Strongly, Perfectly and Contra M_I^* -Continuous In Ideal Topological Space

J.Antony Rex Rodrigo¹, P.Mariappan²

¹Associate Professor, ²Research Scholar

^{1,2} PG and Research Department of Mathematics,V.O.Chidambaram College,Thoothukudi,Tamilnadu,India

Abstract- In this paper we have to introduced the concept of strongly M_I^* -continuous, perfectly M_I^* -*-continuous and contra M_I^* -continuous maps in ideal topological spaces. Also we have discussed the relationship with other existing continuous maps, composition between these continuous maps and its equivalent properties.

AMS Subject Classification:54 C 05

Keywords: strongly M_I^* -continuous, perfectly M_I^* -continuous, contra M_I^* -continuous

1. INTRODUCTION

The concept of ideals in topological spaces is treated in the classic text by Kuratowski [9]and Vaidyanathaswamy [10]. Jankovic and Hamlett [4] investigated further properties ofideal spaces. An Ideal I on a topological space (X,τ) is a nonempty collection of subsetsof X which satisfies the following properties: (i) A \in I and B \subset A implies B \in I (ii)A \in I and B \in I implies A \cup B \in I .An ideal topological space(or an ideal space) is a topological space (X,τ) with an ideal I on X and is denoted by (X,τ,I) . For a subset A $\subset X$, $A^*(I,\tau) = \{x \in X : A \cap U \notin I \text{ for every } U \in \tau(x)\}$ is called the localfunction of A with respect to I and τ [9]. We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I,\tau)$ called the *-topology, finer than τ is de_ned by $cl^*(A) = A \cup A^*$ [10].

2.PRILIMINARIES

Definition 2.1. A map $f : (X, \tau) \to (Y, \sigma)$ is called (i)contra continuous[2] if f-1 (V) is closed in (X, τ) for each open set V of (Y, σ) . (ii) contra α -continuous [3] if f-1 (V) is α closed in (X, τ) for each open subset V of (Y, σ) . (iii) contra β -continuous [1]if f-1 (V) is β -closed in (X, τ) for each open subset V of (Y, σ) . (iv) contra pre-continuous [4] if f-1(V) is pre-closed in (X, τ) for each open subset V of (Y, σ) . (v) contra semi-continuous if f-1 (V) is semi-closed in (X, τ) for each open subset V of (Y, σ) .

Definition 2.2. A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called (i) strongly continuous [29] if f-1 (V) is both open and closed in (X, τ) for each subset V of (Y, σ) . (ii) perfectly continuous [40] if f-1 (V) is both open and closed in (X, τ) for each open subset

V of (Y, σ) .

Definition 2.3.[7] A subset A of an ideal topological space (X, τ, I) is called M_I^* -closed if $spcl(A) \subset U$ whenever $A \subset U$ and U is I_{ω} -open in (X, τ, I) . The classof all M_I^* -closed sets in (X, τ, I) is denoted by $M_{II}^* - C(X)$. That is, $M_{II}^* - C(X) = \{A \subset X: A \text{ is } M_I^* - \text{closed in } (X, \tau, I)\}$.

Definition 2.4[7] A function $f: (X, \tau, I) \to (Y, \sigma, J)$ is called M_{I}^{*} -irresolute if $f^{-1}(V)$ is M_{I}^{*} -closed in (X, τ, I) for every M_{I}^{*} -closed set V in (Y, σ, J) .

Theorem 2.5[7]. Every closed (resp. α -closed, preclosed, semiclosed, β -closed) set is \mathbf{M}_{T}^{*} -closed but not conversely.

Lemma 2.6.The following are the properties for the subsets A,B of a space X.

(i) $x \in \text{ker}(A)$ if and only if $A \cap F \neq \emptyset$ for any closed set F of X containing x.

(ii) $A \subset \ker(A)$ and $A = \ker(A)$ if A is open in X

(iii) If $A \subset B$ then ker(A) \subset ker(B).

3.CONTRA M₁^{*}-CONTINUOUS

Definition 3.1. A function $f: (X, \tau, I) \to (Y, \sigma)$ is called contra M_{I}^{*} -continuous if $f^{-1}(V)$ is M_{I}^{*} -open (resp. M_{I}^{*} closed) in (X, τ, I) for every closed (resp. open) set V in (Y, σ) .

Example 3.2. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}, I = \{\emptyset, \{b\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. Define a

function $f: (X, \tau, I) \to (Y, \sigma)$ by f(a) = c, f(b) = a and $\mathbf{f}(c) = b$. Then \mathbf{f} is contra $\mathbf{M}_{\mathbf{I}}^*$ -continuous.

Theorem 3.3. (i) Every contra cosntinuous function is a contra $\mathbf{M}_{\mathbf{I}}^*$ -continuous function but not conversely.

(ii) Every contra α -continuous function is a contra M_{I}^{*} -continuous function but not con-versely.

(iii) Every contra pre-continuous function is a contra M_{I}^{*} -continuous function but not conversely.

(iv) Every contra semi-continuous function is a contra

 M_{I}^{*} -continuous function but not conversely.

(v) Every contra β -continuous function is a contra M_{I}^{*} -continuous function but not con-versely.

Proof. (i) Let $f: (X, \tau, I) \rightarrow (Y, \sigma)$ be a contra continuous function and V be an open set of (Y, σ) . Since f is contra continuous, f -1(V) is closed in (X, τ) . Hence by Proposition 2.0.31, f -1(V) is M_I^* -closed in (X, τ) . Thus f is a contra M_I^* -continuous function. The proof of the other parts are similar.

Example 3.4. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}, \sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\emptyset, \{c\}\}$. Define a function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b and f(c)=a. Then f is contra M_I^* -continuous but not contra continuous.for an open set $\{a\}$, we have, $f^{-1}(\{a\}) = \{a, c\}$, which is M_I^8 -closed but not closed (resp. α -closed, preclosed, semiclosed, β -closed) in (X, τ, I) .

Remark 3.5. The composition of two contra M_I^* -continuous functions need not be contra M_I^* -continuous as seen from the following example.

Example 3.6 Let $X = Y = Z = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}, \sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}, \gamma = \{\emptyset, Z, \{a\}, \{a, b\}\}, I = \{\emptyset, \{b\}\} and J = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Define a function f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ by f (a) = c, f (b) = a and f (c) = b and g : $(Y, \sigma, J) \rightarrow (Z, \gamma)$ by g(a) = c, g(b) = a and g(c) = b. Then f and g both are contra MI* -continuous but their composition is not contra MI* -continuous. For an open set $\{a, b\}$ in (Z, γ) , we have $(g \circ f)^{-1}(\{a, b\}) = f^{-1}(g^{-1}(\{a, b\})) = f^{-1}(g^{-1}(\{a, b\})) = f^{-1}(\{b, c\}) = \{a, c\}$ which is not M_I^* -closed in (X, τ, I) .

Theorem3.7. The following are equivalent for a function $f:(X,\tau,I) \rightarrow (Y,\sigma)$. Assume that $M_I^* - O(X)$ (resp. $M_I^* - C(X)$) is closed under any union.(resp.intersection)

(i) **f** is contra $M_{\mathbf{I}}^*$ -continuous.

(ii) The inverse image of a closed set F of (Y, σ) is M_{I}^{*} -open in (X, τ, I) .

(iii) For each $x \in X$ and each closed set F of Y containing

f(x) ,there exists $U \in M_{I}^{*} - O(X)$ and $x \in U$ such that $f(U) \subseteq F$.

(iv) $f(M_{\mathbf{I}}^* cl(A)) \subseteq Ker(f(A))$ for every subset A of X.

(v) $M_{I}^{*}cl(f^{-1}(B)) \subseteq f^{-1}(Ker(B))$ for every subset B of Y .

Proof. The implication (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii) :Let x be any point of X and F be any closed set of Y containing f (x) .By (ii), $f^{-1}(F)$ is M_I^* -closed in (X, τ , I) and $x \in f^{-1}(F)$.Put U = f -1(F), then U \in $M_I^* - O(X)$ and f(U) $\subseteq F$.

(iii) \Rightarrow (ii) Let F be any closed set of Y and $x \in f \mid (F)$. Then $f(x) \in F$ and there exists $U_x \in M_I^* - O(X)$ such that $f(U_x) \subset F$. Hence $f^{-1}(F) = \{U_x : x \in f^{-1}(F)\}$ is obtained and by assumption $f^{-1}(F)$ is M_I^* -open.

(ii) \Rightarrow (iv) Let A be any subset of X. Suppose that y $\notin \text{Ker}(f(A))$. Then by Lemma 2.6, there exists $F \in C(Y, f(X))$ such that $f(A) \cap F = \emptyset$. Thus $A \cap f^{-1}(F) = \emptyset$ and $M_I^* - \text{cl}(A) \cap f^{-1}(F) = \emptyset$. Hence $f(M_I^* - \text{cl}(A)) \cap F = \emptyset$ and $y \notin f(M_I^* - \text{cl}(A))$ are obtained. Thus $f(M_I^* - \text{cl}(A)) \subseteq \text{Ker}(f(A))$.

 $(i\nu) \Rightarrow (v)$ Let B be any subset of Y .By (iv) and Lemma 2.6, $f(MI^*cl(f-1(B))) \subset Ker(f(f-1(B)) \subset Ker(B))$ and $MI^*cl(f-1(B) \subset f-1(Ker(B))$.

 $(v) \Rightarrow (i)$ Let U be an open set of Y. Then by Lemma 2.6, $M_I^* \operatorname{cl}(f^{-1}(U)) \subset f^{-1}(\operatorname{Ker}(U)) = f^{-1}(U)$ and $M_I^* \operatorname{cl}(f^{-1}(U)) = f^{-1}(U)$. By assumption, $f^{-1}(U)$ is M_I^* - closed in (X, τ, I) . Hence f is contra M_I^* -continuous.

Theorem 3.8. Let (X, τ, I) , (Y, σ, J) be any two ideal topological spaces and (Y, σ, J) be $T_{M_{\mathbf{I}}}^*$ -space. Then the composition $g \circ \mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to (\mathbf{Z}, \gamma)$ is contra $M_{\mathbf{I}}^*$ -continuous if $\mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to (Y, \sigma, \mathbf{J})$ is contra $M_{\mathbf{I}}^*$ -continuous and $g : (Y, \sigma, \mathbf{J}) \to (\mathbf{Z}, \gamma)$ is

 M_{I}^{*} - continuous.

Proof. Let F be any closed set of (Z, γ) . Since g is M_{I}^{*} -continuous, $g^{-1}(F)$ is M_{I}^{*} -closed in (Y, σ, J) and (Y, σ, J) is T_{M}^{*} -space, hence $g^{-1}(F)$ is closed in (Y, σ, J) . Since f is contra M_{I}^{*} -continuous, $f^{-1}(g^{-1}(F))$ is M_{I}^{*} -open in (X, τ, I) . Hence $g \circ f$ is contra M_{I}^{*} -continuous.

Theorem 3.9.. Let (X, τ, I) , (Y, σ, J) be any two ideal topological spaces and (Y, σ, J) be $T_{M_{\mathbf{I}}}^*$ -space. Then the composition $g \circ \mathbf{f} : (X, \tau, I) \to (Z, \gamma)$ is $M_{\mathbf{I}}^*$ -continuous if $\mathbf{f} : (X, \tau, I) \to (Y, \sigma, J)$ is contra $M_{\mathbf{I}}^*$ -continuous and

g : $(Y, \sigma, J) \rightarrow (Z, \gamma)$ is contra M_{I}^{*} continuous. Proof. Let F be an open set of (Z, γ) .Since g is contra M_{I}^{*} -continuous, $g^{-1}(F)$ is M_{I}^{*} - closed in (Y, σ, J) and (Y, σ, J) is T_{M}^{*} -space, hence $g^{-1}(F)$ is closed in (Y, σ, J) . Since **f** is contra M_{I}^{*} -continuous, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is M_{I}^{*} -open in (X, τ, I) . Hence $g \circ f$ is M_{I}^{*} -continuous. **Theorem 3.10.** Let (X, τ) be a topological space and (Y, σ, J) J) be an $\alpha T_{M_{I}}^{*}$ -space. Then the composition $g \circ f : (X, \tau)$ $\rightarrow (Z, \gamma)$ is contra α -continuous if $f : (X, \tau) \rightarrow (Y, \sigma, J)$ is α -irresolute and $g : (Y, \sigma, J) \rightarrow (Z, \gamma)$ is contra M_{I}^{*} -continuous.

Proof. Let F be an open set of (Z, γ) . Since g is contra M_{I}^{*} -continuous, $g^{-1}(F)$ is M_{I}^{*} -closed in (Y, σ, J) and (Y, σ, J) is an αT_{M}^{*} =space,n hence $g^{-1}(F)$ is α -closed in (Y, σ, J) . Since f is α -irresolute, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$) is α -closed in (X, τ) . Hence $g \circ f$ is contra α -continuous. **Theorem 3.11.** Let (X, τ) be a topological space and (Y, σ, J) be a pTMI* -space. Then the composition $g \circ f : (X, \tau) \rightarrow (Z, \gamma)$ is contra pre-continuous if $f : (X, \tau) \rightarrow (Y, \sigma, J)$ J) is pre-irresolute and $g : (Y, \sigma, J) \rightarrow (Z, \gamma)$ is contra M_{I}^{*} -continuous.

Proof. Let F be an open set of (Z, γ) .Since g is contra M_{I}^{*} -continuous, $g^{-1}(F)$ is M_{I}^{*} -closed in (Y, σ, J) and (Y, σ, J) is pT_{M}^{*} -space, hence $g^{-1}(F)$ is pre-closed in (Y, σ, J) .Singe f is pre-irresolute, $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is pre-closed in (X, τ) .Hence $g \circ f$ is con- tra pre-continuous.

Theorem 3.12. Let (X, τ) be a topological space and (Y, σ, J) be a $sT_{M_{\mathbf{I}}}^*$ -space. Then the composition $g \circ f : (X, \tau) \rightarrow (Z, \gamma)$ is contra semi-continuous if $f : (X, \tau) \rightarrow (Y, \sigma, J)$ is semi-irresolute and $g : (Y, \sigma, J) \rightarrow (Z, \gamma)$ is contra $M_{\mathbf{I}}^*$ -continuous.

Proof. The proof is similar

Theorem 3.13.. Let (X, τ) be a topological space and (Y, σ, J) be a $\beta T_M_I^*$ -space. Then the composition $g \circ f : (X, \tau) \rightarrow (Z, \gamma)$ is contra β -continuous if $f : (X, \tau) \rightarrow (Y, \sigma, J)$ is β -irresolute and $g : (Y, \sigma, J) \rightarrow (Z, \gamma)$ is contra M_I^* -continuous.

Proof. The proof is similar

Theorem 3.14.. If $\mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to (\mathbf{Y}, \sigma, \mathbf{J})$ is $M_{\mathbf{I}}^{*}$ irresolute and $g : (\mathbf{Y}, \sigma, \mathbf{J}) \to (\mathbf{Z}, \gamma)$ is contra $M_{\mathbf{I}}^{*}$ continuous, then their composition $g \circ \mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to$ (\mathbf{Z}, γ) is contra $M_{\mathbf{I}}^{*}$ continuous.

Proof. Let U be any open set of (Z, γ) . Since g is contra

 $\mathbf{M}_{\mathbf{I}}^{*}$ -continuous, then $g^{-1}(U)$ is $\mathbf{M}_{\mathbf{I}}^{*}$ -closed in (Y, σ, J) and since \mathbf{f} is $\mathbf{M}_{\mathbf{I}}^{*}$ -rresolute, then $\mathbf{f}^{-1}(g^{-1}(U))$ is $\mathbf{M}_{\mathbf{I}}^{*}$ -closed in $(\mathbf{X}, \tau, \mathbf{I})$. Therefore $g \circ \mathbf{f}$ is contra $\mathbf{M}_{\mathbf{I}}^{*}$ -continuous.

Theorem 3.15.. If $\mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to (\mathbf{Y}, \sigma, \mathbf{J})$ is $\mathbf{M}_{\mathbf{I}}^*$ irresolute and $g : (\mathbf{Y}, \sigma, \mathbf{J}) \to (\mathbf{Z}, \gamma)$ is contra α continuous, then their composition $g \circ \mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to$ (\mathbf{Z}, γ) is contra $\mathbf{M}_{\mathbf{I}}^*$ continuous.

Proof. Let U be any open set of (Z,γ) .Since g is contra α -continuous, then $g^{-1}(U$) is α -closed in $(Y,\,\sigma,\,J)$.By Theorem 2.5., $g^{-1}(U)$ is

 M_{I}^{*} -closed in (Y, σ, J) and since f is M_{I}^{*} -irresolute,then $f^{-1}(g^{-1}(U))$ is M_{I}^{*} -closed in (X, τ, I) . Therefore $g \circ f$ is contra M_{I}^{*} -continuous.

Theorem 3.16. If $\mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to (\mathbf{Y}, \sigma, \mathbf{J})$ is $\mathbf{M}_{\mathbf{I}}^*$ irresolute and $g : (\mathbf{Y}, \sigma, \mathbf{J}) \to (\mathbf{Z}, \gamma)$ is contra precontinuous, then their composition $g \circ \mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to (\mathbf{Z}, \gamma)$ is contra $\mathbf{M}_{\mathbf{I}}^*$ continuous.

Proof. The proof is similar.

Theorem 3.17.. If $\mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to (\mathbf{Y}, \sigma, \mathbf{J})$ is $\mathbf{M}_{\mathbf{I}}^*$ irresolute and $g : (\mathbf{Y}, \sigma, \mathbf{J}) \to (\mathbf{Z}, \gamma)$ is contra semicontinuous ,then their composition $g \circ \mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to$ (\mathbf{Z}, γ) is contra $\mathbf{M}_{\mathbf{I}}^*$ - continuous.

Proof. The proof is similar.

Theorem 3.18.: If $\mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to (\mathbf{Y}, \sigma, \mathbf{J})$ is $\mathbf{M}_{\mathbf{I}}^*$ irresolute and $g : (\mathbf{Y}, \sigma, \mathbf{J}) \to (\mathbf{Z}, \gamma)$ is contra β continuous, then their composition $g \circ \mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to$ (\mathbf{Z}, γ) is contra $\mathbf{M}_{\mathbf{I}}^*$ continuous.

Proof. The proof is similar.

Theorem 3.19. If $\mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to (\mathbf{Y}, \sigma)$ is contra $M_{\mathbf{I}}^*$ -continuous and $g : (\mathbf{Y}, \sigma) \to (\mathbf{Z}, \gamma)$ is continuous, then their composition $g \circ \mathbf{f} : (\mathbf{X}, \tau, \mathbf{I}) \to (\mathbf{Z}, \gamma)$ is contra $M_{\mathbf{I}}^*$ -continuous.

Proof. Let U be any open set of (Z, γ) .Since g is continuous,then $g^{-1}(U)$ is open in (Y, σ) and since f is contra M_{I}^{*} -continuous, then $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is M_{I}^{*} - closed in (X, τ, I) .Therefore $g \circ f$ is contra M_{I}^{*} - continuous.

4. Strongly and perfectly M_{I}^{*} -continuous maps

Definition 4.1.. A map $f : (X,\tau) \to (Y,\sigma,J)$ is said to be strongly $M_{\mathbf{I}}^*$ -continuous if the inverse image of every $M_{\mathbf{I}}^*$ -open set of (Y,σ,J) is open in (X,τ) .

Proposition 4.2. If a map $f : (X, \tau) \rightarrow (Y, \sigma, J)$ is strongly

f

 $M_{\mathbf{I}}^*$ -continuous, then f is continuous but not conversely.

Proof. Since every open set is $M_{\mathbf{I}}^*$ -open, we get the proof.

Example 4.3.. Let $X = Y = \{a,b,c\}, \tau = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{a,b\}\}J = \{\emptyset\}$. Define a function $f : (X,\tau) \rightarrow (Y,\sigma,J)$ by f(a) = b, f(b) = a and f(c) = c

.Then the function f is continuous but not strongly M_{I}^{*} -

continuous. For a $M_{\mathbf{I}}^*$ - closed set {b}, we have ${}^{-1}(\{b\}) = \{a\}$ which is not closed in (X, τ) .

Proposition 4.4.. Let (X, τ) be a topological space, (Y, σ, J) be a $T_{M_{I}^{*}}$ -space and $f : (X, \tau) \to (Y, \sigma, J)$ be a map. Then the following are equivalent:

(i) f is strongly M_{I}^{*} -continuous,

(ii) f is continuous.

Proof. (i) \Rightarrow (ii) : Let V ba closed set in (Y, σ , J) .By Proposition, V is $\mathbf{M}_{\mathbf{I}}^*$ -closed in (Y, σ , J) .Since f is strongly

 $M_{\mathbf{T}}^*$ -continuous, then

f⁻¹ (V) is closed in (X, τ).Hence, f is continuous.

(ii) \Rightarrow (i): Let V be any $M_{\mathbf{I}}^*$ -open set in (Y, σ ,J).Since

 (Y,σ,J) is a $T_{M_1^*}$ -space, V is open in (Y,σ,J) . By(ii), f

 $^{-1}$ (V) is open in (X, τ) . Therefore, f is strongly M_{I}^{*} - continuous.

Proposition 4.5.. Every strongly M_{I}^{*} -continuous map is SMPC(strongly M-pre continuous) but not conversely. Proof. The proof follows from the fact that every pre-

open set is $M_{\mathbf{I}}^*$ -open.

Example 4.6. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, Y, \{a\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{a, b\}\}J = \{\emptyset\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma, J)$ by f (a) = a, f (b) = c and f(c) = b. Then the function f is SMPC continuous but not strongly M_{I}^{*} -continuous. For a M_{I}^{*} -closed set $\{a, c\}$ in (Y, σ, J) , we have $f^{-1}(\{a, c\}) = \{a, b\}$ which is not closed in (X, τ) .

Proposition 4.7.. If a map $f : (X, \tau) \to (Y, \sigma, J)$ is strongly continuous,then f is strongly M_{I}^{*} -continuous but not conversely.

Example 4.8. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}, \sigma = \{\emptyset, \{a\}, \{a, b\}\} \text{ and } J = \{\emptyset\}$. Define a f : $(X, \tau) \rightarrow (Y, \sigma, J)$ be an identity function. Then f is strongly

 M_{I}^{*} -continuous but not strongly continuous.For a subset {a} of (Y, σ , J), we have $f^{-1}(\{a\}) = \{a\}$, which is not closed in (X, τ).

Proposition 4.9. Let $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ be a map.Both (X, τ, I) and (Y, σ, J) are $T_{M_{1}^{*}}$ space.Then the

following are equivalent

(i) f is M_{I}^{*} -irresolute,

(ii) f is strongly M_I^* -continuous,

(iii) f is continuous,

(iv) f is M_I^* -continuous.

Proof. (i) \Rightarrow (ii). Let F be a $M_{\mathbf{I}}^*$ -closed set in (Y,σ,J) . Since f is $M_{\mathbf{I}}^*$ -irresolute, $f^{-1}(F)$ is $M_{\mathbf{I}}^*$ -closed set in (X,τ,I) . Therefore $f^{-1}(F)$ is closed in (X,τ,I) , since (X,τ,I) is a $T_{M_{\mathbf{I}}^*}$ space. Hence f is strongly $M_{\mathbf{I}}^*$ -continuous. The other implications are proved from Definitions.

Theorem 4.10. The composition of two strongly M_{I}^{*} - continuous maps is strongly M_{I}^{*} - continuous.

Proof. Let O be a $M_{\mathbf{I}}^*$ -open set in (Z,γ,K) . Since g is strongly $M_{\mathbf{I}}^*$ -continuous, we get $g^{-1}(O)$ is open in (Y, σ, J) . By Theorem 2.5,, $g^{-1}(O)$ is $M_{\mathbf{I}}^*$ -open in (Y, σ, J) . As f is strongly $M_{\mathbf{I}}^*$ -continuous, $f^{-1}(g^{-1}(O) = (g \circ f)^{-1}(O)$ is open in (X,τ,I) . Hence $g \circ f$ is strongly $M_{\mathbf{I}}^*$ -continuous. Deftnition 4.11. A map $f : (X,\tau) \to (Y,\sigma,J)$ called perfectly $M_{\mathbf{I}}^*$ -continuous if the inverse image of every

 M_{I}^{*} -open set in (Y, \sigma, J) is both open and closed in (X, $\tau)$.

Proposition 4.12.. If a map $f : (X, \tau) \to (Y, \sigma, J)$ is perfectly M_{I}^{*} -continuous, then f is perfectly continuous (resp. continuous) but not conversely.

Proof. Let V be an open set in (Y, σ, J) . Then V is M_{I}^{*} -open in (Y, σ, J) . Since f is perfectly M_{I}^{*} -continuous, $f^{-1}(V)$ is both open and closed in (X, τ) . Thus f is perfectly continuous and also continuous.

Example 4.13. Let $X = Y \{a,b,c\}, \tau = \{\emptyset, X, \{a\}, \{b,c\}\}, \sigma = \{\emptyset, X, \{a\}, \{a,b\}\}$ and $J = \{\emptyset\}$. Define a map $f : (X, \tau) \rightarrow (Y, \sigma, J)$ by f(a) = a, f(b) = a, f(c) = b. Here the inverse image of every closed set is clopen but the inverse image of a M_{I}^{*} -closet set $a, c\}$, we have $f^{-1}(\{a, c\} = \{a, b\}$ which is neither open nor closed. Thus f is perfectly continuous but not perfectly M_{I}^{*} -continuous.

Proposition 4.14. If $f : (X,\tau) \to (Y,\sigma,J)$ is perfectly M_{I}^{*} -continuous, then it is strongly M_{I}^{*} -continuous but not conversely.

Proof. Similar to the proof of Proposition 4.12.

Example 4.15 Let $X = \{a,b,c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}, Y = \{a,b,c\}, \sigma = \{\emptyset, X, \{a\}, \{a,b\}, \{a,c\}\} \text{ and } J = \{\emptyset, \{b\}\}. Define a map f : (X, \tau) \rightarrow (Y, \sigma, J) by f(a) = a, f(b) = c, f(c) = c$. For a M_{I}^{*} -closed set $\{b,c\}$ in (Y, σ, J) , we have $f^{-1}(\{b,c\} = \{b,c\}$ is closed but not open in (X, τ) . Thus f is strongly M_{I}^{*} -continuous but not perfectly M_{I}^{*} -continuous.

Theorem 4.16. A map $f : (X, \tau) \to (Y, \sigma, J)$ from a topological space (X, τ) into an ideal topological space (Y, σ, J) is perfectly $M_{\mathbf{I}}^*$ -continuous iff $f^{-1}(O)$ is both

open and closed in (X,τ) for every $M_{I\!\!I}^{*}$ -closed set in (Y,σ,J) .

Proof. Let O be any $M_{\mathbf{I}}^*$ -closed set in (Y, σ, J) . Then

O^c is $M_{\mathbf{I}}^*$ -open in (Y, σ ,J).Since f is perfectly $M_{\mathbf{I}}^*$ continuous, $f^{-1}(O^c)$ is both open and closed in (X, τ). But $f^{-1}(O^c)=X/f^{-1}(O)$ and so $f^{-1}(O)$ is both open and closed in (X, τ).

Conversely, assume that the inverse image of every M_{I}^{*} -closed set in (Y, σ, J) is both open and closed in (X, τ) . Let O be any

 M_{I}^{*} open set in (Y, σ, J) . Then O^{c} is M_{I}^{*} -closed in (Y, σ, J) . By assumption, $f^{-1}(O^{c})$ is both open and closed in (X, τ) . But

 $f^{-1}(O^c)=X/f^{-1}(O)$ and so $f^{-1}(O)$ is both open and closed in (X, τ) .Therefore, f is perfectly M_I^* -continuous.

Proposition 4.17. Let (X, τ) be a discrete topological space , (Y, σ, J) be an ideal topological space and $f: (X, \tau) \rightarrow (Y, \sigma, J)$ be a map. Then the following are equivalent:

(i) f is perfectly M_{I}^{*} -continuous,

(ii) f is strongly $M_{\mathbf{I}}^*$ -continuous.

Proof. (i) \Rightarrow (ii) Follows from Proposition 4.14.

(ii) \Rightarrow (i):Let U be any $M_{\mathbf{I}}^*$ -open set in (Y,σ,J) .By hypothesis, $f^{-1}(U)$ is open in (X, τ) .Since (X, τ) is a discrete space, $f^{-1}(U)$ is also closed in (X, τ) and so f is perfectly $M_{\mathbf{I}}^*$ -continuous.

Theorem 4.18.. If $f : (X, \tau, I) \to (Y, \sigma, J)$ is strongly $M_{\mathbf{I}}^*$ -continuous and $g : (Y, \sigma, J) \to (Z, \gamma)$ is contra $M_{\mathbf{I}}^*$ -continuous then $g \circ f : (X, \tau, I) \to (Z, \gamma)$ is contra continuous.

Proof. Let U be any open set of (Z,γ) . Since g is contra $M_{I\!I}^{*}$ -continuous , then $g^{-1}(U)$ is $M_{I\!I}^{*}$ - closed in $(Y,\sigma,$

J) .Since f is strongly M_{I}^{*} -continuous, then f $^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is closed in (X, τ) . Therefore g of is contra continuous.

Theorem 4.19.. If $f : (X, \tau, I) \to (Y, \sigma, J)$ is M_{I}^{*} irresolute and $g : (Y, \sigma, J) \to (Z, \gamma, K)$ is strongly M_{I}^{*} continuous then $g \circ f : (X, \tau, I) \to (Z, \gamma, K)$ is M_{I}^{*} irresolute.

Proof. Let U be any M_{I}^{*} -open set in (Z,γ,K) . Since g is strongly M_{I}^{*} -continuous,then $g^{-1}(U)$ is closed in (Y, σ ,J).ByTheorem 2.5, $g^{-1}(U)$ is M_{I}^{*} -closed in (Y, σ ,J).Since f is M_{I}^{*} -irresolute,then $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is M_{I}^{*} -closed in (X,τ,I) . There fore $g \circ f$ is M_{I}^{*} -irresolute.

Theorem 4.20. If $f : (X, \tau) \to (Y, \sigma, J)$ is perfectly $M_{\mathbf{I}}^*$ continuous and $g : (Y, \sigma, J) \to (Z, \gamma)$ is contra $M_{\mathbf{I}}^*$ continuous then $g \circ f$ is contra $M_{\mathbf{I}}^*$ -continuous.

Proof. Let U be any open set in (Z,γ) . Since g is contra M_{I}^{*} -continuous, then $g^{-1}(U)$ is M_{I}^{*} - closed in (Y,σ) and since f is perfectly M_{I}^{*} -continuous, then f $^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is both open and closed in (X, τ) and so $(g \circ f)^{-1}(U)$ is both open and preclosed in (X, τ) . By Theorem 2.5, $(g \circ f)^{-1}(U)$ is M_{I}^{*} -closed in (X, τ) . Therefore $g \circ f$ is contra M_{I}^{*} -continuous.

Proposition 4.21. If $f: (X,\tau) \to (Y,\sigma,J)$ and $g: (Y,\sigma,J) \to (Z,\gamma,K)$ are perfectly $M_{\mathbf{I}}^*$ -continuous,then their composition $g \circ f: (X,\tau) \to (Z,\gamma,K)$ is also perfectly $M_{\mathbf{I}}^*$ - continuous.

Proof. Let V be an $M_{\mathbf{I}}^*$ -open set in (Z, γ, K) . Since g is perfectly $M_{\mathbf{I}}^*$ -continuous, $g^{-1}(V)$ is both open and closed in (Y, σ, J) . As f is perfectly $M_{\mathbf{I}}^*$ -continuous, $f^{-1}(g^{-1}(V) = (g \circ f)^{-1}(V)$ is both open and closed in (X, τ) . Thus $g \circ f$ is perfectly $M_{\mathbf{I}}^*$ -continuous.

Proposition 4.22. Let $f : (X, \tau, I) \to (Y, \sigma, J)$ and $g : (Y, \sigma, J) \to (Z, \gamma, K)$ be any two maps. Then their composition $g \circ f : (X, \tau, I) \to (Z, \gamma, K)$ is

(i) $M_{\mathbf{I}}^*$ -irresolute if g is perfectly $M_{\mathbf{I}}^*$ -continuous and f is $M_{\mathbf{I}}^*$ -continuous.

(ii) strongly M_I^* -continuous if g is perfectly M_I^* - continuous and f is continuous.

(iii) perfectly M_{I}^{*} -continuous if g is strongly continuous and f is perfectly M_{I}^{*} -continuous.

(iv) perfectly M_{I}^{*} -continuous if g is strongly M_{I}^{*} continuous and f is perfectly M_{I}^{*} - continuous. Proof. Similar to the proof of the Proposition 4.20.

Theorem 4.23. Let $f : (X,\tau) \to (Y,\sigma,J)$ and $g : (Y,\sigma,J) \to (Z,\gamma,K)$ be any two maps. Then their composition $g \circ f : (X,\tau) \to (Z,\gamma,K)$ is strongly M_{I}^{*} -continuous if g is

 $M_{I\!I}^{\,\ast}$ -irresolute and $\,f\,$ is strongly $M_{I\!I}^{\,\ast}$ -continuous.

Proof. Let F be a $M_{I\!\!I}^{\,*}$ -closed subset of (Z,γ,K) .Since

g is $M_{\mathbf{I}}^*$ -irresolute, $g^{-1}(F)$ is $M_{\mathbf{I}}^*$ -closed in (Y,σ,J) . Also

since f is strongly M_{I}^{*} -continuous, $f^{-1}(g^{-1}(F))$ is closed

in (X,τ) . Hence $g \circ f$ is strongly M_{I}^{*} -continuous.

Theorem 4.24.. Let $f : (X,\tau) \to (Y,\sigma,J)$ and $g : (Y,\sigma, J) \to (Z,\gamma)$ be any two maps. Then their composition g° $f : (X,\tau) \to (Z,\gamma)$ is continuous if g is $M_{\mathbf{I}}^{*}$ -continuous

and f is strongly M_{II}^{*} -continuous.

Proof. Let F be any closed subset of (Z,γ) . Since g is M_{I}^{*} -continuous, $g^{-1}(F)$ is M_{I}^{*} - closed in (Y,σ,J) . Also

since f is strongly M_{I}^{*} -continuous, $f^{-1}(g^{-1}(F))$ is closed in (X, τ) . Hence g of is continuous.

Theorem 4.25.. Let $f : (X, \tau) \to (Y, \sigma, J)$ and $g : (Y, \sigma, J) \to (Z, \gamma)$ be any two maps. Then their composition $g \circ f : (X, \tau) \to (Z, \gamma)$ is continuous if g is α -continuous and

f is strongly M_{I}^{*} -continuous.

Proof. Let F be any closed subset of (Z, γ) . Since g is α -continuous, $g^{-1}(F)$ is α - closed in (Y, σ, J) . ByTheorem 2.5, $g^{-1}(F)$ is $M_{\mathbf{I}}^*$ -closed in (Y,σ,J) . Also since f is strongly $M_{\mathbf{I}}^*$ -continuous, $f^{-1}(g^{-1}(F))$ is closed

in (X,τ) . Hence $g \circ f$ is continuous.

Theorem 4.26. Let $f : (X,\tau) \to (Y,\sigma,J)$ and $g : (Y,\sigma, J) \to (Z,\gamma)$ be any two maps. Then their composition $g \circ f : (X,\tau) \to (Z,\gamma)$ is *continuous if g is pre-continuous and*

f is strongly M_{I}^{*} -continuous. Proof. The proof is similar

Theorem 4.27. Let $f : (X,\tau) \to (Y,\sigma,J)$ and $g : (Y,\sigma,J) \to (Z,\gamma)$ be any two maps. Then their composition $g \circ f : (X,\tau) \to (Z,\gamma)$ is continuous if g is semi-continuous and f is strongly M_I^* -continuous.

Proof. The proof is similar

Theorem 4.28. Let $f: (X, \tau) \to (Y, \sigma, J)$ and $g: (Y, \sigma, J) \to (Z, \gamma)$ be any two maps. Then their composition $g \circ f: (X, \tau) \to (Z, \gamma)$ is continuous if g is β -continuous and f

is strongly M_I^* -continuous.

Proof. The proof is similar **Theorem 4.29.** Let $f: (X, \tau) \rightarrow (Y, \sigma, J)$ and $g: (Y, \sigma, J)$ $) \rightarrow (Z, \gamma)$ be any two maps. Then their composition $g \circ f:$ $(X, \tau) \rightarrow (Z, \gamma)$ is continuous if g is α -I-continuous and f is strongly M_{I}^{*} -continuous. Proof. The proof is similar

Theorem 4.30. Let $f: (X, \tau) \to (Y, \sigma, J)$ and $g: (Y, \sigma, J) \to (Z, \gamma)$ be any two maps. Then their composition $g \circ f: (X, \tau) \to (Z, \gamma)$ is continuous if g is pre-I-continuous and f is strongly M_I^* -continuous. Proof. The proof is similar

Theorem 4.31. Let $f: (X, \tau) \to (Y, \sigma, J)$ and $g: (Y, \sigma, J) \to (Z, \gamma)$ be any two maps. Then their composition $g \circ f: (X, \tau) \to (Z, \gamma)$ is continuous if g is semi-I-continuous and f is strongly M_I^* -continuous. *Proof.* The proof is similar

Theorem 4.32. Let $f : (X, \tau) \to (Y, \sigma, J)$ and $g : (Y, \sigma, J) \to (Z, \gamma)$ be any two maps. Then their composition $g \circ f : (X, \tau) \to (Z, \gamma)$ is continuous if g is β -I-continuous and f is strongly M_I^* -continuous. Proof. The proof is similar

REFERENCES

[1] Caldas M and Jafari S,Some properties of contra β continuous function, Mem. Fac.sci.Kochi Univ.Math.Vol.22,pp.19-28.

[2] Dontchev D,Contra-continuous functions and strongly S-closed spaces,International J.Math.Sci,vol.19,pp.303-310.

[3] Jafari S and Noiri T,Contra α -continuous functions between topological spaces,Iran.Int.J.Sci.vol.2,no.2,pp.153-167.

[4]Jafari S and Noiri T, Contra pre-continuous functions,Bull.Malysian.Math.Sc.Soc.(second seies), vol.25, pp. 115-128.

[5] Jankovic D and Hamlett TR,New Topologiefrom old via Ideals,the American Mathematical Monthly, vol.97 ,no.4, pp.295 -310.

[6] Levine N, semi-open sets and semi-continuity in topological spoaces, Amer. Math. Monthly, vol.70, pp.36-41, 1963.

[7]Levine N,strong continuity in topological

spaces, Amer. math. Monthly, vol. 67, pp 269, 1960.

[8] Mariappan P and Antony Rex Rodrigo J, M_{I}^{*} -closed sets in ideal topological spaces, IJMAA, vol.6(1-c),pp.493-503,2018.

[9] Kuratowski K, Topology Vol. I, Academic Press, New York.

[10] Vaidyanathaswamy R,Set Topology,Chelsea Publishing Company,New York.