More Functions Associated with α*g Closed sets in Topological Spaces

P. Anbarasi Rodrigo ¹, D. Karthika ²

¹ Assistant Professor, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi, India

² M.Phil Scholar, Department of Mathematics, St. Mary's College (Autonomous), Thoothukudi, India

Abstract- The aim of this paper is to introduce two new classes of functions, namely totally α *g-continuous functions and strongly α *g-continuous functions and study its properties.

Keywords: totally α^* g-continuous functions and strongly α^* g-continuous function.

I. INTRODUCTION

Continuity is an important concept in mathematics and many forms of continuous functions have been introduced over the years. RC Jain [4] introduced the concept of totally continuous functions for topological spaces. In 1960, Levine .N [6] introduced strong continuity in topological spaces. In this paper, we define totally α *g continuous functions and strongly α *g continuous functions and basic properties of these functions are investigated and obtained.

II PRELIMINARIES

Throughout this paper (X, τ) , (Y,σ) and (Z,η) or X, Y, Zrepresent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A) and int(A) denote the closure and the interior of A respectively.

Definition 2.1: A subset A of X is said to be α *g-closed set [1] if $\alpha cl(A) \subseteq U$ Whenever A $\subseteq U$ and U is α *-open.

Definition 2.2: A function $f: (X, \tau) \to (Y, \sigma)$ is called a α -**continuous** [8] if $f^{-1}(O)$ is a α -closed set [9] of (X, τ) for
every closed set O of (Y, σ) .

Definition 2.3: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a αg -continuous [3] if $f^{-1}(O)$ is a αg -closed set [7] of (X, τ) for every closed set O of (Y, σ) .

Definition 2.4 : A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a **ga- continuous** [5] if $f^{-1}(O)$ a ga-closed set [5] of (X, τ) for every closed set O of (Y, σ) .

Definition 2.5: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be a^*g - continuous[2] if $f^{-1}(O)$ is a^*g -closed set [1] in (X, τ) for every closed in (Y, σ) .

Definition 2.6:A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be a^*g -irresolute[2] if $f^{-1}(O)$ is a α^*g -closed set [1] of (X,τ) for every α^*g -closed set B of (Y,σ) .

Definition 2.7: A function $f: (X, \tau) \to (Y, \sigma)$ is called a **strongly continuous** [6]if $f^{-1}(O)$ is both open and closed in (X, τ) for each subset O in (Y, σ) .

Definition 2.8:A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a **totally–continuous** [4] if $f^{-1}(O)$ is a clopen set in (X, τ) for every closed set O of (Y, σ) .

Definition 2.9: A Topological space X is said to be $\alpha^* g T_{1/2}$ **space** [10] if every $\alpha^* g$ -closed set of X is closed in X.

Theorem 2.10:[1] Every closed set is α *g-closed.

Theorem 2.11:[1] Every open set is α*g-open.

Theorem 2.12:[1] Every α *g-closed is g α -closed.

Theorem 2.13:[1] Every α*g-closed is αg-closed.

III TOTALLY α *G CONTINUOUS CONTINUOUS

We introduce the following definition.

Definition 3.1:A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is said to be totally α *g-continuous if the inverse image of every closed set in (Y,σ) is α *g-clopen in (X,τ) .

Example3.2:LetX=Y={a,b,c,d}, τ ={ ϕ ,{a},{bcd},X}, σ ={ ϕ ,{ abc},Y}, α *gO(X)={ ϕ ,{bcd},{a},X}, α *gC(X)={ ϕ ,{a},{bcd},X}.Let g:(X, τ) \rightarrow (Y, σ)be defined by g(a)=d, g(b)=c, g(c)=b, g(d)=a. Therefore g is totally α *g continuous.

Theorem 3.3: Every totally α^*g continuous functions is α^*g -continuous.

Proof: Let O be any closed set of (Y, σ) . Since, f is totally α^*g continuous functions, $f^{-1}(O)$ is both α^*g open and α^*g closed in (X, τ) . Therefore, f is α^*g continuous.

Remark 3.4: The converse of above theorem need not be true as the the following the example.

Example

3.5:Let

3.11:Let

 $X=Y=\{a,b,c\}, \tau=\{\phi,\{ab\},\{a\},\{ac\},X\}, \sigma=\{\phi,\{a\},\{ab\},Y\}, \alpha^*$ gO(X)={ $\phi,\{ac\},\{ab\},\{a\},X$

}, α^* gC(X)={ ϕ ,{b},{c},{bc},X}.Let g:(X, τ) \rightarrow (Y, σ) be defined by g(a)=a, g(b)=c, g(c)=b.Clearly, g is α^* g-continuous but g⁻¹({b,c})=bc is α^* g-closed in X but not α^* g-open in X. Therefore, g is not totally α^* g continuous.

Theorem 3.6: Every totally continuous functions is α^*g - continuous.

Proof: Let O be any closed set of (Y, σ) . Since, f is totally continuous functions, $f^{-1}(O)$ is both open and closed in (X, τ) , Since every closed is α *g-closed, $f^{-1}(O)$ is α *g-closed in X. Therefore, f is α *g -continuous.

Remark 3.7: The converse of above theorem need not be true as the following the example.

Example 3.8:Let X= Y={a,b,c,d}, τ ={ ϕ ,{ab},{abc},X}, σ ={ ϕ ,{abc},Y}, α *gC(X)= { ϕ ,{c},{d},{cd},X}.Let g:(X, τ) \rightarrow (Y, σ) be defined by g(a)=b,g(b)=c,g(c)=a,g(d)=d.Clearly, g is α *g-continuous but g⁻¹({d})=d is closed in X but not open in X.Therefore,g is not totally continuous.

Theorem 3.9: Every totally α^* g continuous functions is $g\alpha$ - continuous.

Proof: Let O be any closed set of (Y, σ) . Since, f is totally α^*g continuous functions, $f^{-1}(O)$ is both α^*g -open and α^*g -closed in (X, τ) , Since every α^*g -closed is $g\alpha$ -closed, $f^{-1}(O)$ is $g\alpha$ -closed in X. Therefore, f is $g\alpha$ -continuous.

Remark 3.10: The converse of above theorem need not be true as the following the example.

Example

},{bcd},X}, $\alpha^*gC(X)=\{\phi, \{c\}, \{d\}, \{cd\}, X\}$.Let

g:(X, τ) \rightarrow (Y, σ) be defined by g(a)=a,g(b)=c,g(c)=d,g(d)=b. Clearly, g is ga-continuous but g⁻¹({d})={c} is a*g-closed in X but not a*g-open in X.Therefore,g is not totally a*g continuous.

Theorem 3.12: Every totally α^*g continuous functions is αg -continuous.

Proof: Let O be any closed set of (Y, σ) . Since, f is totally α^*g continuous functions, $f^{-1}(O)$ is both α^*g -open and α^*g -closed in (X, τ) , Since every α^*g -closed is αg -closed, $f^{-1}(O)$ is αg -closed in X. Therefore, f is αg -continuous.

Remark 3.13: The converse of above theorem need not be true as the following the example.

Example

(i)

3.14:Let

cd},{ad},{bd},{abd},{acd},{bcd},X},\alpha^*gC(X)={\phi,{c},{d}, {cd}, {ad}, {acd}, {bcd},X}. Let g:(X,\tau) \rightarrow (Y,\sigma) be defined by g(a)=a,g(b)=d,g(c)=b,g(d)=c. Clearly,g is α -continuous but g⁻¹({b,c,d})={b,c,d} is α *g-closed in X but not α *g-open in X. Therefore,g is not totally α *g continuous.

Theorem 3.15: Let $f: X \to Y$ and $g: Y \to Z$ be functions. Then $g \circ f: X \to Z$

If f is α^*g -irresolute and g is totally α^*g continuous then $g \circ f$ is totally α^*g continuous. If f is totally α^*g - continuous and g is

(ii) If f is totally α^*g - continuous and g is continuous then g ° f is totally α^*g continuous. **Proof:**

- (i) Let O be any closed set in Z. Since g is totally α^*g continuous, $g^{-1}(O)$ is α^*g clopen in Y. Since f is α^*g -irresolute, $f^{-1}(g^{-1}(O))$ is α^*g -open and α^*g -closed in X. Since, $(g^{\circ}f)^{-1}(O) = f^{-1}(g^{-1}(O))$. Therefore, $g^{\circ}f$ is totally α^*g continuous.
- (ii) Let O be any closed set in Z. Since g is continuous, $g^{-1}(O)$ is closed in Y. Since, f is totally α *g continuous, $f^{-1}(g^{-1}(O))$ is α *g clopen in X. Hence, $g^{\circ}f$ is totally α *g continuous.

IV STRONGLY α *g CONTINUOUS FUNCTION

Definition 4.1: A mapping $f: X \to Y$ is said to be **strongly** α *g continuous if the inverse image of every α *g-closed set in Y is closed in X.

Example 4.2:Let X = Y={a,b,c,d}, $\tau=\{\phi,\{a\},\{b\},\{ab\},\{bc\},\{abc\},X\},\sigma=\{\phi,\{abc\},Y\},\alpha^*gC(X)$ = $\{\phi,\{c\},\{d\},\{cd\},\{ad\},\{acd\},\{bcd\},X\},\alpha^*gC(Y)=\{\phi,\{d\},Y\}$.Let g:(X, τ) \rightarrow (Y, σ)be defined by g(a)=b,g(b)=c,g(c)=a, g(d)=d.Therefore g is strongly α^*g continuous function.

Theorem 4.3: If a map $f: X \to Y$ from a topological spaces X into a topological spaces Y is strongly α *g continuous then it is continuous.

Proof: Let O be a closed set in Y. Since every closed set is α^* g-closed, O is α^* g-closed in Y. Since f is strongly α^* g

continuous , $f^{-1}(O)$ is closed in X. Therefore f is continuous.

Remark 4.4: The following example that the converse of the above theorem is not true in general.

Example 4.5:Let $X = Y=\{a,b,c\}, \tau=\{\phi,\{a\},\{ab\},X\},\sigma=\{\phi,\{a\},Y\},\alpha^*gC(X)=\{\phi,\{b\},\{c\},\{ac\},\{bc\},X\},\alpha^*gC(Y)=\{\phi,\{b\},\{c\},\{bc\},Y\}.Let g:(X,\tau)\rightarrow(Y,\sigma) be defined by g(a)=d, g(b)=c, g(c)=b,g(d)=c.Clearly g is continuous.but g⁻¹ ({c})={b} is closed in X. Therefore, g is not strongly <math>\alpha^*g$ continuous.

Theorem 4.6: A map $f: X \to Y$ from a topological spaces X into a topological spaces Y is strongly α^*g - continuous if and only if the inverse image of every α^*g - open set in Y is open in X.

Proof:Assume that f is strongly α^*g continuous. Let O be any α^*g -open set in Y.Then O^c is α^*g -closed in Y.Since f is strongly α^*g continuous, $f^{-1}(O^c)$ is closed in X.But $f^{-1}(O^c) = X/f^{-1}(O)$ and so $f^{-1}(O)$ is open in X.

Conversely, assume that the inverse image of every α^* g-open set in Y is open in X.Then O^c is α^* g-closed in Y. By assumption, $f^{-1}(O^c)$ is closed in X, but $f^{-1}(O^c) = X/f^{-1}(O)$ and so $f^{-1}(O)$ is open in X. Therefore, f is strongly α^* g continuous.

Theorem 4.7: If a map $f: X \rightarrow Y$ is strongly continuous then it is strongly α^*g continuous.

Proof:Assume that f is strongly continuous.Let O be an closed set in Y.Since every closed set is α^*g -closed, implies O is α^*g -closed set in Y.Since f is strongly continuous, $f^{-1}(O)$ is closed in X. Therefore, f is strongly α^*g continuous.

Remark 4.8: The converse of above theorem need not be true as the following the example.

4.9:Let

Example

Х

=Y={a,b,c,d}, τ ={ ϕ ,{a},{b},{ab},{abc},X}, σ ={ ϕ ,{abc},Y}, α *gC(Y)={ ϕ ,{d},Y}.Let g:(X, τ) \rightarrow (Y, σ) be defined by g(a)=b, g(b)=c,g(c)=a,g(d)=d.Clearly g is strongly α *g continuous. but g⁻¹({d})={d} is closed in X but not open in X.Therefore g is not strongly continuous function.

Theorem 4.10: If a map $f: X \rightarrow Y$ is strongly α^*g continuous then it is α^*g - continuous.

Proof: Let O be any closed set in Y.Since every closed set is α^* g-closed,O is α^* g -closed in Y. Since f is strongly α^* g continuous implies $f^{-1}(O)$ is closed in X. By [1] $f^{-1}(O)$ is α^* g closed in X. Therefore, f is α^* g continuous.

Remark 4.11: The converse of above theorem need not be true as the following the example.

Example 4.12: Let X = Y={a,b,c,d}, τ ={ ϕ ,{a},{ab},{abc},X}, σ ={ ϕ ,{abc},Y}, α *gC(X) ={ ϕ ,{b},{c},{d},{ bc},{abc},X}, σ ={ ϕ ,{abc},Y}, α *gC(X) ={ ϕ ,{b},{c},{d},Y. Let g:(X, τ) \rightarrow (Y, σ) be defined by g(a)=c, g(b)=d, g(c)=b,g(d)=a.Clearly g is α *g-continuous. but g ⁻¹({d})={b} is not closed in X.Therefore g is not strongly α *g continuous function.

Theorem 4.13: If a map $f: X \to Y$ is strongly α^*g continuous and a map $g: Y \to Z$ is α^*g continuous then $g \circ f: X \to Z$ is continuous.

Proof: Let O be any closed set in Z. Since g is α^*g continuous, g $^{-1}(O)$ is α^*g -closed in Y. Since f is strongly α^*g continuous $f^{-1}(g^{-1}(O))$ is closed in X. But $(g^{\circ}f)^{-1}(O)=f^{-1}(g^{-1}(O))$. Therefore, $g \circ f$ is continuous.

Theorem 4.14: If a map $f: X \to Y$ is strongly α^*g continuous and a map g: $Y \to Z$ is α^*g - irresolute, then $g \circ f: X \to Z$ is strongly α^*g continuous.

Proof: Let O be any α^*g -closed set in Z. Since g is α^*g -irresolute, $g^{-1}(O)$ is α^*g closed in Y. Also, f is strongly α^*g continuous $f^{-1}(g^{-1}(O))$ is closed in X. But $(g \circ f)^{-1}(O) = f^{-1}(g^{-1}(O))$ is closed in X. Hence, $g \circ f \colon X \to Z$ is strongly α^*g continuous.

Theorem 4.15: If a map $f: X \to Y$ is α^*g continuous and a map $g: Y \to Z$ is strongly α^*g continuous, then $g \circ f: X \to Z$ is α^*g irresolute.

Proof: Let O be any α^* g-closed set in Z. Since g is strongly α^* g continuous, g⁻¹(O) is closed in Y. Also, f is α^* g continuous, $f^{-1}(g^{-1}(O))$ is α^* g-closed in X. But (g $\circ f$)⁻¹(O) = $f^{-1}(g^{-1}(O))$. Hence, g $\circ f$: X \rightarrow Z is α^* g-irresolute.

Theorem 4.16: Let X be any topological spaces and Y be a α^* g T $_{1/2}$ space and $f: X \rightarrow Y$ be a map. Then the following are equivalent.

- 1) *f* is strongly α^* g continuous
- 2) f is continuous

Proof: (1) \Rightarrow (2) Let O be any closed set in Y.Since every closed set is α *g-closed,O is α *g -closed in Y. Then $f^{-1}(O)$ is closed in X. Hence, f is continuous.

(2) \Rightarrow (1) Let O be any α^* g-closed in (Y, σ).Since, (Y, σ) is a α^* g T_{1/2} space,O is closed in (Y, σ).Since, f is continuous.Then $f^{-1}(O)$ is closed in (X, τ).Hence, f is strongly α^* g continuous.

Theorem 4.17: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map.Both (X, τ) and (Y, σ) are $\alpha^*g T_{1/2}$ space. Then the following are equivalent.

1) f is α *g-irresolute

2) *f* is strongly α^* g continuous

3) f is continuous

4) *f* is α *g-continuous

Proof: The proof is obvious.

Theorem 4.18: The composition of two strongly α *g continuous maps is strongly α *g continuous.

Proof: Let O be a α^* g closed set in (Z, η) . Since, g is strongly α^* g continuous, we get $g^{-1}(O)$ is closed in (Y, σ) . Since every closed set is α^* g-closed, $g^{-1}(O)$ is α^* g-closed in (Y, σ) . As *f* is also strongly α^* g continuous, $f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O)$ is closed in (X, τ) . Hence, $(g \circ f)$ is strongly α^* g continuous.

Theorem 4.19: If $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y, \sigma) \to (Z, \eta)$ be any two maps. Then their composition $g \circ f:(X,\tau) \to (Z, \eta)$ is strongly α^*g continuous if g is strongly α^*g continuous and f is continuous.

Proof: Let O be a α^* g closed in (Z, η) .Since, g is strongly α^* g continuous, g⁻¹(O) is closed in (Y, σ).Since f is continuous, $f^{-1}(g^{-1}(O)) = (g \circ f)^{-1}(O)$ is closed in (X, τ).Hence, (g \circ f) is strongly α^* g continuous.

REFERENCES

[1] P.Anbarasi Rodrigo, α^*g – closed sets in Topological Spaces , International Conference , IMRF Vol6 Spl Iss(2017),176-180.

[2] P. Anbarasi Rodrigo, S.Pious Missier& D. Karthika ,functions related to α *g-closed sets,IMRF Vol 7 SPL Issue 1(2018),127-131.

[3] R.Devi ,H.Maki and K.Balachandran ,Generalised α closed maps and α -generalized closed maps, Indian J. Pure . Appl. Math., 29(1) (1998), 37-49.

[4] RC Jain, The role of regularly open sets in general topology, Ph.D Thesis, Meerut 1980.

[5] N.Levine., Generalised closed sets in topology, Rend. Circ.Math.Palermo,19(2) (1970), 89-96.

[6] Levine N.Strong continuity in topological spaces, Amer. Math. Monthly 67(1960)269.

[7] H. Maki, R. Devi and K. Balachandran., Generalized α -closed sets intopology, Bull. Fukuoka Univ. Ed. Part III, 42(1993), 13-21.

[8] A.S.Mashhour, I.A.Hasanein and S.N.E.L Deeb, α -Continuous and α -open mappings, Acta Math.Hung., Vol.41,(1983), 213-218.

[9] Njastad, O., On Some Classes of Nearly Open Sets, Pacific J. Math. 15(1965) No.(3),961-970.

[10]S.Pious Missier and P.Anbarasi Rodrigo, On α *continuous functions in Topological spaces, OUTREACH Volume VII 2014, 148 – 154.