# Total Domination in Graphs – Minus (Signed)

### DR. S. Durairaj 1, A. Noorul Iynee 2

<sup>1</sup> Principal of Pioneer Kumaraswamy College, Nagercoil <sup>2</sup> Assistant Professor, Cape Institute of Technology, Levengipuram, K.K. Dist.

Abstract: - A function f:V(G)  $\{+1,0,-1\}$  defined on the vertices of a graph G is said to be a minus total dominating function if the sum of the values of its function is atleast one over any open neighborhood. The minus total domination number  $\gamma_t^-$  (G) of G is the minimum weight of a minus total dominating function on G. By simply changing " $\{+1,0,-1\}$ " in the above definition to " $\{+1,-1\}$ ", we can define signed total dominating function and the signed total domination number  $\gamma_t^-$  (S) of G. Here we present a sharp lower bound on the signed total domination number for a g-partite graph, which results in a short proof of a result due to Kang et. al. A sharp bounds on g-partite graphs are given.

Keywords: Minus total domination; signed total domination; k-partite graph; Triangle free graph; Hypergraph;

#### INTRODUCTION

Let S be **vertex set** and  $\{A_1, A_2, ...,\}$  be the **edge set** of a hypergraph H. Z is a set of integers. P is an arbitrary subset of Z and  $\alpha$  is an integer. Let the function  $f:S \rightarrow P$  defines an  $\alpha$ -dominating partition of the hypergraph H with respect to P, if  $f(A):=\sum_{x\in A} f(x) \geq \alpha$ , for every edge A in H.

The minimum of such functions is defined as the  $\alpha$ -domination number of H with respect to  $P:\text{dom}_{\alpha}(H):=\min\{f(S): f \text{ is } \alpha\text{-dominating partition}\}$ . In particular, when  $P=\{+1, -1\}$  or  $\{+1, 0, -1\}$ , we get the **signed**  $\alpha$ -domination number and **minus**  $\alpha$ -domination number, respectively denoted by m dom<sub> $\alpha$ </sub> and m dom<sub> $\alpha$ </sub>.

Here now we consider a **simple graph** G=(V, E), with **vertex set** V and **edge set** E. Let v be a vertex in V. The open neighborhood of v,  $N_G(v)$ , is defined as the set of vertices adjacent to v, ie  $N_G(v)=\{u|uv\in E\}$ . The **closed neighborhood** of v is  $N_G[v]=N_G(v)\cup\{v\}$  when  $S\subseteq V(G)$ , denote by G[s], the graph induced by S. If A, B contained in V(G) (ie A,  $B\subseteq V(G)$ ),  $A\cap B=\emptyset$ , we denote the number of edges between A and B by e(A, B). Again the **degree of v** in G is denoted by  $d_G(v)$ , and the **maximum degree** and **minimum degree** of G are respectively denoted by d(G) and d(G). Let  $k\geq 2$  be an integer.

A Graph G = (V, E) is said to be **k-partite** if V admits a partition into k classes in such a way that every edge has its ends in different classes. Vertices in the same partition class must not be adjacent. Instead of 2 = partite it is called as **bipartite**. A **triangle** – **free graph** is a graph containing no cycles of length three.

A signed total dominating function of a graph G is normally defined as a function  $f:V(G) \to \{+1, -1\}$  such a way that for every vertex v,  $\sum_{u \in N(v)} f(u) \ge 1$ , and the minimum cardinality of the sum  $\sum_{v \in V} f(v)$  over all such functions is said to be a signed total domination number, and is denoted as  $\gamma_t^s$  (G), that is

 $\gamma_t^s(G) = \min \{f(V(G)): f \text{ is a signed dominating function of } G\}.$ 

A minus total dominating function is also defined as a function of the form  $f: V \rightarrow \{+1, 0, -1\}$  such that  $\sum_{u \in N(v)} f(u) \ge 1$  for all  $v \in V$ . The **minus total domination number** for a graph G is  $\gamma_t \cdot (G) = \min \{f(V(G)): f \text{ is a minus total dominating function of } G\}$ .

From the definitions above, every signed total dominating function of G is clearly a minus total dominating function of G, hence  $\gamma_t^{\cdot}(G) \leq \gamma_t^s$  (G). Using the notation used in hypergraphs, we see that  $\gamma_t^s(G) = s dom_1(N(G)) \text{ and } \gamma_t^{\cdot}(G) = m dom_1(\mathcal{N}(G)), \text{ where } \mathcal{N} \text{ is the neighborhood hypergraph on the vertex set } V(G) \text{ and its edges are the open neighborhoods } \{N_G(v): v \in V(G)\}.$ 

It is already shown by experts that the decision problems for the signed and minus total domination numbers of graph are NP-complete respectively, even when the graph is restricted to a bipartite graph or a chordal graph. Many bounds on  $\gamma_t^s$  of graphs were established. Some authors have got sharp upper bounds on  $\gamma_t^-$  for small degree regular graphs.

Here we first give a sharp lower bound on  $\gamma_t^s$  (G) of a k-partite graph G in terms of its order and minimum degree.

#### 2. RESULTS

#### Theorem 1

Let G = (V,E) be a k-partite graph of order n with  $\delta(G) \ge 1$  and let  $c = \lceil \delta(G) + 1 \rceil / 2 \rceil$ .

Then  $\gamma_t^s(G) \ge \frac{K}{K-1}$ 

$$\left(-(c-1) + \sqrt{(c-1)^2 + 4 \frac{k-1}{k} cn}\right) - n$$

And this bound is sharp.

#### **Proof**

Let G = (V, E) be a k-partite graph of order n with vertex classes  $V_1, V_2, ..., V_k$  and there is no isolated vertex. When n = 2, 3 the result is trivial, hence we suppose that  $n \ge 4$ . Let  $f: V \rightarrow \{+1, -1\}$  be a signed total dominating function on G with  $f(V(G)) = \gamma_t^s(G)$  and let P and M be the sets of vertices in V that are assigned the value +1 and -1, respectively under f.

Further let  $P_i = P \cap V_i$ , for i = 1, 2, ..., k. Then, n = |P| + |M| and  $P = \bigcup_{i=1}^k P_i$ . We also assume that:

let |P| = p, |M| = m,  $|P_i| = p_i$  and  $\delta(G) = \delta$ . For every vertex  $v \in M$ , v is adjacent to at least  $\lfloor d_G(v)/2 \rfloor + 1$  in P since  $f(N(v)) \ge 1$ ,

so 
$$|N_G(v) \cap P| \ge \lfloor \delta/2 \rfloor + 1 = \lceil (\delta+1)/2 \rceil = c$$
.

Hence

$$e(P, M) = \sum_{\mathbf{v} \in M} |N_{G}(\mathbf{v}) \cap P| \ge c(n - p)$$
 (2.1)

on the other hand, for every vertex  $v \in P_i$ ,

it gives that  $|N_G(v) \cap M| \le |N_G(v) \cap (P - P_i)| - 1 \le p - p_i - 1$ 

Thus,

$$e(P, M) = \sum_{v \in P} |N_G(v) \cap M| \le \sum_{i=1}^k \sum_{v \in P_i}$$

$$(|N_G(v) \cap (P - P_i)|-1) \le \sum_{i=1}^k p_i(p - p_i - 1)$$
 (2.2)

Also 
$$k \sum_{i=1}^{k} p_i^2 \ge p^2$$
 (2.3)

Thus, combining with inequalities (2.1) and (2.2) we have

$$c(n-p) \le e(P,M) \le \frac{K-1}{K}p^2 - p,$$
 (2.4)

reduces to

$$\frac{K-1}{K}p^2 + (c-1)p - cn \ge 0$$

Hence,

$$p \ge \left[ -(c-1) + \sqrt{(c-1)^2 + 4 \frac{k-1}{k} cn} \right] / 2 \left( \frac{k-1}{k} \right)$$

Therefore

$$\gamma_{t}^{s}(G) = 2p - n \ge \frac{k}{k-1} \left[ -(c-1) + \sqrt{(c-1)^{2} + 4 \frac{k-1}{k} \text{ cn}} \right] - n.$$

To show that the bound is sharp, we proceed as follows:

For integers  $k \ge 2$ , let  $H_i$  be a complete bipartite graph with vertex classes  $V_i$  and  $U_i$ , where  $|V_i| = k$  and  $|U_i| = (k^2 - k - 1)$ , for i=1, 2, ..., k.

We now let H(k) to be the graph obtained from the disjoint union of  $H_1$ ,  $H_2$ , ...,  $H_k$  by joining each vertex of  $V_i$  in  $H_i$  with all the vertices of  $\bigcup_{j=1,j\neq i}^k V_j$ , and adding (k-1) ( $k^2-k-1$ ) edges between  $U_i$  with  $\bigcup_{j=1,j\neq i}^k U_j$  so that each vertex of  $U_i$  has exactly (k-1) neighbors in  $\bigcup_{j=1,j\neq i}^k U_j$  while each vertex of  $\bigcup_{j=1,j\neq i}^k U_j$  has exactly one neighbor in  $U_i$  for all i=1, 2, ..., k. Let  $Y_i = V_i \cup U_{i+1}$ , where  $i+1 \pmod k$ . Then H(k) is a k-partite graph of order  $n = k(k^2-1)$  with vertex classes  $Y_1, Y_2, ..., Y_k$  and  $|Y_i| = k^2 - 1$ . The graph H(3) is given in Fig 1. Note that each vertex of  $U_i$  has a minimum degree 2k-1. Assigning to each vertex of  $\bigcup_{i=1}^k V_i$  the value k-1 and to each vertex of k-1 with vertex of k-1 we produce a total signed dominating function k-1 with weight equal to

f(V(H(k))) = 
$$k^2 - k(k^2 - k - 1)$$
  
=  $k(-k^2 + 2k + 1)$ 

$$= \frac{k}{k-1} \left( -(c-1) + \sqrt{(c-1)^2 + 4 \cdot \frac{k-1}{k} \cdot cn} \right) - n$$

Consequently,

$$\gamma_t^s (H(k)) = \frac{k}{k-1} - (c-1) + \sqrt{(c-1)^2 + 4 \frac{k}{k-1} cn} - n$$

It is already shown that for a bipartite graph G,

$$\gamma_t^s(G) \ge 2\sqrt{2n} - n$$
.

By our Theorem 1, we can easily extend the result to k-partite graphs and characterize the external graphs achieving this bound. For this act, we introduce a family  $\tau$  of graphs as follows:

For integer  $r \ge 1$ ,  $k \ge 2$ , let  $H_i$  (i=1,2,...,k) be the graph obtained from the disjoint union of r stars  $K_{1,(k-1)\,r-1}$  (the graph  $K_1$ , 0 is regarded as  $K_1$  when r=1 and k=2) with centers  $V_i = \{x_{ij} \mid j=1,2,...,r\}$ . Apart from this, let  $U_i$  denote the set of vertices of degree 1 in  $H_i$  that

are not central vertices of stars and write  $X_i = V_i \cup U_{i+1}$ , where  $i+1 \pmod{k}$ . We now let  $G_{k,r}$  be the k-partite graph obtained from the disjoint union of  $H_1, H_2, ..., H_k$  by joining each center of  $H_i$  (i=1, 2, ..., k) with all the centers of  $\bigcup_{j=1, j\neq i}^k H_j$ . By our construction, we know that  $G_{k,r}$  is a is a k-partite graph of order  $n = k (k-1) r^2$  with the vertex classes  $X_1, X_2, ..., X_k$  and  $|X_i| = (k-1)r^2$ . Let  $\tau = \{G_{k,r} \mid r \ge 1, k \ge 2\}$ .



Fig 1 (below): The H(3) Graph

#### Theorem 2

If G = (V, E) is a k-partite graph of order n with no isolated vertex, then

$$\gamma_t^s(G) \ge 2\sqrt{\frac{k}{k-1}} n - n,$$

were the equality holds if and only if  $G \in \tau$ .

**Proof:** 

Let 
$$g(x) = \frac{k}{k-1} \left( -x + \sqrt{x^2 + 4 \cdot \frac{k-1}{k} (x+1)n} \right) - n$$
. It is

now easy to check that g'(x) > 0 if  $n \ge 2$ , hence g(x) is a strictly monotone increasing function where  $x \ge 0$ . Note that  $c \ge 1$ , hence  $\gamma_t^s(G) \ge g(c-1) \ge g(0)$  which gives the desired bound.

If 
$$\gamma_{\mathsf{t}}^{\mathsf{s}}(\mathsf{G}) = 2\sqrt{kn/(k-1)} - n$$
,

then c=1 since g(x) is a strictly monotone function, and thus  $\delta=1$ . Further all the equalities in (2.1), (2.2) and (2.3) hold. The equality now in (2.3) implies that  $p_1=p_2=\dots p_k$ : = r. The equalities in (2.1) and (2.2) imply that each vertex of M has degree 1 and is exactly adjacent to a vertex of P, while each vertex of  $P_i$  has degree  $p-p_i=kr-r$  in

G[P] and has exactly  $p - p_i - 1 = r(k - 1) - 1$  neighbors in M. If follows that  $G \in \tau$ .

On the other hand, if we suppose that  $G \in \tau$ . Then, there exist integers  $r \ge 1$ ,  $k \ge 2$  such that  $G = G_{k,r}$ . Assuming to all kr central vertices of the stars the value +1, and to all other vertices the value -1, we produce a signed total dominating function f of weight  $f(V(G)) = kr - kr(2k-1) = 2kr - 2k^2r$ .  $= 2\sqrt{kn/(k-1)} - n$ 

We now present a short-cut proof and also further give a characterization of the extremal graphs.

#### Theorem 3

If G=(V,E) is a k-partite graph of order n with no isolated vertex, then we have  $\gamma_t \bar{\ }(G) \ge 2\sqrt{\frac{k}{k-1}} \ n-n$ , where the equality holds if and only if  $G \in \tau$ .

#### Proof:

Let  $f: V \rightarrow \{+1, 0, -1\}$  be a minus total dominating function on G with  $f(V(G)) = \gamma_{\bar{t}}(G)$  and let Q be the set of vertices in V(G) that are assigned the value 0. Further, let G' = G - Q and that G' is a k'-partite graph of order n'.

Then 
$$2 \le k' \le k$$
 and  $2 \le n' \le n$ 

Clearly; f' = f/G' is a signed total dominating function on G', Hence

 $y_t^s(G') \le f'(V(G')) = f(V(G))$ . Now by Theorem 2, we have

$$\gamma_t(G) \geq \gamma_t^s \; (G') \geq 2 \sqrt{\frac{k'}{k'-1}} \; n' \; \text{-} \; n' \; . \label{eq:gamma_tau}$$

Denote h(x,y) as  $2\sqrt{yx/(y-1)} - x$ . Now on partial differentiation, we see that  $\partial h(x,y) | \partial x < 0$  and  $\partial h(x,y) / \partial y < 0$  for  $x,y \ge 2$  hence h(x,y) is a strictly monotone decreasing function on variables x and y, respectively. This indicates that

$$\gamma_t(G) \ge \gamma_t^s(G') \ge 2\sqrt{\frac{k}{k-1}} n - n.$$

The theorem below implies the fact that the equality holds if and only if  $G \in \mathcal{T}$ .

By theorem 2 and 3, we obtain the following extremal result on the minus total domination and signed total domination of a k-partite graph.

#### Theorem 4

 $\label{eq:formula} If \ G = (V, E) \ is \ a \ k\mbox{-partite graph of order } n \ with \ no \\ isolated \ vertex, \ then \ the \ following \ statements \ are \\ equivalent.$ 

i. 
$$\gamma_t^s(G) = 2\sqrt{\frac{k}{k-1}n} - n;$$

ii. 
$$\gamma_{t}(G) = 2\sqrt{\frac{k}{k-1}n} - n;$$

#### Proof

By theorem 2 and 3, we have

 $\gamma_t^s(G) = \gamma_t(G) \ge 2\sqrt{kn/(k-1)} - n$ , hence it is enough to prove that (ii)  $\Rightarrow$  (iii). We here use the notation used while proving theorem 3 above.

Accordingly: If  $\gamma_t(G) = 2\sqrt{kn/(k-1)} - n$ , then h(k,n) = h(k,n). Also note that h(x,y) is a strictly monotone function on variables x and y respectively, where  $x,y \ge 2$ .

This implies that k' = k, n' = n. Hence  $Q = \phi$  and this gives that f is also a minimum signed total dominating function, ie.  $\gamma_t^s(G) = 2\sqrt{\frac{kn}{(k-1)}} - n$ . Now the result simply follows from Theorem 2.

Now recall a subclass, constructed already, of  $\tau$ . Clearly, each  $G_{2,r}$  of  $\mathcal F$  is a bipartite graph of order  $n=2r^2$  with vertex classes  $X_1$ ,  $X_2$  and  $|X_i|=r^2$ . As a special case of Theorem 4, we have

#### Theorem 5

If G is a bipartite graph of order n with  $\delta(G) \ge 1$ , then  $\gamma_t^s(G) \ge 2\sqrt{2n} - n$ , the equality holds if and only if  $G \in \mathcal{F}$ .

We now have a known and useful result.

#### Statement

For any triangle-free graph G of order p,  $|E(G)| \le p^2/4$ , the equality is true if and only if  $G = K_{\frac{p}{2},\frac{p}{2}}$  and  $G = K_{\frac{p}{2},\frac{p}{2}}$  is a balance complete bipartite graph.

#### Theorem 6

Let G be a triangle – free graph of order n with  $\delta(G) \ge 1$  and let c=  $\lceil (\delta(G) + 1)/2 \rceil$  then

$$\gamma_{t}^{s}(G) \ge 2(-(c-1) + \sqrt{(c-1)^{2} + 2cn}) - n$$
 (a)

#### **Proof**

We first prove the inequality (a) for a triangle free graph G. Let  $f: V \rightarrow \{+1, -1\}$  be a signed total dominating function of G with  $f(V(G)) = \gamma_t^s$  (G) and let  $P = \{v \in V(G) | f(v) = +1\}$ ,

 $M = \{v \in V(G) | f(v) = -1\}$ . Further, let |P| = p and |M| = m. Obviously,  $P \cup M$  is a partition of V(G). Then  $\gamma_T^S(G) = |P| - |M| = 2 p - m$ .

Using the argument of Theorem1, by estimating the number of edges between P and M, we get

$$e(P, M) = \sum_{\mathbf{v} \in \mathbf{M}} |N_{\mathbf{G}}(\mathbf{v}) \cap \mathbf{P}| \ge cm \tag{2.5}$$

and also  $e(P, M) = \sum_{v \in P} |N_G(v) \cap M| \le$ 

$$\sum_{v \in P} (|N_G(v) \cap P)|-1) = \sum_{v \in P} d_{G[P]}(v) - p$$
 (2.6)

We have By a known Lemma:

For any triangle-free graph G of order P,  $|E(G)| \le P^2/4$  where equality holds if and only if  $G = K_{\frac{p}{2},\frac{p}{2}}$  and  $K_{\frac{p}{2},\frac{p}{2}}$ , is a balance complete bipartite graph. Using this, we obtain

$$c(n-p) \le e(P,M) \le 2 |E(G[P])| - p \le \frac{p^2}{2} - p$$
 (2.7)

the above implies that

$$p \geq$$
 -  $(c\text{-}1) + \sqrt{(c-1)^2 + 2 \emph{cn}}$  . Hence,

$$\gamma_{\rm t}^{\rm s}\left({\rm G}\right) = 2p-n \geq 2\left(-(c-1) + \sqrt{(c-1)^2 + 2cn}\right) - n$$

Applying the results in Theorem 6, we obtain the following

#### **Theorem 7**

If G is a triangle-free graph of order n with  $\delta(G) \ge 1$ , then

$$\gamma_{t}(G) \geq 2\sqrt{2n} - n$$

where equality holds if and only if  $G \in \mathcal{F}$ .

#### **Proof:**

Let 
$$h_1(x) = 2(-x + \sqrt{x^2 + 2(x+1)n}) - n$$

It is easy to check that  $h_1(x)$  is strictly monotone increasing function when  $x \ge 0$  and  $n \ge 2$ . Hence, by Theorem 6, we have  $\gamma_t^s$  (G)  $\ge 2\sqrt{2n} - n$ 

We now show that  $\gamma_t (G) \geq 2\sqrt{2n} - n$  Let  $f \colon V \to \{+1, 0, -1\}$  be a minus total dominating function on G with  $f(V(G)) = \gamma_t (G)$  and let Q be the set of vertices in V(G) that are assigned the value 0. Apart from this Let G' = G - Q and |V(G')| = n'. Then G' is triangle – free. Clearly, f' = f/G' is a signed total dominating function on G', hence

$$\gamma_t^s(G') \leq f'(V(G')) = f(V(G)).$$

We can also see that  $h_2(x) = 2\sqrt{2x} - x$  is a strictly monotonic decreasing function for x > 1. Hence

$$\gamma_t(G) \ge \gamma_t^s(G') \ge 2\sqrt{2n'} - n' \ge 2\sqrt{2n} - n$$

If  $\gamma_t^-(G) = 2\sqrt{2n} - n$ , then n' = n since  $h_2(x)$  is a strictly monotonic function. This shows that  $Q = \phi$ . Hence f is a signed total dominating function on G, and thus

 $\gamma_t^s(G) \leq \gamma_t(G)$ , which implies

$$\gamma_t^s(G) = \gamma_t(G) = 2\sqrt{2n} - n$$

This gives that  $\gamma_t^s(G) = h_1(0)$ ; and hence c = 1 and the equality holds for the in equalities in the equation, (2.5), (2.6) and (2.7) in the proof of Theorem 6.

The chain of equality in (2.7) implies that  $|E(G[P])| = p^2/4$ .

By the "Known Lemma" given above, G[P] is a balanced complete bipartite graph  $K_{\frac{p}{2},\frac{p}{2}}$ . Apart from this, the chain of equalities implies that each vertex of M has degree 1 and is precisely adjacent to a vertex of P, while each vertex of P has degree p-1 and is precisely adjacent to (p/2)-1 vertices of M. Now G is a bipartite graph.

By theorem 4, If G is a bipartite graph of order n with  $\delta(G) \ge 1$ , then  $\gamma_t^s(G) \ge 2\sqrt{2n} - n$ , where the equality is true if  $f \in \mathcal{F}$ .

Using this we have  $G \in \mathcal{F}$  in our case , on the other hand if we suppose  $G \in \mathcal{F}$  then by the same result above,  $\gamma_t^s$   $(G) = 2\sqrt{2n} - n$ .

Since 
$$\gamma_t^s(G) \ge \gamma_t(G) \ge 2\sqrt{2n} - n$$
, we have  $\gamma_t(G) = 2\sqrt{2n} - n$ .

In view of the above results we have

#### **Theorem 8**

If G is a triangle – free graph of order n with  $\delta(G) \ge 1$ , then the following statements are equivalent.

i. 
$$\gamma_t^s(G) = 2\sqrt{2n} - n$$
,

ii. 
$$\gamma_{t}(G) = 2\sqrt{2n} - n,$$

iii. G∈F

#### 3. CONCLUSION

The minus (reps. signed) total domination problem can be taken as a generalization of both the classical total domination problems and the minus domination problems. In the above, illustrated the lower bounds on minus and signed total domination numbers of k-partite graphs and triangle-free graphs and extremal graphs achieving these bounds. The methods used may also be used to characterize the extremal graphs of k-partite graphs attaining the lower bound.

#### REFERENCES

- [1] Ballobas, Modern Graph Theory, Springer-velag, N.Y., 1998.
- [2] T.W.Hayness, S.T.Hedetniemi, P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, N.Y. 1998.
- [3] M.A.Herming, Signed total domination in Graphs, Discrete math. 278 (2004), 109-125.
- [4] Liying Kan, Hye Kyung Kim, Moo Young Sohn, Minus domination number in K-partite graphs, Discrete math 277(2004)
- [5] Liying Kang, Erfang Shan and L.Caccett, Total minus domination in K-partite groups, Discrete math 306(2006).
- [6] Haic hao wang, Erf ang shan, upper minus total domination of a 5 regular graph, Ars Combin, (2008) 612-621.