
 Rahul al. International Journal of Recent Research Aspects ISSN: 2349-7688, Special Issue: Engineering
Research Aspects Feb 2015, pp. 29-31

© 2014 IJRRA All Rights Reserved page - 29-

An Enhancement Approach for

Finding Maximally Frequent set in

Transactional Database

Rahul1, Kamal Kumar Sharma2, Sharad Chouhan3
1Student, M. Tech, E-Max group of Institutions, Ambala

2Professor, Dept. of ECE, E-Max group of Institutions, Ambala
3Assistant Professor, Deptt. of CS, E-Max group of Institutions, Ambala

Abstract: Data mining is a methodology with the ability to extract information from large data sets and

transforming it into understandable form for further use. The information obtained is of great value and has

proven to be advantageous in various business applications. Apriori algorithm is one of the most fascinating

and thoroughly investigated area in the field of data mining. It is used to identify frequent item sets in a

transactional database. There exist many implementations for this algorithm using different data structures

and methods for generating candidate sets. In my work instead of generating candidate sets and scanning the

entire transactional database multiple times, I am introducing the concept of base table and scanning the entire

transactional database only once. This paper describes various well known methods for Association rule mining

also describes approaches for finding maximally frequent set

Keywords: Data mining, Database.

I. INTRODUCTION

We are in an age often referred to as the information age.

In this information age, because we believe that
information leads to power and success, and thanks to

sophisticated technologies such as computers, satellites,

etc., we have been collecting tremendous amounts of

information. Initially, with the advent of computers and

means for mass digital storage, we started collecting and

storing all sorts of data, counting on the power of

computers to help sort through this amalgam of

information. Unfortunately, these massive collections of

data stored on disparate structures very rapidly became

overwhelming. This initial choice has led to the creation

of structured databases and database management systems

(DBMS)[1]. The efficient database management systems
have been very important assets for management of a large

corpus of data and especially for effective and efficient

retrieval of particular information from a large collection

whenever needed. The proliferation of database

management systems has also contributed to recent

massive gathering of all sorts of information. Today, we

have far more information than we can handle: from

business transactions and scientific data, to satellite

pictures, text reports and military intelligence.

Information retrieval is simply not enough anymore for

decision-making. Confronted with huge collections of
data, we have now created new needs to help us make

better managerial choices. These needs are automatic

summarization of data, extraction of the “essence” of

information stored, and the discovery of patterns in raw

data.

II. VARIOUS WELL KNOWN METHODS FOR

ASSOCIATION RULE MINING AND

APPROACH FOR FINDING MAXIMALLY

FREQUENT SET

Apriori Algorithm

Apriori algorithm finds frequent item sets from candidate

item sets. It is executed in two steps.

Firstly it retrieves all the frequent itemsets from the

database by considering those item sets whose support is

not smaller thea the minimum support (min_sup).

Secondly it generates the association rules satisfying the

minimum confidence (min_conf) from the frequent item

sets generated in first step.
The pseudo code for generation of frequent item sets is

given below :

Ck : Candidate itemset of size k

 Lk : Frequent itemset of size k

{

L1= frequent 1- itemset

For(k=1; k!=NULL; k++)

{

Ck+1 = Join Lk with Lk to generate Ck+1

Lk+1 =Candidate in Ck+1 with support greater than or
equal to min support;

}

End;

Return Lk;

 Rahul al. International Journal of Recent Research Aspects ISSN: 2349-7688, Special Issue: Engineering
Research Aspects Feb 2015, pp. 29-31

© 2014 IJRRA All Rights Reserved page - 30-

Generation of frequent itemsets by applying Apriori

algorithm

FP- Growth Algorithm

FP growth algorithm [1],proposed by Jiawei Han finds the

association rules more efficiently than apriori algorithm

without the generation of candidate item sets. Apriori

algorithm requires n+1 scans where n is the length of the

longest pattern. FP- growth works on divide and conquers

strategy and it requires only two scans of database to find

frequent patterns. First, it constructs a FP-tree[11] using

the data in transactional database and then mines all the

frequent patterns from FP tree. After mining of frequent

patterns the association rules can be generated very easily.

Partitioning Method
Partitioning method [1] provide the improvement over

classical Apriori algorithm. It works in two steps. In first

step, it divides the transactions of the database D into n

non-overlapping partitions and then finds the support

count for each partition. In second step, global frequent

item set among the candidates is found. The partitioning

method requires only two database scan as compare to n+1

scans required by the Apriori algorithm.

Transaction Reduction Method

Transaction reduction method [1] employee a property

that a transaction does not contains any k-frequent item
sets cannot contain (k+1)- item set. Therefore, such

transaction can be removed from the database for further

consideration.

Hashing Method

Hashing is the method to improve the efficiency of Apriori

algorithm. In hashing technique [1] the frequent item sets

are found by mapping the frequent items into hash buckets

of hashing table. Hashing technique can reduce the size of

k-item set Ck. For example, when scanning each

transaction in a database to generate the frequent 1-itemset

C1, we can generate all the 2-itemset for each transaction,
map them into different buckets of a hash table structure

and increase the corresponding bucket count. An item set

whose bucket value cannot be frequent and can be

removed from the candidate set.

III. PROBLEM FORMULATION

Frequent Item sets

Mining frequent item set from a large database generates

a large number of item sets satisfying both minimum

support and minimum confidence. To overcome this

problem concept of closed frequent item set and maximal

frequent item set is introduced.

Maximal Frequent Item set
An item set is called maximal frequent[1] if it is frequent

as well as closed i.e. the item set has no superset as

frequent. For Example: Let items :{a,b,c,d,e}; Frequent

item set :{a,b,c} ; {a,b,c,d}, {a,b,c,e}, {a,b,c,d,e} these are

not frequent item sets. Maximal frequent item sets :{a,b,c}

Closed Frequent Item set

An item set is closed if none of its immediate supersets

has the same support as the item set [1]. For e.g., if {bread,

butter} is an item set that has support = 4, and all of its
supersets has support <4, then {bread, butter} is a closed

item set. Let {bread, butter, sugar} is superset of {bread,

butter} and has support = 4, then {bread, butter} is no

more a closed item set.

IV. PROBLEM METHODOLOGY

Proposed algorithm gives better results than Apriori with

respect to time variant. Pseudo code of proposed

algorithm is given below:

Proposed(transactions_record, min_support,

no_of_elements)

{
String s=domain_substr(0,no_of_elements);

Gen_subset(s);

Build_transaction_table(transactions_record);

int ind=b_search(1,n,sup);

}

 map<string,int>::iterator it,i; string str;

bool b=false;

for(it=m[ind]_begin();it!=m[ind]_end() &&

b==false;it++)

{

for(i=p_begin();i!=p_end();i++)

{
if(lcs(i->first,it->first)==true)

{

str=it->first;

b=true;

 }

 }

 }

cout≪str≪endl;

}

Gen_subset(string s)

{
int n=s_length();

if(n==0)return;

int p=pow(2,n);

vector<char> v[p];//Array list

for(int i=0;i<p;i++)

{

for(int j=0;j<n;j++)

{

if(i && 1≪j)

{
v[i]_push_back(s[j]);//Add i narray list }

}

v[i]_push_back(’0’); }

} string str[p-1];

int j;

for(int i=0;i<p-1;i++)

{

str[i]=&&v[i+1][0];

 Rahul al. International Journal of Recent Research Aspects ISSN: 2349-7688, Special Issue: Engineering
Research Aspects Feb 2015, pp. 29-31

© 2014 IJRRA All Rights Reserved page - 31-

}

for(int i=0;i<p-1;i++)

{
int len=str[i]_length();

m[len][str[i]]=1;

}

}

V. RESULT

I have performed experimental evaluation and comparison

of proposed algorithm with the classical Apriori

algorithm. For my analysis, I have used transactional

database consisting of 1 million transactions and item set

consists of 15 items. The results obtained from the

comparison are depicted in the figure given below:

 Figure 1.1: Time (Y-axis) v/s Support (X-axis)

Figure 1.2: (Experimental result of assumed example

with different minimum support)

VI. CONCLUSION AND FUTURE WORK

Proposed algorithm performs much better in comparison

to the classical algorithm with respect to time variant. I

need to have lexicographically sorted transactional
database to reduce its size using hashing. The size of

transactional database gets reduced to 2n (where n is

number of items) from billions of transactional records. I

can further improve the performance of proposed work by

scanning the transaction table only for those item-sets

present in the base table, which are superset of previously

identified frequent item-sets

REFERENCES

[1]. R. Agrawal, T. Imielinski, and A. Swami,

“Mining Association Rules between Sets of

Items in Large Database,” Proceedings of the
1993 ACM SIGMOD International Conference

on Management of Data, Vol.22, Issue 2, 1993,

pp. 207-216.

[2]. R. Agrawal and R. Srikant, “Fast Algorithms for

Mining Association Rules,” Proceedings of the

20th International Conference on Very Large

Data Bases, 1994, pp. 487-499.

[3]. F. Bodon, “A Fast Apriori Implementation,” In

B. Goethals and M. J. Zaki, editors, Proceedings

of the IEEE ICDM Workshop on Frequent

Itemset Mining Implementations, Vol. 90 of

CEUR Workshop Proceedings, 2003
[4]. F. Bodon, “Surprising Results of Trie-based FIM

Algorithm,” In B. Goethals, M. J. Zaki, and R.

Bayardo, editors, Proceedings of the IEEE

ICDM Workshop on Frequent Itemset Mining

Implementations, Vol. 90 of CEUR Workshop

Proceedings, 2004

[5]. J. Holt and S. M. Chung, "Multipass Algorithms

for Mining Association Rules in Text

Databases," Knowledge and Information

Systems, Vol. 3, No.2, Springer- Verlag, 2001,

pp. 168-183.
[6]. J. Holt and S. M. Chung, "Mining Association

Rules Using Inverted Hashing and Pruning,"

Information Processing Letters, Vol. 83, No.4,

Elsevier Science, 2002, pp. 211-220.

[7]. J. S. Park, M. S. Chen, and P. S. Yu, "Using a

Hash-Based Method with Transaction Trimming

for Mining Association Rules," IEEE 1rans. on

Knowledge and Data Engineering, Vol. 9, No.5,

Sep/Oct 1997, pp.813-825.

