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Abstract- (G,D)-number of graphs was introduced by Palani K and Nagarajan A. Let G be a (V,E) graph.
A dominating set is a subset D of V such that every vertex in V-D is adjacent to atleast one vertex of D. A
(G,D)-set D of G is a subset D of V(G) which is both a dominating and a geodetic set of G.In this paper, we
find the (G,D)-number of weak(or kronecker) product and strong product (or composition)of some standard

graphs.

I INTRODUCTION

Graph Theory is an important branch of Mathematics. It has
grown rapidly in recent times with a lot of research activities.
In 1958, domination was formulized as a theoretical area in
graph theory by C. Berge. He referred to the domination
number as the coefficient of external stability and denoted as
B(G). In 1962, Ore [7] was the first to use the term
‘Domination’ number by 8(G) and also he introduced the
concept of minimal and minimum dominating set of vertices
in graph. In 1977, Hedetniemiet.al[6] introduced the accepted
notation y(G) to denote the domination number. Let G = (V,E)
be any graph. A dominating set of a graph G is a set D of
vertices of G such that every vertex in V-D is adjacent to
atleast one vertex in D. The minimum cardinality among all
dominating sets of G is called the domination number of G. It
is denoted by y(G).The concept of geodominating  (or
geodetic) set was introduced by Buckley and Harary in [2] and
Chartrand, Zhang and Harary in [3, 4,5]. Letu, v eV(G). A
u-v geodesic is a u-v path of length d(u, v). A vertex X is said
to lie on a u-v geodesic p if x is any vertex on p. A set S of
vertices of G is a geodominating (or geodetic) set if every
vertex of G lies on an x-y geodesic for some X,y in S. The
minimum cardinality . of geodominating set is the
geodomination (or geodetic) number of G. It is denoted by
g(G). K. Palani et.al[8,9,10] introduced the concept (G,D)- set
of graphs. A (G,D)- set of graph G isa subset S of vertices of
G which is both dominating and geodominating (or geodetic)
set of G. A (G,D)- set of G is said to bea minimal (G,D) set of
G if no proper subset of S is a (G,D)- set of G. The minimum
cardinality of all minimal (G,D)-set of G is called the (G,D)-
number of G. It is denoted by ye(G). All graphs considered
here are non-trivial, simple and undirected. The order and
size of a graph G are denoted by p and q respectively Let
Gi(V1,E1)) and Go(V2,Ez) be two graphs. Theweak(or
kronecker) product[1] of G; and G, denoted byG: (O Gzhas V
=V1xV; as its vertex setand E ={{(u1,u2)(v1,v2)}(u1,v1) € E1
and (uz,v2) € Ex}as its edge set.The strong(or composition)
product[1] of G; and G2 is denoted by Gi[X] G2 has V = Vix
V; as its vertex set, and u = (uz, Uz) is adjacent with v = (vy,
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v2) whenever u; is adjacent to v1 (or) u; = v; and Uz is adjacent
to-vo. In this paper, we find the (G,D)-number of weak(or
kronecker) product and strong product (or composition)of
some standard graphs. The following theorems are from
[8,9,10]

1.1 Theorem :yc(Kn) =n

1.2Theorem : yo(Pn) =2+ ["T"*

1.3 Theorem : y6(Cy) = E] n> 6.

1.4 Theorem: Any (G,D) set D of a Graph G contains all
extreme points of G.In particular, D contains all the end points
of G.

11(G,D) - NUMBER OF WEAK(OR KRONECKER)
PRODUCT OF GRAPHS

Here, we find the (G,D)-number of weak product of some

standard graphs.

n+2

2.1 Theorem : y(P2OPy) = 2 [ 3

Proof:Let V(P2) = {us,uz} and V(Py) = {v1,V2,...Vn}.
Then, P,(OP, looks as in figure 2.1
Here, P,(OP,=2P,.
Therefore, yc(P20OPn) = yc(2Pn)
= 2y6(Pn)

o]
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When n = 5, the graph is as in figure. 2.3

[U1,‘u’1) (Ul,‘v'z) (UI:V3) (UI:VH-I) [U],‘u’n)

e (v) (v (V) (v (uyvs)
(W) (ugva)  (u2va) (uaVed) (ugw) (Uz,Vl) 0 (ug,vs)
Figure 2.1
2.2 Theorem :yg(Ps®OPn) = n+2 for n>4,n+5. a
Proof:Let n=4, n#5.Let V(P3s) = {us,uzus} and V(Pn) = [ug,vl) (uwg) (Ua,Vg) [U3,V4) (U3;V5)
{V1,V2,...Vn}.
Then, P3Py looks as in figure 2.2
Obviously, S = {(uy,vi), (Uzvi), (us,v1), (UnVn), (U2,Va), Figure 2.3
(us,vn)} is a minimum geodetic set of Ps(OP, They dominate In this case Si = {(us,v1), (Uz2,v1), (Uz,vi), (U1,Vs), (U2,Vs),
only the 6 vertices with second coordinate V2 and Vy.1. (Uz,Vs), (U2,V3),(Uz,Va)} (or) Sz = {(uz,v1), (Uz2,v1), (U3,Va),

(U1,Vs), (Uz,Vs), (uz,vs), (Uz,Vs), (Uz,Vv2)} are the minimum
(G,D)-sets.

Therefore, y(PsOPr) = [S1] = |S| = 8.

2.3 Theorem:

Yo(PsOPn)

_{ 4k +6 ifn=4k+1
Tk +1)if n=4k+2,4k+3,4(k+1)

Proof:LetV(PsOPn)={u1,uz,...Un,V1,V2,...V0.W1.W2,...Wn,Z1,Z2,..

(ugve) {usvg)  (unvs) (unva) (v (Uy¥h2) (V)

.Zn} with ui,vi,wi,zi representing the corresponding row
elements.Then, P4®OPy is as in figure 2.4

Obviously, S = {u1,v1,W1,21,Un,Vn,Wn,Zn} IS @ geodetic set
of P4OP,.

Also, they dominate the 8 vertices in the second and (n—1)"

column elements.

Figure 2.2

Further, it is observed that selecting last two consecutive

To dominate the remaining vertices we need to select either . . .
vertices among every four consecutive vertices from the

all the vertices in the second row with second co-ordinate not . . .
second and third row starting with second column element,

equal to vi1,v2,vn1 and vyor atleast the same number of vertices - .
we could get a dominating set for the remaining elements.

from all the three rows to get a minimum (G,D)-set. . . . .

g (G.D) Therefore, to find the vertices to dominate the remaining
Hence, S1 = SU{(uz,v3), (U2,V4),... (U2,Vn2)} is @ minimum
(G,D)-set of Ps®PxTherefore, yc(PsOPn) = |S1| = 6+n-4 =

n+2 for n=4, n#5.

vertices of P4OP,. We proceed in 4 cases
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(V5] uz Us

) Figure 2.5
Figure 2.4 2.5 lllustration
Consider P4OPs as in figure 2.6

Here,n=6 =4k + 2 where k =1

Case (i) Ifn=4k+1

Here, SU{Va,V5,W4,Ws,Vg,Vo,W,...V4(k-1), Vack-1)+1, Wak-1), Wa(k-

1)+1,Vak,Wak} IS @ minimum (G,D)-set of P,OP, ‘when n . ..
)+ } (G.D) " S = { U1,V1,W1,Z1,U6,Ve,We,Z6U{Va,V5,Wa W5} IS @ minimum

4k+1.
(G,D)-set of P4®Pe.
Therefore, yc(P4OPn) =|S| = 8 + 4(k—1) +2
ve(PaOP) = 8] (k=1) Therefore, yc(PsOPs) = |S| = 12=4(k + 2).
=10 + 4(k-1)
=4k + 6.

Case (ii) Ifn=4k + 2.
Here,SU{V4,Vs5,W4,Ws,Vg,Vio,Ws,Wa,...Vak, Vak+1,Wak,Wak+1} IS @
minimum (G,D)-set of P4®P, when n = 4k+2.

Therefore, yc(PsOPn)=|S| =8 + 4(k)=4(k + 2).

Case (iii) Afn=4k + 3.
Here,SU{Va4,Vs,W2,Ws,Vg,Vo,Ws,Wo,...Vak,Vaks1, Wak, Wak+1} 1S @
minimum (G,D)-set of P4OP, when n = 4k+3.

Therefore, yc(PsOPn)=[S|= 8 + 4(k)=4(k + 2).

Case (iv) Ifn=4(k + 1).
Here,SU{Va4,Vs,W2,Ws,Vg,Vo,Wg,Wo,.::Vak, Vak+1,Wak,Wak+1} IS @
minimum (G,D)-set of P4©OP, when n = 4(k+1).

Therefore, yc(P4OPn)=|S|=8 + 4(k)=4(k + 2).

2.4 lllustration

Consider P4OPsas in figure 2.5
Here,n=5=4k + 1 wherek =1

Figure 2.6

2.6 Illustraion

Consider P4OP~as in figure 2.7

Here,n=7 =4k +3wherek=1

S = { u1,V1,W1,21,U7,V7,W7,Z7}U{Va,V5,Ws W5} IS @ minimum
(G,D)-set of P4©OP7.

Therefore, yc(P4aOP7) = |S| = 12=4(k + 2).

S = { uU1,V1,W1,21,Us,V5,Ws5,Z5 }U{Vs,W4} is @ minimum (G,D)-
set of P4OPs.
Therefore, ye(P4OPs) = |S| = 10= 4k + 6.
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Figure 2.7
2.7 Hlustration :
Consider P4®Psas in figure 2.8

Figure 2.8

Here,n=8=4(k + 1) where k =1

S = { U1,V1,W1,21,Us,Ve,Ws,Zg }U{Va,V5,Wa W5} iS @ minimum
(G,D)-set of P2OPs.

Therefore, yc(P4OPs) =|S| = 12=4(k+2).

2.8 Theorem :

2[n/3lif nis even
[2n/3] if n i$ odd’ "=

Proof:Let V(C,) = {us,u-} and V(Cy) = {v1,V,...Vn}.
Then, C;(OC, looks as in figure 2.9

Y6(C20Cy) = {

2C,if nis even
Cyp if nisodd’

Therecfore,yc(C2OCn)

_ {YG(ZCH) if niseven
" Lye(Con) if nis odd

Here, C:OCq= {
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_{ZYG(Cn)if nis even
\yg(Cyy) if nis odd

(Ugvg)  {ugvna) {ugve)

[ I ]

) {uv)

(UE,VI) [Uz,\lg) [ub\l}?). EUE,Vn-l) [Uz,Vn)

Figure 2.9
Therefore, by Theorem 1.3,

2[n/3)if nis even

re(C2OCr) = {[2n/3] if nis odd

2.9 Remark :
(Dye(C20Cs) = ye(Ce) = [6/3]= 2.
(2)y6(C20Ca) =2 y6(Ca)=2 x2=4

=

(3) By (1) and (2), it is observed that the above theorem is
true for all values of n=3 though ys(Cn) = [n/3]for n = 6.

2.10 Theorem :
ye(CsOCh)=n; n>3

Proof:Let n >3.Let V(C3) = {us,upus} and V(C,) =

{v1,v2,..Vn}.
Then, CsOC, looks as in figure 2.100bviously, S={(us,v1),
(Uv2),  (unvs), (ULVa),... (ULVn2), (UVn1), (UL,Vn)}

or{(uz,v1), (U2,v2), (U2,v3), (U2,V4),... (U2,Vn-2), (U2,Vn-1), (U2,Vn)}
or  {(usv1), (us,v2), (us,v3), (Us3,Va),... (U3,Vn-2), (U3,Vn-1),
(U3,vn)}
Also, they dominate all the remaining vertices in CzOCi.
Thus S is a minimum (G,D)-set of C3z(®C,.Therefore,
ye(CsOCh)=n; n >3

is a minimum geodetic set of C3OC,,
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(Ul,\"l) {Ul,\"2) U1,V3) U1,V4)

R i

(uzva)  (uzv))  (uzvs) (uz,va)

Figure 3.2
From figure,clearly S = {(u1,v1),(u1,vs),(u1,va)} is one of the
minimum (G,D)-set of P2XIPa.
Therefore, yc(P2XIP.) = [S| =3.

(uz,va)

Figure 2.10 3.3 Theorem : yg(P2[XIPn) =4 where n> 4.
Proof:Label the vertices of PoXIP, as us,U,...un and v, Va,...Vn
111 (G,D) - NUMBER OF STRONG(OR as in figure 3.3
COMPOSITION) PRODUCT OF GRAPHS It is observed that Po[XIP, contains a bipartite graph K as its
Here, we find the (G,D)-number of strong product of some subgraph. Further, V/(Kn,) is partitioned into Vi, V2 with
standard graphs. G[V1], G[V] are path of length n.
3.1 Proposition :ye(P2XIPs) =2. Hence Vi, V. contains atleast two non-adjacent

Proof: Let V(P2) = {uyuz} and V(Ps) = {vaV2Va}Then,  \erices Therefore, a pair of two non-adjacent vertices from

P2BIPs looks as in figure 3.1 V1 with a pair of two non-adjacent vertices from V, forms a

geodetic set.

{Lu {U1,"u’2} {U1,"u'
Uz uz Us Un-2 Un-1 Un
LI O |
[ |
{Uz,"u'ﬂ {Uz,“u"z] {U],“u"3] Vi v V3 Voz Vi Vi
Figure 3.3

Figure 3.1 . L .
] ) Further, PoXIP, contains Knn implies the above is also a
From figure, clearly S = {(u1,v1),(u1,v3)} is one of the
minimum (G,D)-set of P2[XPs.
Therefore, yc(P2XIPs) = |S| =2.
3.2 Proposition : yg(P2XIP4) = 3.
Proof:Let V(P,) = {ui,u2} and V(P4) = {v1,V2,V3,Va}

Then,P2XIP4looks as in figure 3.2

dominating set of P2XIPn.

Hence S = {ui,u;,v;,vj/ ui,u; are non-adjacent and vi,v;j are non-
adjacent} is a (G,D)-set of P2XIP,.Further, S is a minimum if
n>4.

Hence ys(P.XIPy) = [S| = 4.

3.4 Theorem : y(P3sXIPn) = 4 where n> 3.
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Proof:Label the vertices of P3XIP, as ui,Uz,...Un , V1,V2,...Vn

,W1,W2,...W, as in figure 3.4

Uz Uz Uz Un-2 Un-1 Un
. [
v v
2 3 .o V-2 -1
Vi Vi
R
w1 W2 W3 Whn-2 W1 Wn
Figure 3.4

It is observed that S = {ui,u;,vi,vj/ u;,u; are non-adjacent and
vi,Vj are non-adjacent} is one of the (G,D)-set of P3X]Px.
Further, S is a minimum if m>3.Hence y(PsXPn) = [S| = 4.
3.5Theorem : yc(PsXIPn) = 4 where n> 2.

Proof:Label the vertices of P4sXIPy as ug,Uz,e..Un , V1,V2,...Vq
W1,W2,...Wh, Z1,Z2,...Zq @S in figure 3.5.

It is observed that S = {vi,vj,wi,w;l Vvi,v; are non-adjacent and
wi,w; are non-adjacent}is a (G,D)-set of P4[XIPy.

Further, S is a minimum<if n > 2. Hence ys(P4XIPn) = |S| =
4.

Ui Uz U3 Un-2 Un-1 Un

e
V3 V-2
Vi Vv PR Vp-1
Vn
w Whp- W1
Wy 2 . W
& #
I3l n I In2 In1 Iy
Figure 3.5
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3.6 Theorem : yg(C2:XIC2) =4 .

Proof:Let V(Cy) = {us,uz} and V(Cy) = {vi,v2}
From figure 3.6, C2XICo= Ka,

By Theorem 1.1, y6(CoXIC2) = ye(Ka) =4.

(uz,vi)  (uz,vz)

Q2

((‘:'{:Vﬂ {Ez?‘u'z)

Figure 3.6
3.7 Theorem:ys(C2XIC3) =6 .
Proof:Let V(Cy) = {u1,uz} and V(Cs) = {v1,v2,vs}
From figure 3.7,CoXICs= Kg
By Theorem 1.1, y6(C2XIC2) = y(Ks) =6.

(U1,V’1) (MZ) (Ul,\l’g)
(uz,v1) s )
Figure 3.7
CONCLUSION:

In general, C2XIC, is need not be a complete graph. (G,D)-
number of CnXC, for any two integers m and n could be

investigated in a similar manner.
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