
 Rahul Sharma al. International Journal of Recent Research Aspects ISSN: 2349-7688, Special Issue: Engineering

Research Aspects Feb 2015, pp. 71-73

© 2014 IJRRA All Rights Reserved page - 71-

Review of SQL Injection Attack and

Method for Detection and Prevention in

ASP.NET Web Applications.

Rahul Sharma1, Sharad Chauhan2

1Student, M. Tech, E-Max College of Engineering and Technology, Ambala
2HOD, Dept. of CSE, E-Max group of Institutions, Ambala

Abstract-- This paper gives an overview to the SQL Injection attacks and methods to prevent them. we discuss all the

proposed models in asp.net to block SQL Injections in web applications. We also describes the technique to prevent SQL

injections attacks occurring due to dynamic sequel statements in database stored procedures are often used in e-

commerce applications. we know that SQL injection attack can be easily prevented by applying more secure scheme in

login phase that is authentication and authorization of the valid users. To address this problem, we present an overview

of the different types of attacks with descriptions and examples of how attacks of that type could be performed and their

detection & prevention schemes. This paper contains the strengths and weaknesses of various SQL injection attacks. At

last we also proposed the scheme to handle the SQLIA and to prevent them.

Keywords-- Cybercrime, SQL(Structured Query Language) injection, Attacks, ASP.NET.

I. INTRODUCTION

In the recent years, the World Wide Web (WWW) has a

staggering growth of many Web base applications which have

developed to meeting various purposes. Now-a-days, Security

is the most important attribute for all web sites. Providing

secure experience is one of the key principles in the process

of gaining customer confidence . Nowadays, almost all the

websites are asking to store user’s personal information in

servers to understand the customer and serve better. It is the

responsibility of an organization to confirm that customer’s

data is safe and accessed in a secured manner.

Security in web application is always a big headache for the
programmers but providing secure environments is one of the

key principles in the process of gaining customer confidence

. In this era of web applications, almost all websites are

dynamic, i.e., all the websites are database driven and large

data will be accepted from user.

SQL Injection Attacks (SQLIA‟s) are one of the most severe

threats to web security. They are frequently employed by

malicious users for a variety of reasons like theft of

confidential data, website defacement, sabotage etc. The

number of SQLIA's reported in past years has been showing

a steadily increasing trend and so is the scale of the attacks. It
is, therefore, importance to prevent such types of attacks, and

SQLIA prevention has become one of the most active topics

of research in the industry and academia. There has been

significant progress in the field and a number of models

have been proposed and developed to counter SQLIA‟s, but

none have been able to guarantee an absolute level of security

in web applications, mainly due to the diversity SQLIA's. One

common programming practice in today's times to avoid SQL

Injection is to use database stored procedures instead of direct

SQL statements to interact with underlying databases in a web

application, since these are known as parameterized queries
and hence are not prone to the basic types of SLQ Injection .

However, there are vulnerabilities too in this scheme, most

notably when dynamic SQL statements are used in the stored

procedures, to fetch the data in the database objects during

runtime. Our work is cantered on this particular type of

vulnerability in stored procedures and we develop a scheme

for detection of SQLIA in scenarios where dynamic SQL

statements are used.

This paper is organised as follows: Section I show the

introduction of web attack and how SQLIA is vulnerable

cause of attack, section II show briefing about SQLIA, section

III show types of SQLIA and in IV section show the various

methods used for preventing SQLIA and in last section
conclusion is present.

II. SQL INJECTION: THE ‘NEED-TO-KNOW’

WHAT is SQL INJECTION ATTACK?

SQL Injection is a type of web application base security

vulnerability in which an attacker is able to submit a database

Sequel command, which is executed by a web application,

exposing the back-end database tier. SQL Injection attacks

can occur when a web application utilizes user-supplied data

without proper validation or encoding as part of a command

or query. The specially crafted user data tricks the application

into executing unintended commands or changing data.
Sequel Injection allows an attacker to create, read,alter,

update or delete data stored in the back-end database. In its

most common form, Sequel Injection allows attackers to

access sensitive information such as social security numbers,

credit,debit card number or other financial data. According to

the Software Security Report Sequel Injection is one of the

most prevalent types of web application security

vulnerability..

 Rahul Sharma al. International Journal of Recent Research Aspects ISSN: 2349-7688, Special Issue: Engineering

Research Aspects Feb 2015, pp. 71-73

© 2014 IJRRA All Rights Reserved page - 72-

.

Figure 1: SQL Injection

Key Concepts of SQL Injection

 SQL injection is software vulnerability that occurs

when data entered by users is sent to the SQL

interpreter as a part of an SQL query

 Attackers provide specially craft input data to the

SQL interpreter and trick the interpreter to execute

unintended commands

 Attackers utilize this vulnerability by providing

specially craft input data to the SQL interpreter in

such a manner that the interpreter is not able to

distinguish between the intended commands and the
attacker's specially craft data. The interpreter is

tricked into executing unintended commands

 SQL injection exploits security vulnerabilities at the

database tire. By exploiting the SQLI flaw, attackers

can create, read, modify, or delete sensitive data .

III. TYPES of ATTACK

Currently, there are many types of vulnerabilities that vary in

terms of complexity, detection and recovery.

A SQL injection attack consists of insertion or "injection" of

a SQL query via the input data from the client to the
application. A successful SQL injection exploit can read

sensitive data from the database, modify database data

(Insert/Update/Delete), execute administration operations on

the database (such as shutdown the DBMS), recover the

content of a given file present on the DBMS file system and

in some cases issue commands to the operating system. SQL

injection attacks are a type of injection attack, in which SQL

commands are injected into data-plane input in order to effect

the execution of predefined SQL commands. There are some

classification of SQL injection types.

There are different methods of attacks that depending on the
goal of attacker are performed together or sequentially. For a

successful SQLIA the attacker should append a syntactically

correct command to the original SQL query. Now the

following classification of SQLIAs are

Tautology: This SQLI attack alters the database query by

inserting vulnerable SQL tokens into the conditional query

statements which always evaluates to true.

Example: SELECT * FROM <tablename> WHERE userId =

<id> AND password = <wrongPassword> OR 1=1;

Union Queries: This query uses UNION keyword to access

the information from other tables in the database. Such

queries can be exploited by the attacker to get valuable data

from the database.

Example: SELECT * FROM <tablename> WHERE userId

= <id> AND password = <rightPassword> UNION SELECT

creditCardNumber FROM CreditCardTable;

Piggy-backed Queries: In this attack the hacker appends ‗;‘

and a query to a database query to be executed on the

database which will result in huge loss of data [3]. It could

be one of the dangerous attacks that damage or destroy a

table.

Example: SELECT * FROM <tablename> WHERE userId =

<id> AND password = <rightPassword>; DROP TABLE

<tablename>;

Blind Injection: Here the web developers hide the error

messages from the user coming from the database so that the
user is sent with a generic error displaying page. At this

point the attacker sends a set of true/false questions to steal

data.

Example: SELECT name FROM <tablename> WHERE

id=<username> AND 1 = 0 – AND pass = SELECT name

FROM <tablename> WHERE id=<username> AND 1 = 1 –

AND pass =

Both the queries will return an error message in case the web

application is secure, however if the input is not validated then

chances of injection exist.

IV. PREVENTION OF SQLIA

Validate all textboxes in web page with Range Validator

or Regular expression Validator: Use ASP.NET validator

controls such as RangeValidator or

RegularExpressionValidator to constrain the input supplied

through server controls.

Avoid using concatenation select queries: The

concatenation of user input to form SQL commands result in

SQL Injection. So use Stored Procedures to create SQL

queries. The scanner tool detects if there is a concatenated

query and reports leak.
Stored Procedure: Stored procedure is a part of database that

programmer could set an extra abstraction layer on the

database. As stored procedure could be coded by programmer,

so, this part is as inject able as web application forms. Depend

on specific stored procedure on the database there are

different ways to attack. In the following example, attacker

exploits parameterized stored procedure.

CREATE PROCEDURE DBO .is Authenticated @user

Name varchar2, @pass varchar2, @pin int

AS EXEC ("SELECT accounts FROM users WHERE
login='" +@user Name+ If' and

pass='" +@password+ “ „ and pin=" +@pin);

GO For authorized/unauthorized user the stored procedure

returns true/false. As an SQLIA, intruder input

"SHUTDOWN; - -" for username or password. Then the

stored procedure generates the following query: SELECT

accounts FROM users WHERE login= 'doe' AND pass=' ';

 Rahul Sharma al. International Journal of Recent Research Aspects ISSN: 2349-7688, Special Issue: Engineering

Research Aspects Feb 2015, pp. 71-73

© 2014 IJRRA All Rights Reserved page - 73-

SHUTDOWN; -- AND pin = after that, this type of attack

works as piggy-back attack.

The first original query is executed and consequently the

second query which is illegitimate is executed and causes

database shut down. So, it is considerable that stored

procedures are as vulnerable as web application code.
Inference: By this type of attack, intruders change the

behaviour of a database or application. There are two well

known attack techniques that are based on inference: blind

injection and timing attacks. Blind Injection: Sometimes

developers hide the error details which help attackers to

compromise the database. In this situation attacker face to a

generic page provided by developer, instead of an error

message. So the SQLIA would be more difficult but not

impossible. An attacker can still steal data by asking a series

of True/False questions through SQL statements. Consider

two possible injections into the login field:
SELECT accounts FROM users WHERE login= 'doe' and 1

=0 -- AND pass = AND pin=O

If the application is secured, both queries would be

unsuccessful, because of input validation. But if there is no

input validation, the attacker can try the chance. First the

attacker submits the first query and receives an error message

because of "1 =0 ". So the attacker does not understand the

error is for input validation or for logical error in query. Then

the attacker submits the second query which always true. If

there is no login error message, then the attacker finds the

login field vulnerable to injection.

3-tier Architecture of web application:
1) User interface tier: This layer forms the front end of the

web application. It interacts with the other layers based on the

inputs provided by the user.

2) Business logic tier: The user request and its processing are

done here. It involves the server side programming logic.

Forms the intermediate layer between the user interface tier

and the database tier.

 3) Database tier: It involves the database server. It is useful

in storage and retrieval of data.

VI. CONCLUSION

In web applications in order to alleviate the vulnerabilities the

web developer should be conscious on two thing.

First one is the developer must be responsible to ensure

security of the application from the beginning of coding and

another one is developer must check their web applications
for leaks before making them public. But implementing

security is only part of the solution. Another important part is

vigilance. Even if our application has many safeguards, we

need to keep an eye on our web application to protect it from

newly arrived security attacks. So monitor the web

application‘s event logs and perform repeated attempts to log

into your application. Continually keep the application server

up to date with the latest security updates. Our developed tool

considers the web application as three-tiered: Presentation,

application and storage. Here web browser is the presentation,

ASP.NET is the application and the database is the storage.
The scanner tool study the web application source code for

leaks and report about the discovered leaks if exist, otherwise

report the code as secure.

REFERENCES

[1]. http://www.w3resource.com/sql/sql-injection/sql-

injection.php

[2]. W. Halfond, J. Viegas, and A. Orso. A Classification

of SQL-Injection Attacks and Countermeasures.

Proceedings of the IEEE

[3]. Sincy George, Member, IEEE, and Vivek Agarwal,

Senior Member, IEEE”Optimum Control of

Selective and Total Harmonic Distortion in Current
and Voltage Under Nonsinusoidal Conditions” IEEE

TRANSACTIONS ON POWER DELIVERY, VOL.

23, NO. 2, APRIL 2008.

[4]. http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumb

er=5615711&url=http%3A%2F%2Fieeexplore.ieee

.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D561

5711.

[5]. Security in ASP.NET Websites

http://msdn.microsoft.com/en

us/library/91f66yxt%28v=vs.80%29.aspx

[6]. Ruse, M., Sarkar, T., and Basu. S., Analysis &
Detection of SQL Injection Vulnerabilities

viaAutomatic Test Case Generation of Programs.

 Proc.10th Annual International Symposium

on Applications and the Internet, 2010, pp. 31-

37.

[7]. http://sqlmag.com/database-security/3-free- tools-

prevent-sql-injection-attacks.

[8]. [8].http://weblogs.asp.net/scottgu/Tip_2F00_Trick_

3A00_-Guard-Against-SQL-Injection-Attacks

