Some Graphs On Near Divisor Cordial-II

S.Davasuba¹, A.Nagarajan²

^{1,2} Department of Mathematics, V.O.Chidambaram College, Tuticorin, Tamilnadu, India

Abstract: A Near divisor cordial labeling of a graph G with vertex set V is a bijection f from V to $\{1,2,..., |V| - 1, |V| + 1\}$, such that if each edge uv is assigned the label 1 if f (u) divides f (v) (or) if f (v) divides f (u) and 0 otherwise, then the number of edges labelled with 0 and the number of edges labelled with 1 differ by almost 1. If a graph admits Near divisor cordial labeling then it is called Near divisor cordial graph. In this paper, We proved graphs such as $J(n+1,n),S_n,B_{n,m}^2,K_{1,n},S(K_{1,n}),K_{2,n},K_{3,n}, < K_{1,n}^{(1)},K_{1,n}^{(2)} > and < K_{1,n}^{(1)},K_{1,n}^{(2)},K_{1,n}^{(3)} > are Near divisor cordial (NDC).$

AMS Mathematics subject classification 2010: 05c78

Keywords: Cordial labelling, Divisor cordial labelling and Near divisor cordial labelling.

I. INTRODUCTION

By a graph , we mean a finite undirected graphs without loops and multiple edges for terms not defined here. We refer to Harary [3]

Definition 1.1 [1]:

Let G = (V,E) be a graph. A mapping $f : V(G) \rightarrow \{0,1\}$ is called binary vertex labelling of G and f (v) is called the label of the vertex v of G under f. Cahit [1] defined cordial labelling as follows

Definition 1.2 :

A binary vertex labelling of a graph G is called a cordial labelling if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$. A graph G is cordial if it admits cordial labeling.

Here $f^*: E(G) \rightarrow \{0, 1\}$ is given by $f^*(e) = |f(u) - f(v)|$. $v_f(0), v_f(1)$ be the number of vertices of G having labels 0 and 1 respectively under f and $e_f(0), e_f(1)$ be the number of edges of G having 0 and 1 respectively under f^* . The concept of divisor cordial labelling is introduced by R.Varatharajan, S.Navaneetha Krishnan and K.Nagarajan [5] and defined as follows:

Definition 1.3 [5] :

Let G = (V,E) be a simple graph and f : v \rightarrow {1,2,....,|V|} be a bijection. For each edge uv, assign the label 1 if either f (u) | f (v) or if f (v) | f(u) and the label 0 otherwise. f is called divisor cordial labelling if $|e_f(0) - e_f(1)| \le 1$. The concept of Near graceful labelling is introduced by Frucht [4] with edge labelling {1,2,...,q-1,q+1}.Motivated by the above definitions, we introduce the concept called Near divisor cordial.

2. MAIN RESULTS:

© 2018 IJRRA All Rights Reserved

Definition 2.1:

Let G = (V,E) be a simple graph and f : V (G) \rightarrow {1,2,...,|V|-1,|V|+1} be a bijection. For each edge uv, assign the label 1 if either f (u) | f (v) or f (v)

| f(u) and the label 0 otherwise. f is called Near divisor cordial labelling if $|e_f(0) - e_f(1)| \le 1$.

Note that K_7 is not divisor cordial but it is Near divisor cordial and $K_{1,2m}$ is divisor cordial but it is not Near divisor cordial. Hence the above definition is meaningful.

The following definitions are useful for proving theorems.

Definition 2.2 : For integers $m,n \ge 0$, we consider the graph *jellyfish* J(m,n) with vertex set $V(J(m,n))=\{u,v,x,y\}$ $U = \{x_1,x_2,\ldots,x_m\} \cup \{y_1,y_2,\ldots,y_n\}$ and the edge set $E(J(m,n)) = \{(u,x), (u,y), (u,v), (v,x), (v,y)\} \cup \{(x_i,x) / 1 \le i \le m\} \cup \{(y_i,y) / 1 \le i \le n\}.$

Definition 2.3: The graph $P_n + K_1$ is called a shell

Definition 2.4 : The Bistar $B_{m,n}$ is the graph obtained from K_2 by identifying the center vertices of $K_{1,m}$ and $k_{1,n}$ at the vertices of K_2 respectively. $B_{m,m}$ is often denoted by B(m).

The Complete bipartite graph $K_{1,n}$ is called a Star Graph and it is demoted by S_{m} .

 $S(K_{1,n})$ the sub division of the star k $_{1,n}$ is a tree obtained from the star k $_{1,n}$ by adding a new pendent edge to each of the existing n pendent vertices.

Definition 2.5: Consider two stars $K_{1,n}^{(1)}$ and $K_{1,n}^{(2)}$. Then $G = \langle K_{1,n}^{(1)}, K_{1,n}^{(2)} \rangle$ is the graph obtained by joining apex vertices of star to a new vertex x. Note that G has 2n+3 vertices and 2n+2 edges.

Definition 2.6: Consider t copies of stars namely $K_{1,n}^{(1)}$, $K_{1,n}^{(2)}$, ..., $K_{1,n}^{(t)}$. Then $G = \langle K_{1,n}^{(1)}, K_{1,n}^{(2)}, \ldots$..., $K_{1,n}^{(t)}$ is the graph obtained by joining apex vertices

of each $K_{1,n}^{(m-1)}$ and $K_{1,n}^{(m)}$ to a new vertex x_{m-1} where $2 \leq 1$ $m \leq t$.

Note that G has t(n+2)-1 vertices and t(n+2)-2 edges.

THEOREM 2.7:

The graph J(n+1,n) is Near divisor cordial **Proof:**

 $v_1, v_2, v_3, \dots, v_{n+1}$

 $E(J(n+1,n)) = \{ w_1w_2, w_2w_3, w_3w_4, w_4w_1, w_2w_4 \} U \{ w_3u_i / (w_3u_i) \} = \{ w_1w_2, w_2w_3, w_3w_4, w_4w_1, w_2w_4 \} U \{ w_3u_i / (w_3u_i) \}$ $1 \le i \le n$ $U\{w_1v_i / 1 \le i \le n+1\}$

Define $f(w_1) = 1$ and $f(w_3) = S$ such that s is the largest prime number such that $S \le 2n+6$ and $S \ne 2n+5$

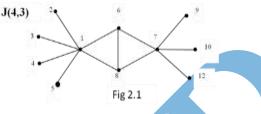
Label the remaining vertices from {2,3,....,s-1,s+1,...,2n+4,2n+6 in that order.

Then $e_f(0) = e_f(1) = k$ where $k = \frac{2n+6}{2}$

Hence $|e_f(0) - e_f(1)| = 0$

Hence, the graph J(n+1,n) is a Near divisor cordial

Example 2.8:



THEOREM 2.9:

The shell S_n is a Near divisor cordial **Proof:**

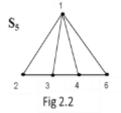
Let $V(S_n) = \{v_0, v_1, v_2, \dots, v_{n-1}\}$ $E(S_n) = \{v_0v_i, 1 \le i \le n-1\}$ and $i \ne n\} \cup \{v_iv_{i+1}, 1 \le i\}$

 \leq n-2 } Fix $f(v_0) = 1$

Label the remaining vertices from $\{2,3,4,\ldots,n-1,n+1\}$ in that order.

Then $e_f(0)=n-2$, $e_f(1)=n-1$ Hence $|e_f(0) - e_f(1)| = 1$ Hence, S_n is a Near divisor cordial

Example 2.10:

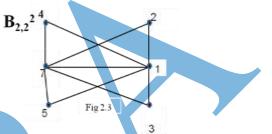


THEOREM 2.11: The Graph B_{n,m²} is Near divisor cordial

© 2018 IJRRA All Rights Reserved

Proof: $|V(B_{n,m}^2)| = n + m + 2$ and $|E(B_{n,m}^2)| = 4n + 1$ Always fix $f(v_0)=1$ and $f(u_0)=S$, where s is the largest prime such that $S \le n+m+3$ and $S \ne n+m+2$. Then label the remaining vertices from $\{2,3,\ldots,n+m+1,n+m+3\}$ Then $e_f(0) = n + m$, $e_f(1) = n + m + 1$ Hence $|e_f(0) - e_f(1)| = 1$ Hence, The Graph $B_{n,m}^2$ is Near divisor cordial

Example 2.12:



THEOREM 2.13:

The star graph $K_{1,n}$ is Near divisor cordial iff n is odd, $n \ge 1$ 5

Proof:

Let V ($K_{1,n}$) = { $v_1, v_2, v_3, \dots, v_n$ } and E ($K_{1,n}$) = { vv_i $: 1 \leq i \leq n$ and n=4.

Now assign label 2 to the vertex v and label the remaining vertices $v_1, v_2, v_3, \ldots, v_n$ by 1,3,4,..., n-1 and n+1 respectively.

We have, $e_f(0) = k+1$, $e_f(1) = k$, where n = 2k+1

Hence, Hence $|e_f(0) - e_f(1)| = 1$.

Therefore, $K_{1,n}$ is Near divisor cordial for n is odd and $n \ge 1$ 5, n = 4, 6

Conversely,

Suppose K_{1,n} is Near divisor cordial

Suppose n is even and $n \ge 8$

Let n = 2k, there are k+1 even numbers and k odd numbers as labels.

Assigning any odd number to the central vertex as label, then it does not satisfy the condition

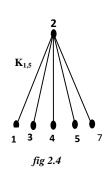
 $|e_f(0) - e_f(1)| \le 1.$

If f (v) = 2 for a labelling f in that case also $e_f(1) = k+1$ and $e_{f}(0) = k-1$. It can be easily verifies that by assigning any even number > 2 to the central vertex as label, then it does not satisfy the condition $|e_f(0) - e_f(1)| \le 1$.

∴ $K_{1,n}$ is not Near divisor cordial When n is even & $n \ge 8$. Clearly, $K_{1,n} \cong P_3$ is not near divisor cordial.

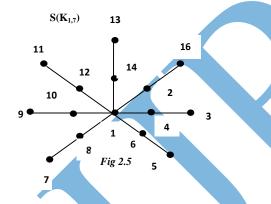
Therefore if K_{1,n} is Near divisor cordial then n should be odd and $n \ge 3$ and n=4,6.

Example 2.14:



THEOREM 2.15: $S(K_{1,n}) \text{ the sub division of the star } k_{1,n} \text{ is near divisor cordial}$ **Proof:** Let V (S(K_{1,n})) = { v, v_i, u_i : 1 ≤ i ≤ n } and E (S(K_{1,n})) = { vv_i, v_iu_i : 1 ≤ i ≤ n } Define f by f (v) = 1 f (v_i) = 2i (1 ≤ i ≤ n) f (u_i) = 2i+1 (1 ≤ i ≤ n-1) and f (u_n) = 2i+2, where i = n here e f(0) = e f(1) = n Hence | e f (0) - e f(1) | = 0

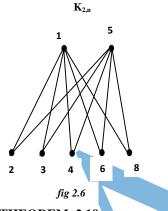
Therefore, $S(K_{1,n})$ is near divisor cordial. Example 2.16:



THEOREM 2.17: The complete bipartite graph $K_{2,n}$ is near divisor cordial. **proof:** Let V ($K_{2,n}$) = V₁UV₂

Such that $|V(K_{2,n})| = n+2$ and $|E(K_{2,n})| = 2n$. $V_1 = \{x_1, x_2\}$ and

 $\begin{array}{l} V_{2}= \{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\}. \text{Now assign the label 1 to } x_{1} \text{ and} \\ \text{the largest prime number S to } x_{2} \text{ such that } S \leq n+2 , S \neq \\ n+1. \text{Then the remaining vertices } y_{1}, y_{2}, y_{3}, \ldots, y_{n} \quad \text{is} \\ \text{labelled from } \{2, 3, 4, \ldots, n+1, n+3\} \cdot \{s\}. \\ \text{Clearly, } e_{f}(0) = e_{f}(1) = n \\ \text{Hence } \left| e_{f}(0) - e_{f}(1) \right| = 0 \\ \text{Hence, K } z_{n} \text{ is a Near divisor cordial} \\ \text{Example 2.18:} \end{array}$



THEOREM 2.19:

The complete bipartite graph $K_{3,n}$ is Near divisor cordial, n is odd.

proof:

Let $V(K_{3,n}) = V_1 U V_2$

Such that $|V(K_{3,n})| = n+3$ and $|E(K_{3,n})=3n.V_1=\{x_1, x_2, x_3\}$ and $V_2=\{v_1, v_2, v_3, \dots, v_n\}$. Now define $f(x_1) = 1$, $f(x_2) = 2$ and $f(x_3) = s$, where s is the largest prime number such that $s \le n+4$ and $s \ne n+3$.

And assign the remaining labels to the vertices $y_1, y_2, y_3, ...$

Then, $e_f(0) = n$, $e_f(1) = n-1$ Hence $|e_f(0) - e_f(1)| = 1$ Thus, $K_{3,n}$ is a Near divisor cordial. **Remark 2.21:**

For $K_{m,n}$, $m \ge 4$, $e_f(0)$ value increases drastically than $e_f(1)$ and it is true for any Near divisor cordial labelling f except for some particular values of m & n.

THEOREM 2.22:

The graph $G = \langle K_{1,n}^{(1)}, K_{1,n}^{(2)} \rangle$ is Near divisor cordial **Proof :**

Let $v_1^{(1)}, v_2^{(1)}, \ldots, v_n^{(1)}$ be the pendent vertices of $K_{1,n}^{(1)}$ and $v_1^{(2)}, v_2^{(2)}, \ldots, v_n^{(2)}$ be the pendent vertices of $K_{1,n}^{(2)}$

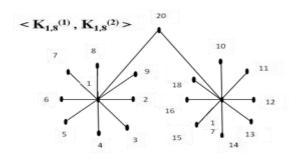
Let c_1 and c_2 be the apex vertices of $K_{1,n}^{(1)}$ and $K_{1,n}^{(2)}$ respectively and they are adjacent to a common vertex w. |V(G)| = 2n+3 |E(G)| = 2n+2. Let $f: V(G) \rightarrow \{1,2,3,\ldots,2n+2,2n+4\}$

Now, assign the label 1 to c_1 and the largest prime number S such that $S \le 2n+4$ (and $S \ne 2n+3$) to c_2 and the remaining numbers to be labelled to the remaining vertices of G. Since 1 divides any integer, and S does not divide any integer, then $e_f(0) = n+1$ and $e_f(1) = n+1$

Hence, $|e_f(0) - e_f(1)| = 0$.

Hence, the graph $G = \langle K_{1,n}^{(1)}, K_{1,n}^{(2)} \rangle$ is Near divisor cSordial

Example 2.23:



Theorem 2.24:

The graph $G = \langle K_{1,n}^{(1)}, K_{1,n}^{(2)}, K_{1,n}^{(3)} \rangle$ is Near divisor cordial

Proof:

Let $v_1{}^{(1)},\!v_2{}^{(1)},\ldots\ldots,v_n{}^{(1)}$ be the pendent vertices of $K_{1,n}^{(1)}$ and $v_1^{(2)}, v_2^{(2)}, \dots, v_n^{(2)}, v_n^{(2)}$ be the pendent vertices of $K_{1,n}^{(2)}$ and $v_1^{(3)}, v_2^{(3)}, \ldots, v_n^{(n)}$

 $\ldots \ldots v_n^{(3)}$ be the pendent vertices of $K_{1,n}^{(3)}$. Let c_1 and c_2 and c_3 be the apex vertices of $K_{1,n}^{(1)}$ and $K_{1,n}^{(2)}$ and $K_{1,n}^{(3)}$ respectively and they are adjacent to a common vertex w_1 and w_2 .such that w_1 is adjacent to c_1 and c_2 and w_2 is adjacent to c_2 and c_3 .

Note that G has 3n+5 vertices and 3n+4 edges.

Case 1: n is odd

Now assign the label 1 to c_1 , 2 to c_2 and S to c_3 where S is the largest prime number such that $S \le 3n+5$ (and $S \ne 3n+4$). Then assign the remaining numbers to the pendent vertices, we get,

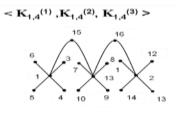
 $e_f(1) = \frac{3n+5}{2}$ and $e_f(0) = \frac{3n+3}{2}$ (See fig) Then, $|e_f(0) - e_f(1)| = 1$.

Case 2: n is even

Now assign the label 1 to c_1 , S to c_2 , where S is the largest prime number such that $S \le 3n+5$ and 2 to c_3 . Then assign the remaining numbers to the pendent vertices in such a way that $\frac{n+1}{2}$ vertices adjacent to C₃ is assigned even numbers and remaining $\frac{n+1}{2}$ vertices adjacent to C₃ is assigned odd numbers and the remaining labels are assigned to the left over pendent vertices. We get, $e_f(1) = \left\lfloor \frac{3n+4}{2} \right\rfloor = e_f(0)$ (See fig) Then, $\left\lfloor e_f(0) - e_f(1) \right\rfloor = 1$.

Hence, The graph G = $\langle K_{1,n}^{(1)}, K_{1,n}^{(2)}, K_{1,n}^{(3)} \rangle$ is Near divisor cordial.

Example 2.25:



3. REFERENCES:

1. I.Cahit, Cordial graphs : A weaker version of graceful and harmonious graphs, Ars combinatorial, 23(1987),201-207.

2. J.A. Gallian, A dynamic survey of graph labelling, Electronic journal of combinatorics, 16(2009), DS6.

3. F.Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1972.

4. R. Frucht, Nearly graceful labelling of graphs, Scientia,5(1992-1993),47-59.

5.R. Varatharajan, S.Navaneethakrishnan, K.Nagarajan, Divisor cordial labelling of graphs, International Journal of Mathematical Combinatorics, Vol.4(2011)15-25.

6.R. Varatharajan, S.Navaneethakrishnan, K.Nagarajan, Special classes of divisor cordial graphs, International Mathematical Forum, Vol.7, 2012, no. 35, 1737-1749.

7.R. Varatharajan, S.Navaneethakrishnan, K.Nagarajan, Cycle related divisor graphs ,International Journal of Mathematics and Soft Computing