b*\hat{g} Cl(B)$;
- 8) $b*\hat{g} Cl(Cl(A)) = Cl(A);$
- 9) $Cl(b*\hat{g} Cl(A)) = Cl(A);$

Proof: (1), (2) and (3) follows from definition 3.3.

- (4) From definition 3.3 we have, $A \subseteq b^*\hat{g}$ Cl(A). Since $A \subseteq B$, $b^*\hat{g}$ $Cl(A) \subseteq B$. But $b^*\hat{g}$ Cl(B) is the smallest $b^*\hat{g}$ -closed set in X containing B. Therefore $b^*\hat{g}$ $Cl(A) \subseteq b^*\hat{g}$ Cl(B).
 - (5) Follows from remark 3.9 and 3.10.
- (6) Since $A \subseteq A \cup B$; $B \subseteq A \cup B$ and by (4) we have, $b*\hat{g}$ $Cl(A) \subseteq b*\hat{g}$ $Cl(A \cup B)$ and $b*\hat{g}$ $Cl(B) \subseteq b*\hat{g}$ $Cl(A \cup B)$. Therefore $b*\hat{g}$ $Cl(A) \cup b*\hat{g}$ $Cl(B) \subseteq b*\hat{g}$ $Cl(A \cup B)$.
- (7) Since $A \cap B \subseteq A$; $A \cap B \subseteq B$ and by (4) we have, $b*\hat{g}$ $Cl(A \cap B) \subseteq b*\hat{g}$ Cl(A) and $b*\hat{g}$ $Cl(A \cap B) \subseteq b*\hat{g}$ Cl(B). Therefore $b*\hat{g}$ $Cl(A \cap B) \subseteq b*\hat{g}$ $Cl(A) \cap b*\hat{g}$ Cl(B).
- (8) Since Cl(A) is a closed set and by theorem 2.3 (1), Cl(A) is $b*\hat{g}$ -closed. Therefore by remark 3.10, $b*\hat{g}$ Cl(Cl(A)) = Cl(A).
 - (9) Follows from remark 3.9 and 3.10.

4. Applications of b*\(\hat{g}\)-Open Sets

Definition 4.1: Let A be a subset of a topological space X. A point $x \in X$ is said to be $b^*\hat{g}$ -limit point of A if for every $b^*\hat{g}$ -open set U containing x, $U \cap (A \setminus \{x\}) \neq \Phi$. The set of all $b^*\hat{g}$ -limit points of A is called an $b^*\hat{g}$ -derived set of A and is denoted by $b^*\hat{g}(A)$.

Example 4.2: Let $X = \{a,b,c\}$ with the topology $\tau = \{X,\Phi,\{a\},\{c\},\{b,c\},\{a,c\}\}\}$ and $b*\hat{g}$ $O(X) = \{X,\Phi,\{a\},\{c\},\{a,c\},\{b,c\}\}\}$. If $A = \{c\}$, then $b*\hat{g}$ $(A) = \{b\}$.

Result 4.3: Let *A* be a subset of a topological space *X*. Then,

- (i) $b*\hat{g} Cl(X \setminus A) = X \setminus b*\hat{g} Int(A)$
- (ii) $b*\hat{g} Int(X \setminus A) = X \setminus b*\hat{g} Cl(A)$

Proof: (i) Let $x \in X \setminus b^*\hat{g}$ Int(A). Then, $x \notin b^*\hat{g}$ Int(A). This implies that x does not belongs to any $b^*\hat{g}$ -open subset of A. Let F be a $b^*\hat{g}$ -closed set containing $X \setminus A$. Then $X \setminus F$ is $b^*\hat{g}$ -open set contained in A. Therefore, $x \notin X \setminus F$ and so $x \in F$. Hence, $x \in b^*\hat{g}$ $Cl(X \setminus A)$. This implies $X \setminus b^*\hat{g}$ $Int(A) \subseteq b^*\hat{g}$ $Cl(X \setminus A)$. On the other hand, let $x \in b^*\hat{g}$ $Cl(X \setminus A)$. Then x belongs to every $b^*\hat{g}$ -closed set containing $X \setminus A$. Hence, $x \in B$

does not belongs to any b* \hat{g} -open subset of A. That is $x \notin b*\hat{g}$ Int(A). This implies $x \in X \setminus b*\hat{g}$ Int(A). Therefore, b* \hat{g} $Cl(X \setminus A) \subseteq X \setminus b*\hat{g}$ Int(A). Thus, b* \hat{g} $Cl(X \setminus A) = X \setminus b*\hat{g}$ Int(A).

(ii) can be proved by replacing A by $X \setminus A$ in (i) and using set theoretic properties.

Theorem 4.4: For subsets A, B of a space X, the following statement holds:

- 1) $D(A) \subseteq b * \hat{g} D(A)$, where D(A) is the derived set of A;
- 2) $b*\hat{g} D(\Phi) = \Phi$;
- 3) If $A \subset B$, then $b * \hat{g} D(A) \subseteq b * \hat{g} D(B)$;
- 4) $b*\hat{g} D(A \cup B) \supseteq b*\hat{g} D(A) \cup b*\hat{g} D(B)$;
- 5) $b*\hat{g} D(A \cap B) \subseteq b*\hat{g} D(A) \cap b*\hat{g} D(B)$;
- 6) $b*\hat{g} D(A) \subseteq b*\hat{g} D(A \setminus \{x\});$

Proof: (1) Let $x \in D(A)$. By the definition of D(A), there exist an open set U containing x such that $U \cap (A \setminus \{x\}) \neq \Phi$. By theorem 2.3(2), U is an b* \hat{g} -open set containing x such that $U \cap (A \setminus \{x\}) \neq \Phi$. Therefore, $x \in b*\hat{g}(A)$. Hence, $D(A) \subseteq b*\hat{g}(A)$.

- (2) For all b* \hat{g} -open set U and for all $x \in X$, $U \cap (\Phi \setminus \{x\}) = \Phi$. Hence, $b * \hat{g} (\Phi) = \Phi$.
- (3) Let $x \in b^*\hat{g}$ (A). Then for each $b^*\hat{g}$ -open set U containing $x, U \cap (A \setminus \{x\}) \neq \Phi$. Since $A \subseteq B, U \cap (B \setminus \{x\}) \neq \Phi$. This implies that $x \in b^*\hat{g}$ (B). Hence, $b^*\hat{g}$ (A) $\subseteq b^*\hat{g}$ (B).
- (4) Let $x \in b^*\hat{g}(A) \cup b^*\hat{g}(B)$. Then $x \in b^*\hat{g}(A)$ or $x \in b^*\hat{g}(B)$. If $x \in b^*\hat{g}(A)$, then for each $b^*\hat{g}$ -open set U containing x, $U \cap (A \setminus \{x\}) \neq \Phi$. Since $A \subseteq A \cup B$, $U \cap (A \cup B \setminus \{x\}) \neq \Phi$. This implies that $x \in b^*\hat{g}(A \cup B)$. Hence, $b^*\hat{g}(A) \subseteq b^*\hat{g}(A \cup B)$(1). Otherwise, if $x \in b^*\hat{g}(B)$, then for each $b^*\hat{g}$ -open set U containing x, $U \cap (B \setminus \{x\}) \neq \Phi$. Since $B \subseteq A \cup B$, $U \cap (A \cup B \setminus \{x\}) \neq \Phi$. This implies that $x \in b^*\hat{g}(A \cup B)$. Hence, $b^*\hat{g}(B) \subseteq b^*\hat{g}(A \cup B)$(2). From (1) and (2), $b^*\hat{g}(A) \cup b^*\hat{g}(B) \subseteq b^*\hat{g}(A \cup B)$.
- (5) Let $x \in b^*\hat{g}$ $(A \cap B)$. Then for each $b^*\hat{g}$ -open set U containing x, $U \cap (A \cap B \setminus \{x\}) \neq \Phi$. Since $A \cap B \subseteq A$, $U \cap (A \setminus \{x\}) \neq \Phi$. This implies that $x \in b^*\hat{g}$ (A). Also, since $A \cap B \subseteq B$, $U \cap (B \setminus \{x\}) \neq \Phi$. This implies that $x \in b^*\hat{g}$ (B). Therefore, $x \in b^*\hat{g}$ $(A) \cap b^*\hat{g}$ (B). Thus, $b^*\hat{g}$ $(A \cap B) \subseteq b^*\hat{g}(A) \cap b^*\hat{g}D(B)$.
- (6) Let $x \in b^*\hat{g}$ (A). Then for each $b^*\hat{g}$ -open set U containing x, $U \cap (A \setminus \{x\}) \neq \Phi$. This implies that $U \cap ((A \setminus \{x\}) \setminus \{x\}) \neq \Phi$. This implies $x \in b^*\hat{g}$ (A\\\ \{x\}). Hence, $b^*\hat{g}$ (A\\\\ \{x\}).

Definition 4.5: If *A* is a subset of *X*, then the $b*\hat{g}$ -border of *A* is defined by $b*\hat{g}(A) = A \setminus b*\hat{g} Int(A)$.

Theorem 4.6: For a subset A of a space X, the following statement holds:

- 1) $b*\hat{g} b(\Phi) = \Phi;$
- 2) $b*\hat{g} b(X) = \Phi;$
- 3) $b*\hat{g} b(A) \subseteq A$;

- 4) $b*\hat{g}b(A) \subseteq b(A)$, where b(A) denotes the border of A;
- 5) $b*\hat{g} Int(A) \cup b*\hat{g} b(A) = A;$
- 6) $b*\hat{g} Int(A) \cap b*\hat{g} b(A) = \Phi;$
- 7) $b*\hat{g} b(b*\hat{g} Int(A)) = \Phi;$
- 8) $b*\hat{g} Int(b*\hat{g} b(A)) = \Phi;$
- 9) $b*\hat{g} b(b*\hat{g} b(A)) = b*\hat{g} b(A);$
- 10) $b*\hat{g} b(b*\hat{g} Cl(A)) = \Phi;$
- 11) $b*\hat{g} Cl(b*\hat{g} b(A)) = \Phi$.

Proof: (1), (2) and (3) follows from definition 4.5.

- (4) Let $x \in b^*\hat{g}(A)$. Then by definition $4.5, x \in A \setminus b^*\hat{g}$ Int(A). This implies that $x \in A$ and $x \notin b^*\hat{g}$ Int(A). By result 3.7, $x \in A$ and $x \notin Int(A)$. This implies that $x \in A \setminus Int(A)$. This implies that $x \in A \setminus Int(A)$. This implies that $x \in A$.
 - (5) and (6) follows from definition 5.5.

(7) $b*\hat{g} b(b*\hat{g} Int(A)) = b*\hat{g} Int(A) \setminus b*\hat{g} Int(b*\hat{g} Int(A))$ = $b*\hat{g} Int(A) \setminus b*\hat{g} Int(A)$ (by theorem 3.8(9)) which is Φ . Hence, $b*\hat{g} (b*\hat{g} Int(A)) = \Phi$.

- (8) Let $x \in b^*\hat{g} \operatorname{Int}(b^*\hat{g} b(A))$. By theorem 3.8 (3), $x \in b^*\hat{g} b(A)$. On the other hand, since $b^*\hat{g} (A) \subseteq A$, we have $x \in b^*\hat{g} \operatorname{Int}(A)$. Therefore, $x \in b^*\hat{g} (A) \cap b^*\hat{g} \operatorname{Int}(A)$ which is a contradiction to (6). Hence, $b^*\hat{g} \operatorname{Int}(b^*\hat{g} b(A)) = \Phi$.
- (9) $b*\hat{g} \ b(b*\hat{g}b(A)) = b*\hat{g} \ b(A) \setminus b*\hat{g}Int(b*\hat{g} \ b(A)) = b*\hat{g} \ b(A) \setminus \Phi = b*\hat{g} \ b(A) \ (from (8)).$ Hence, $b*\hat{g} \ (b*\hat{g} \ b \ (A)) = b*\hat{g} \ (A).$
- (10) $b*\hat{g} b(b*\hat{g} Cl(A)) = b*\hat{g} Cl(A) \setminus b*\hat{g} Int(b*\hat{g} Cl(A))$ $\subseteq b*\hat{g} Cl(A) \setminus b*\hat{g} Cl(A) \text{ (by (6))} = \Phi.$
- (11) $b*\hat{g} \operatorname{Cl}(b*\hat{g} b(A)) = b*\hat{g} \operatorname{Cl}((A \setminus b*\hat{g} \operatorname{Int}(A)) \subseteq b*\hat{g} \operatorname{Cl}((A \setminus A) \text{ (by (6))} = b*\hat{g} \operatorname{Cl}(\Phi) = \Phi \text{ (by theorem 3.11(1))}.$

Definition 4.7: If *A* is a subset of *X*, then the $b*\hat{g}$ -frontier of *A* is defined by $b*\hat{g}(A) = b*\hat{g}C(A) \setminus b*\hat{g}$ Int(A).

Theorem 4.8: Let A be a subset of a space X. Then the following statement holds:

- 1) $b*\hat{g} Fr(\Phi) = \Phi;$
- 2) $b*\hat{g} Fr(X) = \Phi;$
- 3) $b*\hat{g} Fr(A) \subseteq b*\hat{g} Cl(A);$
- 4) $b*\hat{g}Cl(A) = b*\hat{g}Int(A) \cup b*\hat{g}Fr(A);$
- 5) $b*\hat{g} Int(A) \cap b*\hat{g} Fr(A) = \Phi$;
- 6) $b*\hat{g} b(A) \subseteq b*\hat{g} Fr(A)$;
- 7) $b*\hat{g} Fr(b*\hat{g} Int(A)) \subseteq b*\hat{g} Fr(A)$;
- 8) $b*\hat{g} Cl(b*\hat{g} Fr(A)) \subseteq b*\hat{g} Cl(A);$
- 9) $b*\hat{g} Int(A) \subseteq b*\hat{g} Cl(A)$;
- 10) $b*\hat{g} Int(b*\hat{g} Fr(A)) \subseteq b*\hat{g} Cl(A);$
- 11) $b*\hat{g} Fr(b*\hat{g} Fr(A)) = \Phi;$
- 12) $X = b*\hat{g} Int(A) \cup b*\hat{g} Int(X \setminus A) \cup b*\hat{g} Fr(A);$
- 13) $b*\hat{g} Fr(A) = b*\hat{g} Cl(A) \cap b*\hat{g} Cl(X\backslash A);$
- 14) $b*\hat{g} Fr(A) = b*\hat{g} Fr(X\backslash A)$.

Proof: (1), (2), (3) and (4) follows from definition 4.7.

- (5) $b*\hat{g} Int(A) \cap b*\hat{g} Fr(A) = b*\hat{g} Int(A) \cap (b*\hat{g} Cl(A) \setminus b*\hat{g} Int(A)) \subseteq A \cap (b*\hat{g} Cl(A) \setminus A)$ (by theorem 3.8(3)). $b*\hat{g} Int(A) \cap b*\hat{g} Fr(A) \subseteq b*\hat{g} Cl(A) \cap (b*\hat{g} Cl(A) \setminus b*\hat{g} Cl(A))$ (by theorem 3.11(3)). $b*\hat{g} Int(A) \cap b*\hat{g} Fr(A) = b*\hat{g} Cl(A) \cap \Phi = \Phi$. Hence, $b*\hat{g} Int(A) \cap b*\hat{g} Fr(A) = \Phi$.
- (6) Let $x \in b^*\hat{g}(A)$. Then $x \in A \setminus b^*\hat{g}$ Int(A). By theorem 3.11(3), $x \in b^*\hat{g}(A) \setminus b^*\hat{g}$ $Int(A) = b^*\hat{g}$ Fr(A). Hence, $b^*\hat{g}(A) \subseteq b^*\hat{g}(A)$.
- (7) $b*\hat{g} Fr(b*\hat{g} Int(A)) = b*\hat{g} Cl(b*\hat{g} Int(A)) \setminus b*\hat{g} Int(b*\hat{g} Int(A)) \subseteq b*\hat{g} Cl(A) \setminus b*\hat{g} Int(A)$ (by theorem 3.8 (3), (9)) which is $b*\hat{g} Fr(A)$. Hence, $b*\hat{g} (b*\hat{g} Int(A)) \subseteq b*\hat{g} Fr(A)$.
- (8) From (3) we have, $b*\hat{g} (b*\hat{g} Fr(A)) \subseteq b*\hat{g} Cl(b*\hat{g} Cl(A)) = b*\hat{g} Cl(A)$ (by theorem 3.11(5)). Hence, $b*\hat{g} (b*\hat{g} F(A)) \subseteq b*\hat{g} Cl(A)$.
 - (9) follows from (4).
- (10) From (9), $b*\hat{g}$ Int($b*\hat{g}$ Fr(A)) $\subseteq b*\hat{g}$ Cl($b*\hat{g}$ Fr(A)) $\subseteq b*\hat{g}$ Cl(A) (from (8)). Hence, $b*\hat{g}$ Int($b*\hat{g}$ Fr(A)) $\subseteq b*\hat{g}$ Cl(A).
- (11) $b * \hat{g} Fr(b * \hat{g} Fr(A)) = b * \hat{g} Cl(b * \hat{g} Fr(A)) \setminus b * \hat{g} Int(b * \hat{g} Fr(A)) \subseteq b * \hat{g} Cl(A) \setminus b * \hat{g} Cl(A) = \Phi \text{ (from (8), (10))}.$ Hence, $b * \hat{g} (b * \hat{g} Fr(A)) = \Phi$.
- (12) $b*\hat{g} Int(A) \cup b*\hat{g} Int(X \setminus A) \cup b*\hat{g} Fr(A) = b*\hat{g} Cl(A)$ $\cup b*\hat{g} Int(X \setminus A)$ (from (4)) = $b*\hat{g} Cl(A) \cup \{X \setminus b*\hat{g} Cl(A)\}$ (by result 4.3 (ii)) which is X. Hence, $X = b*\hat{g} Int(A) \cup b*\hat{g} Int(X \setminus A) \cup b*\hat{g} Fr(A)$.
- (13) $b*\hat{g} Cl(A) \cap b*\hat{g} Cl(X\backslash A) = b*\hat{g} Cl(A) \cap (X\backslash b*\hat{g} Int(A))$ (by result 4.3 (i)) $= b*\hat{g} Cl(A)\backslash b*\hat{g} Int(A)$ (from (9)) $= b*\hat{g} Fr(A)$.
- (14) $b*\hat{g} Fr(X\backslash A) = b*\hat{g} Cl(X\backslash A)\backslash b*\hat{g} Int(X\backslash A) = (X\backslash b*\hat{g} Int(A))\backslash (X\backslash b*\hat{g} Cl(A))$ (by result 4.3). $b*\hat{g} Fr(X\backslash A) = b*\hat{g} Cl(A)\backslash b*\hat{g} Int(A) = b*\hat{g} Fr(A)$.

Definition 4.9 If A is a subset of X, then the $b*\hat{g}$ -exterior of A is defined by $(X \setminus A)$.

Theorem 4.10: Let A be a subset of a space X. Then the following statement holds:

- 1) $b*\hat{g} Ext(\Phi) = X;$
- 2) $b*\hat{g} Ext(X) = \Phi$;
- 3) $Ext(A) \subseteq b * \hat{g} Ext(A)$;
- 4) $b*\hat{g} Ext(A) = X \backslash b*\hat{g} Cl(A);$
- 5) $A \text{ is } b * \hat{g}\text{-closed iff } b * \hat{g} Ext(A) = X \setminus A;$
- 6) If $A \subseteq B$, then $b * \hat{g} Ext(A) \supseteq b * \hat{g} Ext(B)$;
- 7) $b*\hat{g} Ext(A \cup B) \subseteq b*\hat{g} Ext(A) \cap b*\hat{g} Ext(B)$;
- 8) $b*\hat{g} Ext(A \cap B) \supseteq b*\hat{g} Ext(A) \cup b*\hat{g} Ext(B)$;
- 9) $b*\hat{g} Ext(A)$ is $b*\hat{g}$ -open;
- 10) $b*\hat{g}Ext(X\backslash b*\hat{g}Ext(A))=b*\hat{g}Ext(A)$;
- 11) $b*\hat{g} Ext(b*\hat{g} Ext(A)) = b*\hat{g} Int(b*\hat{g} Cl(A));$

- 12) $b*\hat{g} Int(A) \subseteq b*\hat{g} Ext(b*\hat{g} Ext(A));$
- 13) $X = b*\hat{g} Int(A) \cup b*\hat{g}(A) \cup b*\hat{g} Fr(A)$.

Proof: (1) $b*\hat{g}(\Phi) = b*\hat{g} Int(X \setminus \Phi) = b*\hat{g} Int(X) = X$ (by theorem 3.8 (2)).

- (2) $b*\hat{g} Ext(X) = b*\hat{g} Int(X\backslash X) = b*\hat{g} Int(\Phi) = \Phi$ (by theorem 3.8 (1)).
- (3) Let $x \in Ext(A)$. Then by definition 2.2 (3), $x \in Int(X \setminus A)$. By theorem 3.7, $x \in b^*\hat{g} Int(X \setminus A) = b^*\hat{g} Ext(A)$. Hence, $Ext(A) \subseteq b^*\hat{g} Ext(A)$.
- (4) Let $x \in b^*\hat{g} \ Ext(A) \Leftrightarrow x \in b^*\hat{g} \ (X \setminus A) \Leftrightarrow x \in X \setminus b^*\hat{g} \ Cl(A)$ (by result 4.3 (ii)). Hence, $b^*\hat{g}Ext(A) = X \setminus b^*\hat{g} \ Cl(A)$.
- (5) Let A be $b*\hat{g}$ -closed. Then $X \setminus A$ is $b*\hat{g}$ -open. By remark 3.6, $b*\hat{g}$ $Int(X \setminus A) = X \setminus A$. This implies that $b*\hat{g}$ $Ext(A) = X \setminus A$. Conversely, let $b*\hat{g}$ $Ext(A) = X \setminus A$. Then $b*\hat{g}$ $Int(X \setminus A) = X \setminus A$. Again by remark 3.6, $X \setminus A$ is $b*\hat{g}$ -open. Hence, A is $b*\hat{g}$ -closed.
- (6) $b*\hat{g}Ext(A) = b*\hat{g} Int(X\backslash A) = X\backslash b*\hat{g} Cl(A)$ (by result 4.3) $\supseteq X\backslash b*\hat{g}(B)$ (since $A\subseteq B$ and by theorem 3.11(4)) $= b*\hat{g} Int(X\backslash B) = b*\hat{g}$ (B) (by definition 4.9).

Hence, $b*\hat{g} Ext(A) \supseteq b*\hat{g}(B)$.

- (7) Since $A \subseteq A \cup B$ and by (6), $b * \hat{g} Ext(A \cup B) \subseteq b * \hat{g} (A)$. Similarly since $B \subseteq A \cup B$ and by (6), $b * \hat{g} Ext(A \cup B) \subseteq b * \hat{g} (B)$. Hence, $b * \hat{g} Ext(A \cup B) \subseteq b * \hat{g} Ext(A) \cap b * \hat{g} Ext(B)$.
- (8) Since $A \cap B \subseteq A$ and by (6), $b * \hat{g} Ext(A) \subseteq b * \hat{g} (A \cap B)$. Similarly since $A \cap B \subseteq B$ and by (6), $b * \hat{g} Ext(B) \subseteq b * \hat{g} (A \cap B)$. Hence, $b * \hat{g} Ext(A) \cup b * \hat{g} (B) \subseteq b * \hat{g} Ext(A \cap B)$.
 - (9) follows from definition 4.9 and theorem 3.8(2).
- (10) $b*\hat{g} \ Ext(X \setminus b*\hat{g} \ Ext(A)) = b*\hat{g} \ Ext(X \setminus b*\hat{g}Int(X \setminus A)) = b*\hat{g}Int(X \setminus X \setminus b*\hat{g}Int(X \setminus A)) = b*\hat{g}Int(X \setminus X \setminus A)) = b*\hat{g}Int(X \setminus A)$ (by theorem 3.8 (9)) which is $b*\hat{g} \ Ext(A)$. Hence, $b*\hat{g} \ (X \setminus b*\hat{g} \ Ext(A)) = b*\hat{g} \ Ext(A)$.
- $(11) \ b^*\hat{g}Ext(b^*\hat{g}Ext(A)) = b^*\hat{g}Int(X \setminus b^*\hat{g}Ext(A)) = b^*\hat{g}Int(X \setminus b^*\hat{g}Int(X \setminus A)) = b^*\hat{g}Int \ (b^*\hat{g}Cl \ (X \setminus (X \setminus A)) = b^*\hat{g}Int(b^*\hat{g} \ Cl(A)) \ (by \ result \ 4.3 \ (i)). \ Hence, b^*\hat{g} \ Ext(b^*\hat{g} \ Ext(A)) = b^*\hat{g} \ Int(b^*\hat{g} \ Cl(A)).$
- (12) Since $A \subseteq b * \hat{g}(A)$, $b * \hat{g}Int(A) \subseteq b * \hat{g}Int(b * \hat{g}Cl(A))$ = $b * \hat{g}Ext(b * \hat{g}Ext(A))$ (from (11)).
- (13) $b*\hat{g} Int(A) \cup b*\hat{g} Ext(A) \cup b*\hat{g} Fr(A) = b*\hat{g} Int(A) \cup b*\hat{g} Int(X \setminus A) \cup b*\hat{g} Fr(A) = X \text{ (from theorem 4.8 (12))}.$

REFERENCES:

- K.Bala Deepa Arasi and G.Subasini, On b*ĝ-closed sets in topological spaces, International Research Journal of Mathematics, Engineering and IT, Vol.2, Issue 12, December 2015.
- 2) K.Bala Deepa Arasi and M.Mari Vidhya, On b*ĝ-continuous functions and b*ĝ-open maps in topological spaces, International Journal of Mathematics Archieve-8(7), 2017, 121-128.
- 3) K.Bala Deepa Arasi and M.Mari Vidhya, On Contra b*ĝ-continuous functions in topological spaces, International Journal of Science, Engineering and Management, Vol 2, Issue 12, December 2017
- 4) P.Das, Note on some applications of semi-open sets, Prog. Math. 7 (1973), 33-44.

