Separation Axioms via Regular *- Open Set

S.Pious Missier¹, M.Annalakshmi², S.Jackson³

¹ Assosiate professor, ²Research scholar, ³Assisitant professor ^{1,2,3} PG & Research Department of Mathematics, V.O.Chidambaram College, Tuticorin, India.

Abstract- The aim of this paper is to introduce new separation axioms regular*-regular and r*-regular using regular*-open sets and investigate their properties. We also study the relationships among themselves and with known axioms regular, normal, semi-regular and semi-normal.

KEYWARDS: Regular*-regular, r*-regular Mathematical Subject Classification: 54D10, 54D15.

INTRODUCTION

Separation axioms are useful in classifying topological spaces. Maheswari and Prasad introduce the notion of sregular and s-normal spaces using semi-open sets. Dorsett introduce the concept of semi-regular and semi-normal spaces and investigated their properties.

In this paper, we define regular*-regular, regular*-normal, r*-regular and r*-normal using regular*-open sets and investigate their properties. We further study the relationships among themselves and with known axioms regular, normal, semi-regular and semi-normal.

PRELIMINARIES:

Throughout this paper (X,τ) will always denote topological space on which no separation axioms are assumed, unless explicitly stated. If A is a subset of the space (X,τ) , Cl(A) and Int(A) respectively denote the closure and the interior of A in X.

Definition 2.1: [7] A subset A of a topological space (X, τ) is called (i) **generalized closed** (briefly g-closed) if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

(ii) **generalized open** (briefly g-open) if $X\setminus A$ is g-closed in X.

Definition 2.2: [6] Let A be a subset of X. Then

- (i) **generalized closure** of A is defined as the intersection of all g-closed sets containing A and is denoted by $Cl^*(A)$.
- (ii) **generalized interior** of A is defined as the union of all g-open subsets of A and is denoted by $Int^*(A)$.

Definition 2.3: [13] A subset A of a topological space (X,τ) is (i) **Regular*-open** (resp. pre-open, regular-open, semi-open) if $A=Int(Cl^*(A))$ (resp. $A\subseteq Int(Cl(A))$, A=Int(Cl(A)), $A\subseteq Cl(Int(A))$).

(ii) **Reguler*-closed** (resp. pre-closed, regular-closed, semi-closed) if A = Cl(Int*(A)) (resp. $Cl(Int(A)) \subseteq A$, A = Cl(Int(A)), $Int(Cl(A)) \subseteq A$).

The class of all regular*-open (resp. regular*-closed) sets is denoted by $R*O(X,\tau)$ (resp. $R*C(X,\tau)$).

Definition 2.4: Let A be a subset of X. Then

- (i) the **regular*-closure** of A is defined as the intersection of all regular*-closed sets containing A and is denoted by r*Cl(A).
- (ii) the **regular*-interior** of A is defined as the union of all regular*-open sets of X contained and is denoted by r*Int(A).

Theorem 2.5: Let $A \subseteq X$ and let $x \in X$ and r*Cl(A) is regular*-closed. Then $x \in r*Cl(A)$ if and only if every regular*-open set in X containing x intersects A.

Theorem 2.6: (i) Every regular*-open set is open.

- (ii) Every regular*-open set is pre-open.
- (iii) Every regular*-closed set is closed.

Definition 2.7: A space X is said to be T_1 if for every pair of distinct points x and y in X, there is an open set U containing x but not y and an open set V containing y but not x.

Definition 2.8: A space X is R_0 if every open set contains the closure of each of its points.

Theorem 2.9: (i) X is R_0 if and only if for every closed set F, $Cl(\{x\}) \cap F = \phi$, for all $x \in X \setminus F$.

Definition 2.10: A topological space X is said to be

- (i) regular if for every pair consisting of a point x and a closed set B not containing x, there are disjoint open sets U and V in X containing x and B respectively.
- (ii) s-regular if for every pair consisting of a point x and a closed set B not containing x, there are disjoint semi-open sets U and V in X containing x and B respectively.

S.Pious Missier et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Special Issue: Conscientious Computing Technologies, April 2018, pp. 766-769

(iii) semi-regular if for every pair consisting of a point x and a semi-closed set B not containing x, there are disjoint semi-open sets U and V in X containing x and B respectively.

Definition 2.11: A topological space X is said to be

- (i) normal if for every pair of disjoint closed sets A and B in X, there are disjoint open sets U and V in X containing A and B respectively.
- (ii) s-normal if for every pair of disjoint closed sets A and B in X, there are disjoint semi-open sets U and V in X containing A and B respectively.
- (iii) semi-regular if for every pair of disjoint semi-closed sets A and B in X, there are disjoint semi-open sets U and V in X containing A and B respectively.

Definition 2.12: A function $f: X \rightarrow Y$ is said to be

- (i) closed if f(V) is closed in Y for every closed set V in X.
- (ii) regular*-continuous if $f^{-1}(V)$ is regular*-open in X for every open set V in Y.
- (iii) regular*-irresolute if $f^{-1}(V)$ is regular*-open in X for every regular*-open set V in Y.
- (iv) contra-regular*-irresolute if $f^{-1}(V)$ is regular*-closed in X for every regular*-open set V in Y.
- (v) regular*-open if f(V) is regular*-open in Y for every open set V in X.
- (vi) pre-regular*-open if f(V) is regular*-open in Y for every regular*-open set V in X.
- (vii) contra-pre-regular*-open if f(V) is regular*-closed in Y for every regular*-open set V in X.
- (viii) pre-regular*-closed if f(V) is regular*-closed in Y for every regular*-closed set V in X.
- **Lemma 2.13:** If A and B are subsets of X such that $A \cap B = \phi$ and A is regular*-open in X, then $A \cap r^*Cl(B) = \phi$.

Theorem 2.14: A function $f: X \rightarrow Y$ is regular*-irresolute if $f^{-1}(F)$ is regular*-closed in X for every regular*-closed set F in Y.

REGULAR SPACES ASSOCIATED WITH REGULAR*-OPEN SETS.

In this section we introduce the concepts of regular*-regular and r*-regular spaces. Also we investigate their basic properties and study their relationship with already existing concepts.

Definition 3.1: A space X is said to be regular*-regular if for every pair consisting of a point x and a regular*-closed set B not containing x, there are disjoint regular*-open sets U and V in X containing x and B respectively.

Theorem 3.2: In a topological space X, the following are equivalent:

(i) X is regular*-regular.

- (ii) For every $x \in X$ and every regular*-open set U containing x, there exists a regular*-open set V containing x such that $r*Cl(V)\subseteq U$.
- (iii) For every set A and a regular*-open set B such that $A \cap B \neq \emptyset$ there exists a regular*-open set U such that $A \cap U \neq \emptyset$ and $r*Cl(U) \subseteq B$.
- (iv) For every non-empty set A and regular*-closed set B such that $A \cap B = \phi$, there exist disjoint open sets U and V such that $A \cap U \neq \phi$ and $B \subseteq V$.

Proof: (i) \Rightarrow (ii): Let U be a regular*-open set containing x, then B = X\U is a regular*-closed set not containing x. Since X is regular*-regular, there exists disjoint regular*-open sets V and W containing x and B respectively. If y \in B, W is a regular*-open set containing y that does not intersects V and hence by theorem 2.5, y cannot belong to r*Cl(V). Therefore r*Cl(V) is disjoint from B. Hence $r*Cl(V)\subseteq U$.

- (ii) \Rightarrow (iii): Let $A \cap B \neq \phi$ and B be regular*-open, let $x \in A \cap B$. Then by assumption, there exists a regular*-open set U containing x such that $r*Cl(U) \subseteq B$. Since $x \in A$, $A \cap U \neq \phi$. This proves (iii).
- (iii) \Rightarrow (iv): Suppose $A \cap B = \phi$, where A is non-empty and B is regular*-closed, then X\B is regular*-open and $A \cap (X \setminus B) \neq \phi$. By (iii), there exists a regular*-open set U such that $A \cap U \neq \phi$ and $U \subseteq r*Cl(U) \subseteq X \mid B$. Put $V = X \mid r*Cl(U)$. Hence V is regular*-open set containing B such that $U \cap V = U \cap (X \mid r*Cl(U)) \subseteq U \cap (X \setminus U) = \phi$. This proves (iv).
- (iv) \Rightarrow (i): Let B be regular*-closed and $x\notin B$. Take $A = \{x\}$, then $A \cap B = \phi$. By (iv), there exist disjoint regular*-open sets U and V such that $U \cap A \neq \phi$ and $B \subseteq V$. Since $U \cap A \neq \phi$, $x \in U$, this proves that X is regular*-regular.

Theorem 3.3: Let X be a regular*-regular space. Then

- (i) Every regular*-open set in X is a union of regular*-closed sets.
- (ii) Every regular*-closed set in X is an intersection of regular*-open sets.

Proof: (i) Suppose X is regular*-regular. Let G be a regular*-open set and $x \in G$, then $F = X \setminus G$ is regular*-closed and $x \notin F$. Since X is regular*regular, there exist disjoint regular*-open sets U_x and V in X such that $x \in U_x$ and $F \subseteq V$. Since $U_x \cap F \subseteq U_x \cap V = \phi$, we have $U_x \subseteq X \setminus F = G$. Take $V_x = r*Cl(U_x)$ and V_x is regular*-closed, then by Lemma 2.13, $V_x \cap V = \phi$. Now $F \subseteq V$ implies that $V_x \cap F \subseteq V_x \cap V = \phi$. It follows that $x \in V_x \subseteq X \setminus F = G$. This proves that $G = \cup \{V_x : x \in G\}$. Thus G is a union of regular*-closed sets.

(ii) Follows from (i) and set theoretic properties.

Theorem 3.4: If f is a regular*-irresolute and pre-regular*-closed injection of a topological space X into a regular*-regular space Y, then X is regular*-regular.

Proof: Let $x \in X$ and A be a regular*-closed set in X not containing x. Since f is pre-regular*-closed, f(A) is regular*-closed set in Y not containing f(x). Since Y is regular*-regular, there exist disjoint regular*-open sets V_1 and V_2 in Y such that $f(x) \in V_1$ and $f(A) \subseteq V_2$. Since f is regular*-irresolute, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint regular*-open sets in X containing x and A respectively. Hence X is regular*-regular.

S.Pious Missier et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Special Issue: Conscientious Computing Technologies, April 2018, pp. 766-769

Theorem 3.5: If f is a regular*-continuous and closed injection of a topological space X into a regular space Y then X is regular*-regular.

Proof: Let $x \in X$ and A be a regular*-closed set in X not containing x, then by Theorem 2.6, A is closed in X. Since f is closed, f(A) is closed set in Y not containing f(x). Since Y is regular, there exist disjoint open sets V_1 and V_2 in Y such that $f(x) \in V_1$ and $f(A) \subseteq V_2$. Since f is regular*-continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint regular*-open sets in X containing x and A respectively. Hence X is regular*-regular.

Theorem 3.6: If $f: X \rightarrow Y$ is a regular*-irresolute bijection which is pre-regular*-open and X is regular*-regular, then Y is also regular*-regular.

Proof: Let $f: X \rightarrow Y$ is a regular*-irresolute bijection which is pre-regular*-open and X is regular*-regular. Let $y \in Y$ and B be a regular*-closed set in Y not containing y. Since f is regular*-irresolute, by Theorem 2.14, $f^{-l}(B)$ is regular*-closed set in X not containing $f^{-l}(y)$. Since X is regular*-regular, there exist disjoint regular*-open sets U_1 and U_2 in X containing $f^{-l}(y)$ and $f^{-l}(B)$ respectively. Since f is pre-regular*-open, $f(U_1)$ and $f(U_2)$ are disjoint regular*-open sets in Y containing y and B respectively. Hence Y is regular*-regular.

Theorem 3.7: If f is a continuous regular*-open bijection of a regular space X into a space Y then Y is regular*-regular. Proof: Let $y \in Y$ and B be a regular*-closed set in Y not containing y, by Theorem 2.6, B is closed in Y. Since f is continuous bijection $f^{-l}(B)$ is a closed set in X not containing the point $f^{-l}(y)$. Since X is regular, there exist disjoint open sets U_1 and U_2 in X containing $f^{-l}(y)$ and $f^{-l}(B)$ respectively. Since f is regular*-open, $f(U_1)$ and $f(U_2)$ are disjoint regular*-open sets in Y containing Y and Y respectively. Hence Y is regular*-regular.

Theorem 3.8: If X is regular*-regular, then it is regular*- R_0 . Proof: Suppose X is regular*-regular. Let U be a regular*-open set and $x \in U$. Take $F = X \setminus U$, then F is regular*-closed set not containing x. By regular*-regularity of X, there are disjoint regular*-open sets V and W such that $x \in V$ and $F \subseteq W$. If $y \in F$, then W is regular*-open set containing y that does not intersect V. Therefore $y \notin r*Cl(V)$ which implies $y \notin r*Cl(\{x\})$. That is $r*Cl(\{x\}) \cap F = \emptyset$ and hence $r*Cl(\{x\}) \subseteq X \setminus F = U$. Hence X is regular*- R_0 .

Definition 3.9: A space X is said to be r*-regular if for every pair consisting of a point x and a closed set B not containing x, there are disjoint regular*-open sets U and V in X containing x and B respectively

Theorem 3.10: (i) Every r*-regular space is regular.

(ii) Every r*-regular space is s-regular.

Proof: (i) Suppose X is r^* -regular. Let F be a closed set and x \notin F. Since X is r^* -regular,

there exist disjoint regular*-open sets U and V containing x and F respectively. By Theorem 2.6, U and V are open in X. This implies that X is regular.

(ii). Follows from (i) and the fact that every open set is semiopen. **Theorem 3.11:** For a topological space X, the following are equivalent:

- (i) X is r^* -regular.
- (ii) For every $x \in X$ and every open set U containing x, there exists a regular*-open set V containing x such that $r*Cl(V) \subseteq U$.
- (iii) For every set A and an open set B such that $A \cap B = \phi$, there exists a regular*-open set U such that $A \cap U \neq \phi$ and $r*Cl(U) \subseteq B$.
- (iv) For every non-empty set A and closed set B such that $A \cap B = \phi$, there exist disjoint regular*-open sets U and V such that $A \cap U \neq \phi$ and $B \subseteq V$.

Proof: (i) \Rightarrow (ii): Let U be an open set containing x, then B = X\U is closed set not containing x. Since X is r^* -regular, there exist disjoint regular*-open sets V and W containing x and B respectively. If $y \in B$, W is a regular*-open set containing y that does not intersects V and hence by Theorem 2.5, y cannot belong to $r^*Cl(V)$. Therefore $r^*Cl(V)$ is disjoint from B. Hence $r^*Cl(V) \subseteq U$.

- (ii) \Rightarrow (iii): Let $A \cap B \neq \phi$ and B be open. Let $x \in A \cap B$, then by assumption, there exists a regular*-open set U containing x such that $r*Cl(U) \subseteq B$. Since $x \in A$, $A \cap U \neq \phi$. This proves (iii).
- (iii) \Rightarrow (iv): Suppose $A \cap B = \emptyset$, where A is non-empty and B is closed. Then X\B is open and $A \cap (X \setminus B) \neq \emptyset$. By (iii), there exists a regular*-open set U such that $A \cap U \neq \emptyset$ and $U \subseteq r*Cl(U) \subseteq X \setminus B$. Put $V = X \setminus r*Cl(U)$ and take r*Cl(U) is regular*-closed. Hence V is a regular*-open set containing B such that $U \cap V = U \cap (X \setminus r*Cl(U)) \subseteq U \cap (X \setminus U) = \emptyset$. This proves (iv)
- (iv) \Rightarrow (i): Let B be closed and $x \notin B$. Take $A = \{x\}$, then $A \cap B = \phi$. By (iv), there exist disjoint regular*-open sets U and V such that $U \cap A \neq \phi$ and $B \subseteq V$. Since $U \cap A \neq \phi$, $x \in U$. This proves that X is r*-regular.

Theorem 3.12: Every regular*-regular space is r*-regular. Proof: Suppose X is regular*-regular. Let F be a regular*-closed set and $x \notin F$, then by Theorem 2.6, F is closed in X. Since X is regular*-regular, there exist disjoint regular*-open sets F and F containing F and F respectively. This implies that F is r*-regular.

Theorem 3.13: (i) Every r^* -regular T_1 space is regular*- T_2 . (ii) Every regular*-regular regular*- T_1 space is regular*- T_2 . Proof: (i) Suppose X is r^* -regular and T_1 . Let x and y be two disjoint point in X. Since X is T_1 , $\{x\}$ is closed and $y \notin \{x\}$. Since X is r^* -regular, there exist disjoint regular*-open sets U and V in X containing $\{x\}$ and y respectively. It follows that X is regular*- T_2 .

(ii). Suppose X is regular*-regular and regular*- T_1 . Let x and y be two distinct points in X. Since X is regular*- T_1 , $\{x\}$ is regular*-closed and $y \notin \{x\}$. Since X is regular*-regular, there exist disjoint regular*-open sets U and V in X containing $\{x\}$ and y respectively. It follows that X is regular*- T_2 .

Theorem 3.14: Let X be a r*-regular space.

S.Pious Missier et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Special Issue: Conscientious Computing Technologies, April 2018, pp. 766-769

- (i) Every open set in X is a union of regular*-closed sets.
- (ii) Every closed set in X is an intersection of regular*open sets.

Proof: (i) Suppose X is r*-regular. Let G be an open set and x \in G, then F = X\G is closed and x \notin F. Since X is r*-regular, there exist disjoint regular*-open sets U_x and U in X such that $x \in U_x$ and F \subseteq U. Since $U_x \cap F \subseteq U_x \cap U = \phi$, we have $U_x \subseteq X \setminus F = G$. Take $V_x = r*Cl(U_x)$ and V_x is regular*-closed. Now F \subseteq U implies that $V_x \cap F \subseteq V_x \cap F = \phi$. It follows that $x \in V_x \subseteq X \setminus F = G$. This proves that $G = \bigcup \{V_x : x \in G\}$. Thus G is a union of regular*-closed sets.

(ii). Follows from (i) and set theoretic properties.

ACKNOWLEDGMENT:

The first author is thankful to University Grants Commission (UGC)New Delhi, for sponsoring this under grants of Major research project-MRP-Math-Major-2013-30929.F.NO 43-433/2014(SR) dt 11.09.2015.

REFERENCES:

- [1] Biswas.N., On Characterization of semi-continuous functions, Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 48(8)1970, 399-402.
- [2] Crossley.S.G and Hildebrand.S.K., Semitopological properties, Fund.Math.74 (1972), 233-254.
- [3] Dorsett.C., Semi-regular spaces, Soochow journal of Mathematics, 8(1982),45-53.
- [4] Dorsett.C., Semi-Normal spaces, Kyungpook Mathematical Journal, 25 (2)(1985), 173-180.
- [5] Dunham.W., A New closure operator for non- T_1 topologies, Kyungpook Mathematical Journal, 22(1982), 55-60.
- [6] Levine.N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly. 70 (1963), 36-41.
- [7] Levine.N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo. 19(2)(1970), 89-96
- [8] Maheswari.S.N and Prasad.R., On s-regular spaces, Glansnik Mat.Ser.III 10 (30) (1975), 347-350.
- [9] Maheswari.S.N and Prasad.R., On s-normal spaces, Bull. Math. Soc. Sci Math.R.S.de Roumanie T22(70), 1978, 27-30.
- [10] Pious Missier.S and Annalakshmi.M., Between Regular open sets and open sets, Internat.J.Math.Archive, 7(5) (2016), 128-133.
- [11] Pious Missier.S and Annalakshmi.M., Regular-staropen sets and Associated functions, (Communicated).
- [12] Pious Missier.S, Annalakshmi.M, and G.Mahadevan., On Regular*-open sets, global journal of Pure and Applied Mathematics. Vol.13, 9(2016), 5717-5726.
- [13] Shanin.N.A., On separation in topological spaces, C.R.(Doklady) Acad.Sci. URSS(N.S.), 38(1943), 110-113.
- [14] Willard.S., General Topology, Addition- Wesley Publishing Company, Inc.(1970).