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 Abstract- (G,D)-number of graphs was introduced by Palani K  and Nagarajan A.  Let G be a (V,E) graph.  

A dominating set is a subset D of V such that every vertex in V-D is adjacent to atleast one vertex of D. A 

(G,D)-set D of G is a subset D of V(G) which is both a dominating and a geodetic set of G.In this paper, we 

find the (G,D)-number of weak(or kronecker) product and strong product (or composition)of some standard 

graphs.

 

I INTRODUCTION 

Graph Theory is an important branch of  Mathematics. It has 

grown rapidly in recent times with a lot of research activities. 

In 1958, domination was formulized as a theoretical area in 

graph theory by C. Berge. He referred to the domination 

number as the coefficient of external stability and denoted as 

β(G). In 1962, Ore [7] was the first to use the term 

‘Domination’ number by δ(G) and also he introduced the 

concept of minimal and minimum dominating set of vertices 

in graph. In 1977, Hedetniemiet.al[6] introduced the accepted 

notation γ(G) to denote the domination number. Let G = (V,E) 

be any graph. A dominating set of a graph G is a set D of 

vertices of G such that every vertex in V-D is adjacent to 

atleast one vertex in D. The minimum cardinality among all 

dominating sets of G is called the domination number of G. It 

is denoted by γ(G).The concept of geodominating   (or 

geodetic) set was introduced by Buckley and Harary in [2] and 

Chartrand, Zhang and Harary in [3, 4,5].  Let u, v ∈V(G).  A 

u-v geodesic is a u-v path of length d(u, v). A vertex x is said 

to lie on a u-v geodesic p if x is any vertex on p. A set S of 

vertices of G is a geodominating (or geodetic) set if every 

vertex of G lies on an x-y geodesic for some x,y in S. The 

minimum cardinality of geodominating set is the 

geodomination (or geodetic) number of G. It is denoted by 

g(G). K. Palani et.al[8,9,10] introduced the concept (G,D)- set 

of graphs. A (G,D)- set of graph G is a subset S of  vertices of 

G which is both dominating and geodominating (or geodetic) 

set of G. A (G,D)- set of G is said to bea minimal (G,D) set of 

G if no proper subset of S is a (G,D)- set of G. The minimum 

cardinality of all minimal (G,D)-set of G is called the (G,D)- 

number of G. It is denoted  by γG(G).   All graphs considered 

here are non-trivial, simple and undirected.  The order and 

size of a graph G are denoted by p and q respectively Let 

G1(V1,E1) and G2(V2,E2) be two graphs. Theweak(or 

kronecker) product[1] of G1 and G2 denoted byG1⊙G2has V 

=V1×V2 as its vertex setand E ={{(u1,u2)(v1,v2)}/(u1,v1) ∈ E1 

and (u2,v2) ∈ E2}as its edge set.The strong(or composition) 

product[1] of G1 and G2 is denoted by G1⊠ G2 has V = V1 

V2 as its vertex set, and u = (u1, u2) is adjacent with v = (v1,  

 

v2) whenever u1 is adjacent to v1 (or) u1 = v1 and u2 is adjacent 

to v2.  In this paper, we find the (G,D)-number of weak(or 

kronecker) product and strong product (or composition)of 

some standard graphs. The following theorems are from 

[8,9,10] 

 

1.1 Theorem :𝛾G(Kn) = n 

1.2Theorem : 𝜸G(Pn) =2+ ⌈
𝑛−4

3
⌉ 

1.3 Theorem : 𝛾G(Cn) = ⌈
𝑛

3
⌉, n ≥ 6. 

1.4 Theorem: Any (G,D) set D of a Graph G contains all 

extreme points of G.In particular, D contains all the end points 

of G. 

 

II(G,D) - NUMBER OF WEAK(OR KRONECKER) 

PRODUCT OF GRAPHS 

 

Here, we find the (G,D)-number of weak product of some 

standard graphs. 

2.1 Theorem : 𝛾G(P2⊙Pn) = 2 ⌈
𝑛+2

3
⌉ 

Proof:Let V(P2) = {u1,u2} and V(Pn) = {v1,v2,...vn}. 

Then, P2⊙Pn looks as in figure 2.1 

Here, P2⊙Pn≅2Pn. 

Therefore, 𝛾G(P2⊙Pn) = 𝛾G(2Pn) 

  = 2𝛾G(Pn) 

= 2 ⌈
𝑛+2

3
⌉. 
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Figure 2.1 

 

2.2 Theorem :𝛾G(P3⊙Pn) = n+2 for n≥4,n≠5. 

Proof:Let n≥4, n≠5.Let V(P3) = {u1,u2,u3} and V(Pn) = 

{v1,v2,...vn}. 

Then, P3⊙Pn looks as in figure 2.2 

Obviously, S = {(u1,v1), (u2,v1), (u3,v1), (u1,vn), (u2,vn), 

(u3,vn)} is a minimum geodetic set of P3⊙Pn They dominate 

only the 6 vertices with second coordinate v2 and vn-1. 

 

Figure 2.2 

To dominate the remaining vertices we need to select either 

all the vertices in the second row with second co-ordinate not 

equal to v1,v2,vn-1 and vnor atleast the same number of vertices 

from all the three rows to get a minimum (G,D)-set. 

Hence, S1 = S∪{(u2,v3), (u2,v4),... (u2,vn-2)} is a minimum 

(G,D)-set of P3⊙PnTherefore, 𝛾G(P3⊙Pn) = |S1| = 6+n-4 = 

n+2  for n≥4, n≠5. 

When n = 5, the graph is as in figure. 2.3 

 

Figure 2.3 

In this case S1 = {(u1,v1), (u2,v1), (u3,v1), (u1,v5), (u2,v5), 

(u3,v5), (u2,v3),(u2,v4)}      (or)  S2 = {(u1,v1), (u2,v1), (u3,v1), 

(u1,v5), (u2,v5), (u3,v5), (u2,v3), (u2,v2)} are the minimum 

(G,D)-sets. 

Therefore, 𝛾G(P3⊙Pn) = |S1| = |S2| = 8. 

2.3 Theorem :  

𝛾G(P4⊙Pn) 

= {
4𝑘 + 6  𝑖𝑓 𝑛 = 4𝑘 + 1

4(𝑘 + 1) 𝑖𝑓  𝑛 = 4𝑘 + 2, 4𝑘 + 3, 4(𝑘 + 1)
 

Proof:LetV(P4⊙Pn)={u1,u2,...un,v1,v2,...vn.w1.w2,...wn,z1,z2,..

.zn} with ui,vi,wi,zi representing the corresponding row 

elements.Then, P4⊙Pn is as in figure 2.4 

      Obviously, S = {u1,v1,w1,z1,un,vn,wn,zn} is a geodetic set 

of P4⊙Pn. 

Also, they dominate the 8 vertices in the second and (n−1)th 

column elements. 

      Further, it is observed that selecting last two consecutive 

vertices among every four consecutive vertices from the 

second and third row starting with second column element, 

we could get a dominating set for the remaining elements. 

Therefore, to find the vertices to dominate the remaining 

vertices of P4⊙Pn.  We proceed in 4 cases 



  A.Niranjana et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Special Issue: 
Conscientious Computing Technologies, April 2018, pp. 537-543 

   © 2018 IJRRA All Rights Reserved                                                                                        page   - 539- 

 

Figure 2.4 

Case (i)  If n = 4k + 1 

Here, S∪{v4,v5,w4,w5,v8,v9,w9,...v4(k-1),v4(k-1)+1,w4(k-1),w4(k-

1)+1,v4k,w4k} is a minimum (G,D)-set of P4⊙Pn when n = 

4k+1. 

Therefore, 𝛾G(P4⊙Pn) = |S| = 8 + 4(k−1) +2 

                                             = 10 + 4(k−1) 

                                             = 4k + 6. 

Case (ii)  If n = 4k + 2. 

Here,S∪{v4,v5,w4,w5,v8,v9,w8,w9,...v4k,v4k+1,w4k,w4k+1} is a 

minimum (G,D)-set of P4⊙Pn when n = 4k+2. 

Therefore, 𝛾G(P4⊙Pn)=|S| =8 + 4(k)=4(k + 2). 

Case (iii)  If n = 4k + 3. 

Here,S∪{v4,v5,w4,w5,v8,v9,w8,w9,...v4k,v4k+1,w4k,w4k+1} is a 

minimum (G,D)-set of P4⊙Pn when n = 4k+3. 

Therefore, 𝛾G(P4⊙Pn)=|S|= 8 + 4(k)= 4(k + 2). 

Case (iv)  If n = 4(k + 1). 

Here,S∪{v4,v5,w4,w5,v8,v9,w8,w9,...v4k,v4k+1,w4k,w4k+1} is a 

minimum (G,D)-set of P4⊙Pn when n = 4(k+1). 

Therefore, 𝛾G(P4⊙Pn)=|S|=8 + 4(k)= 4(k + 2). 

2.4 Illustration 

Consider P4⊙P5 as in figure 2.5 

Here, n = 5 = 4k + 1 where k = 1 

S = { u1,v1,w1,z1,u5,v5,w5,z5}∪{v4,w4} is a minimum (G,D)-

set of P4⊙P5. 

Therefore, 𝛾G(P4⊙P5) = |S| = 10= 4k + 6. 

 

Figure 2.5 

2.5 Illustration 

Consider P4⊙P6 as in figure 2.6 

Here, n = 6 = 4k + 2 where k = 1 

S = { u1,v1,w1,z1,u6,v6,w6,z6}∪{v4,v5,w4,w5} is a minimum 

(G,D)-set of P4⊙P6. 

Therefore, 𝛾G(P4⊙P6) = |S| = 12= 4(k + 2). 

 

Figure 2.6 

2.6 Illustraion 

Consider P4⊙P7 as in figure 2.7 

Here, n = 7 = 4k + 3 where k = 1 

S = { u1,v1,w1,z1,u7,v7,w7,z7}∪{v4,v5,w4,w5} is a minimum 

(G,D)-set of P4⊙P7. 

Therefore, 𝛾G(P4⊙P7) = |S| = 12= 4(k + 2). 
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Figure 2.7 

2.7 Illustration :  

Consider P4⊙P8 as in figure 2.8 

 

Figure 2.8 

 

Here, n = 8 = 4(k + 1) where k = 1 

S = { u1,v1,w1,z1,u8,v8,w8,z8}∪{v4,v5,w4,w5} is a minimum 

(G,D)-set of P4⊙P8. 

Therefore, 𝛾G(P4⊙P8) = |S| = 12=4(k+2). 

 

2.8 Theorem : 

𝛾G(C2⊙Cn) =  {
2⌈n/3⌉𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
⌈2n/3⌉ 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

; n≥6. 

Proof:Let V(C2) = {u1,u2} and V(Cn) = {v1,v2,...vn}. 

Then, C2⊙Cn looks as in figure 2.9 

     Here, C2⊙Cn≅ {
2𝐶n 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
𝐶2𝑛  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

. 

Therecfore,𝛾G(C2⊙Cn)  

= {
γG(2𝐶n) 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

γG(𝐶2n) 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
 

={
2γG(𝐶n)𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

γG(𝐶2n) 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
 

 

Figure 2.9 

Therefore, by Theorem 1.3, 

𝛾G(C2⊙Cn)  = {
2⌈n/3⌉𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
⌈2n/3⌉ 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

2.9 Remark : 

(1)𝛾G(C2⊙C3) = 𝛾G(C6) = ⌈6/3⌉= 2. 

(2)𝛾G(C2⊙C4) = 2 𝛾G(C4)= 2 ×2= 4 

 = 2 × ⌈
4

3
⌉ 

 (3) By (1) and (2), it is observed that the above theorem is 

true for all values of n≥3 though 𝛾G(Cn) =  ⌈𝑛/3⌉for n ≥ 6. 

2.10 Theorem : 

𝛾G(C3⊙Cn) = n;  n ≥ 3 

Proof:Let n ≥ 3.Let V(C3) = {u1,u2,u3} and V(Cn) = 

{v1,v2,...vn}. 

Then, C3⊙Cn looks as in figure 2.10Obviously, S={(u1,v1), 

(u1,v2), (u1,v3), (u1,v4),... (u1,vn-2), (u1,vn-1), (u1,vn)}   

or{(u2,v1), (u2,v2), (u2,v3), (u2,v4),... (u2,vn-2), (u2,vn-1), (u2,vn)}    

or  {(u3,v1), (u3,v2), (u3,v3), (u3,v4),... (u3,vn-2), (u3,vn-1), 

(u3,vn)}    is a minimum geodetic set of C3⊙Cn. 

Also, they dominate all the remaining vertices in C3⊙Cn.  

Thus S is a minimum (G,D)-set of C3⊙Cn.Therefore, 

𝛾G(C3⊙Cn) = n;  n ≥ 3 
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Figure 2.10 

 

III   (G,D) – NUMBER OF STRONG(OR 

COMPOSITION) PRODUCT OF GRAPHS 

     Here, we find the (G,D)-number of strong product of some 

standard graphs. 

3.1 Proposition :𝛾G(P2⊠P3) =2. 

Proof: Let V(P2) = {u1,u2} and V(P3) = {v1,v2,v3}Then, 

P2⊠P3 looks as in figure 3.1 

 

 

Figure 3.1 

From figure, clearly S = {(u1,v1),(u1,v3)} is one of the 

minimum (G,D)-set of P2⊠P3. 

Therefore, 𝛾G(P2⊠P3) = |S| =2. 

3.2 Proposition : 𝛾G(P2⊠P4) = 3. 

Proof:Let V(P2) = {u1,u2} and V(P4) = {v1,v2,v3,v4} 

Then,P2⊠P4looks as in figure 3.2 

 

Figure 3.2 

From figure,clearly S = {(u1,v1),(u1,v3),(u1,v4)} is one of the 

minimum (G,D)-set of P2⊠P4. 

Therefore, 𝛾G(P2⊠P4) = |S| =3. 

3.3 Theorem : 𝛾G(P2⊠Pn) =4 where n> 4. 

Proof:Label the vertices of P2⊠Pn as u1,u2,...un and v1,v2,...vn 

as in figure 3.3 

It is observed that P2⊠Pn contains a bipartite graph Kn,n as its 

subgraph. Further, V(Kn,n) is partitioned into V1, V2 with 

G[V1], G[V2] are path of length n. 

     Hence V1, V2 contains atleast two non-adjacent 

vertices.Therefore, a pair of two non-adjacent vertices from 

V1 with a pair of two non-adjacent vertices from V2 forms a 

geodetic set. 

 

 

Figure 3.3 

     Further, P2⊠Pn contains Kn,n implies the above is also a 

dominating set of P2⊠Pn. 

Hence S = {ui,uj,vi,vj/ ui,uj are non-adjacent and vi,vj are non-

adjacent} is a (G,D)-set of P2⊠Pn.Further, S is a minimum if 

n> 4. 

Hence 𝛾G(P2⊠Pn) = |S| = 4. 

3.4 Theorem : 𝛾G(P3⊠Pn) = 4 where n> 3. 
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Proof:Label the vertices of P3⊠Pn as u1,u2,...un , v1,v2,...vn 

,w1,w2,...wn as in figure 3.4 

 

Figure 3.4 

It is observed that S = {ui,uj,vi,vj/ ui,uj are non-adjacent and 

vi,vj are non-adjacent} is one of the (G,D)-set of P3⊠Pn. 

Further, S is a minimum if m>3.Hence 𝛾G(P3⊠Pn) = |S| = 4. 

3.5Theorem : 𝛾G(P4⊠Pn) = 4 where n> 2. 

Proof:Label the vertices of P4⊠Pn as u1,u2,...un , v1,v2,...vn 

,w1,w2,...wn, z1,z2,...zn as in figure 3.5.  

It is observed that S = {vi,vj,wi,wj/ vi,vj are non-adjacent and 

wi,wj are non-adjacent}is a (G,D)-set of P4⊠Pn. 

Further, S is a minimum if n > 2.  Hence 𝛾G(P4⊠Pn) = |S| = 

4. 

 

Figure 3.5 

 

3.6 Theorem : 𝛾G(C2⊠C2) = 4 . 

Proof:Let V(C2) = {u1,u2} and V(C2) = {v1,v2} 

From figure 3.6, C2⊠C2≅ K4. 

By Theorem 1.1, 𝛾G(C2⊠C2) = 𝛾G(K4) =4. 

 

Figure 3.6 

3.7 Theorem:𝛾G(C2⊠C3) = 6 . 

Proof:Let V(C2) = {u1,u2} and V(C3) = {v1,v2,v3} 

From figure 3.7,C2⊠C3≅ K6 

By Theorem 1.1, 𝛾G(C2⊠C2) = 𝛾G(K6) =6. 

 

 

Figure 3.7 

CONCLUSION: 

In general, C2⊠Cn is need not be a complete graph. (G,D)-

number of  Cm⊠Cn for any two integers m and n could be 

investigated in a similar manner. 
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