A.Catherine et al. International Journal of Recent Research Aspects ISSN: 2349~7688, Special Issue: Conscientious Computing Technologies, April 2018, pp. 577~579

Strongly Ĝ*-Closed Sets in Topological Spaces

A.Catherine¹, V.Maheswari²

¹M.Phil Scholar, A.P.C.Mahalaxmi College for Women, Thoothukudi, TamilNadu, India ²Assistant Professor of Mathematics, A.P.C.Mahalaxmi College for Women, Thoothukudi, TamilNadu, India

Abstract: - In this paper, we introduce the concept of strongly g^{*}-closed sets in Topological spaces and investigate the relation between other closed sets. Also we characterize the properties. Mathematics Subject Classification: 54A05

Keywords

g^*-closed set, g*-closed set, strongly g^*-closed set.

1. INTRODUCTION

Norman Levine introduced and studied generalized closed (briefly g-closed) sets [1] in 1970. Njastad [3] introduced the concepts of α -sets for topological spaces. Palaniappan and Rao [4] introduced regular generalized closed sets (briefly rg-closed) sets in 1993.Pauline Mary Helen and Gayathri [5] introduced \hat{g}^* -closed sets in topological spaces.In this paper, we introduce strongly \hat{g}^* -closed sets together with the relationship of these sets with some sets. Throughout this paper (X, τ) and (Y, σ) represent non-empty topological spaces on which no separation axioms are assumed unless or otherwise mentioned. For a subset A of a space (X, τ), cl(A) and int(A) denote the closure and the interior of A respectively.

Let us recall the following definitions, which are useful in the sequel.

DEFINITION 1.1- A subset A of a topological space (X, τ) a **pre-closed set** [2] if cl(int(A)) \subseteq A.

DEFINITION 1.2- A subset A of a topological space (X, τ) an α -closed set [3] if cl(int(cl(A))) \subseteq A.

DEFINITION 1.3- A subset A of a topological space (X, τ) a **regular closed set** [2] if A = cl(int(A)).

DEFINITION 1.4 - A subset A of a topological space (X,τ) is called a generalized closed set (briefly **g-closed**) [1] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of a g-closed set is called a g-open set. **DEFINITION 1.5**- A subset A of a topological space (X,τ) is called a regular generalized closed set(briefly **rg-closed**)[4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-

closed)[4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regularopen in (X, τ) . **DEFINITION 1.6** - A subset A of a topological space

 (X,τ) is called a **g*-closed set** [6] if cl(A) \subseteq U whenever A \subseteq U and U is g-open in (X, τ) .

DEFINITION 1.7 - A subset A of a topological space (X,τ) is called a \hat{g}^* -closed set [5] if $cl(A) \subseteq U$ whenever A $\subseteq U$ and U is \hat{g} -open in (X, τ) .

2. MAIN RESULTS DEFINITION 2.1:

A subset A of a topological space (X,τ) is said to be a strongly \hat{g}^* -closed set if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in X.

THEOREM 2.2:

Every closed set is strongly \hat{g}^* - closed set PROOF: Let A be a closed set Let A \subseteq U and U be \hat{g} -open in X Since A is a closed set, $cl(int(A)) \subseteq cl(A) = A \subseteq U$ and U is \hat{g} -open in X. Hence, A is a strongly \hat{g}^* -closed set.

REMARK 2.3:

The converse of the above theorem need not be true as can be seen from the following example.

EXAMPLE 2.4:

Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Consider $A = \{a, c\}$. A is not a closed set. However A is a strongly \hat{g}^* -closed set.

THEOREM 2.5:

Every pre-closed set is strongly \hat{g}^* - closed set PROOF: Let A be a pre-closed set Let A \subseteq U and U be \hat{g} -open in X Since A is a pre-closed set, $cl(int(A)) \subseteq A \subseteq U$ and U is \hat{g} open in X. Hence, A is a strongly \hat{g}^* -closed set.

REMARK 2.6:

The converse of the above theorem need not be true as can

A.Catherine et al. International Journal of Recent Research Aspects ISSN: 2349~7688, Special Issue: Conscientious Computing Technologies, April 2018, pp. 577~579

be seen from the following example.

EXAMPLE 2.7:

Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Consider $A = \{a, c\}$. A is not a preclosed set. However A is a strongly \hat{g}^* -closed set.

THEOREM 2.8:

Every α -closed set is strongly \hat{g}^* - closed set PROOF: Let A be a α -closed set Let A \subseteq U and U be \hat{g} -open in X Since A is a α -closed set, cl(int(A)) \subseteq cl(int(cl(A))) \subseteq A \subseteq U and U is \hat{g} -open in X. Hence, A is a strongly \hat{g}^* -closed set.

REMARK 2.9:

The converse of the above theorem need not be true as can be seen from the following example.

EXAMPLE 2.10:

Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}\}$. Consider $A \neq \{a, b\}$. A is not a α -closed set. However A is a strongly \hat{g}^* -closed set.

THEOREM 2.11:

Every regular-closed set is strongly \hat{g}^* - closed set PROOF: Let A be a regular-closed set Let A \subseteq U and U be \hat{g} -open in X Since A is a regular-closed set, $cl(int(A)) = A \subseteq U$ and U is \hat{g} -open in X. Hence, A is a strongly \hat{g}^* -closed set.

REMARK 2.12:

The converse of the above theorem need not be true as can be seen from the following example.

EXAMPLE 2.13:

Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b,c\}\}$. Consider $A = \{a, c\}$. A is not a regular-closed set. However A is a strongly \hat{g}^* -closed set.

THEOREM 2.14:

Every g-closed set is strongly \hat{g}^* - closed set PROOF: Let A be a g-closed set Let A \subseteq U and U be open in X. Since "Every open is \hat{g} -open", U is \hat{g} -open in X. Since A is a g-closed set, $cl(int(A)) \subseteq cl(A) \subseteq U$ Thus we get, $cl(int(A)) \subseteq U$ and U is \hat{g} -open in X. Hence, A is a strongly \hat{g}^* -closed set.

REMARK 2.15:

The converse of the above theorem need not be true as can

be seen from the following example.

EXAMPLE 2.16:

Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$. Consider $A = \{a, b\}$. A is not a g-closed set. However A is a strongly \hat{g}^* -closed set.

THEOREM 2.17:

Every g*-closed set is strongly \hat{g}^* - closed set PROOF: Let A be a g*-closed set Let A \subseteq U and U be \hat{g} -open in X. Since "Every \hat{g} -open is open", U is open in X. Since A is a g*-closed set, $cl(int(A)) \subseteq cl(A) \subseteq U$ Thus we get, $cl(int(A)) \subseteq U$ and U is \hat{g} -open in X. Hence, A is a strongly \hat{g}^* -closed set.

REMARK 2.18:

The converse of the above theorem need not be true as can be seen from the following example.

EXAMPLE 2.19:

Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$. Consider $A = \{a, b\}$. A is not a g*-closed set. However A is a strongly \hat{g}^* -closed set.

THEOREM 2.20:

Every \hat{g}^* -closed set is strongly \hat{g}^* - closed set PROOF: Let A be a \hat{g}^* -closed set Let A \subseteq U and U be \hat{g} -open in X. Since A is a \hat{g}^* -closed set, $cl(int(A)) \subseteq cl(A) \subseteq U$ Thus we get, $cl(int(A)) \subseteq U$ and U is \hat{g} -open in X. Hence, A is a strongly \hat{g}^* -closed set.

REMARK 2.21:

The converse of the above theorem need not be true as can be seen from the following example.

EXAMPLE 2.22:

Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$. Consider $A = \{b\}$. A is not a \hat{g} *-closed set. However A is a strongly \hat{g} *-closed set.

REMARK 2.23:

The concepts of rg-closed sets and strongly \hat{g}^* -closed sets are independent of each other.

REMARK 2.24:

The following diagram shows that the relationships between strongly \hat{g}^* -closed sets and other existing generalized closed sets.

© 2018 IJRRA All Rights Reserved

A.Catherine et al. International Journal of Recent Research Aspects ISSN: 2349~7688, Special Issue: Conscientious Computing Technologies, April 2018, pp. 577~579

where A B (resp A B) represents A implies B (resp A and B are independent)

REMARK 2.25:

If A and B are strongly \hat{g}^* -closed sets, then A \cup B need not be strongly \hat{g}^* - closed set as seen in the following example.

EXAMPLE 2.26:

Let X = {a, b, c} and $\tau = \{\phi, X, \{a,c\}\}$. Consider A = {a} and B = {c}.A and B are strongly \hat{g}^* -closed sets. But A \cup B is not strongly \hat{g}^* -closed sets.

REMARK 2.27:

If A and B are strongly \hat{g}^* -closed sets, then $A \cap B$ need not be strongly \hat{g}^* - closed set as seen in the following example.

EXAMPLE 2.28:

Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a\}, \{a,c\}, \{a,b,d\}\}$. Consider $A = \{a, b, c\}$ and $B = \{a, c, d\}$ Here, A and B are strongly \hat{g}^* -closed sets. But $A \cap B$ is not strongly \hat{g}^* -closed sets.

REFERENCES

- [1] N.Levine, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.
- [2] A.S.Mashhour.M.E Abd EI-Mon.Sef and SN.EI. Deeb, on Pre-continuous and weak pre-continuous mappings proc.Math and Phys.Soc.Egypt, 53 (1982), 47-53.
- [3] O.Njastad, On some Classes of nearly open sets. Pacific J.Math, 15 (1965) 961-970
- [4] N.Palaniappan and K.C.Rao. Regular generalized Closed sets, Kyungpool Math. J., 33 (2) (1993) 211-219.
- [5] Pauline Mary Helen.M, Gayathri A., ĝ*-closed sets in topological spaces, International Journal of Mathematics Trends and Technology, Vol 6, Feb 2017, 60-74.

[6] M.K.R.S.Veera Kumar, Between Closed sets and gclosed sets, Mem,Fac. Sci. Kochi. Univ. Ser.A, Math., 17(1996) 33-42.