
 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET , Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 72

Implementation of Web Application Security Solution using JAAS
1Dr Surjeet Dalal , 2Dr Gundeep Tanwar

1SRM University Haryana

 2BRCMCET , Bahal , Haryana
1surjeeetdalalcse@gmail.com , 2mr.tanwar@gmail.com

Abstract :Web applications are one of the most prevalent

platforms for information and service delivery over Internet

today. As they are increasingly used for critical services, web

applications became popular and valuable target for security

attacks. Although a large number of techniques have been

developed to fortify web applications and mitigate the

attacks toward them, there is little effort devoted to drawing

interaction among these techniques and building a big

picture of web application security framework. As today’s

application’s infrastructures are getting increasingly complex

and interconnected, the difficulty of achieving application

security is exponentially increasing. We present our experience

of implementing OWASP protocol into large scale web

application and the advantages gained thereof. These main

security threats dealt in the current work are: Injection, Cross-

Site Scripting, and Security misconfiguration. A quantitative

analysis of the impact on various performance and security

parameters is presented. We conclude that these security

features are helpful in preventing the web-based attacks, and

reduce security risks and development costs.

Keywords: OWASP, Web security, JAAS.

I.INTRODUCTION

We all know that web security is important. Certainly the

cost of failures is high: a recent survey has found an average

cost of $7.2 million per data breach event (or $214 per

compromised customer record). It was also found that 88%

of the organizations surveyed had at least one major data

breach in 2010. The problem arises as most of the enterprises

have invested in network and PC security but many have

neglected to build adequate safeguards into their software

applications. But nowadays, application security is rapidly
being recognized as a top priority. Gartner has stated that:

“Over 70% of security vulnerabilities exist at the application

layer, not the network layer,” [1] and other researchers have

estimated this figure at 90%.

Recent research have demonstrated the pertinence and

authority of the Open Web Application Security Project

(OWASP) in defining standards for security over cloud and

other platforms.[7,8,9] Since 2003, the OWASP publishes a

list of the most critical web application security

risks[2,10,11].This list represents a consensus among many

of the world’s leading information security experts about the
greatest risks, based on both the frequency of the attacks and

the magnitude of their impact on businesses. The objective of

the OWASP project is not only to raise awareness about

specific risks, but also to educate business managers and

technical personnel on how to assess and protect against a

wide range of application vulnerabilities. OWASP Model

provides information about Web Application Security Risks

in which following three web application security risks has

been identified and tested in the presented work:

1. A1 - Injection Based Attacks: Injection flaws, such as

SQL, OS, and LDAP injection, occur when untrusted data is

sent to an interpreter as part of a command or query. The
attacker's hostile data can trick the interpreter into executing

unintended commands or accessing unauthorized data.

2. A2 - Cross-Site Scripting (XSS): XSS flaws occur

whenever an application takes untrusted data and sends it to a

web browser without proper validation and escaping. XSS

allows attackers to execute scripts in the victim's browser

which can hijack user sessions, deface web sites, or redirect

the user to malicious sites.

3. A6 - Security Mis configuration: Good security requires

having a secure configuration defined and deployed for the

application, frameworks, application server, web server,

database server, and platform. All these settings should be
defined, implemented, and maintained as many are not

shipped with secure defaults. This includes keeping all

software up to date, including all code libraries used by the

application.

The OWASP organization suggests that the OWASP list can

be used to “establish a strong foundation of training,

standards and tools that makes secure coding possible.”

Enterprises who have implemented a successful application

security program integrate the OWASP into each stage of

their software development lifecycle (SDLC) to design,

develop and test new software applications.
The paper is organized as follows: Section 2 discussed

various phases of implementation along with the challenges

faced.

II.DISCUSSION

A) Misconceptions against Security Standards

A frequent question in the technical community has been the

need of existence of such standards like OWASP, when

developers can implement security features themselves. But

such statements contradict various surveys that very few

developers have been educated on secure coding practices.

Even with experienced developers, emerging threats [3]
require refresher courses every year or two based on how

attach methodologies continue to change. So educational

programs built around the OWASP provide essential

education that most developers might not seek to acquire on

their own.

Another argument against security standards is to utilize

software testing tools and let them detect vulnerabilities in

applications. But software testing tools are almost useless

unless developers learn how to use them and know where to

point them. In fact, they can be worse than useless, because if

not used properly they can generate large numbers of “false

 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET , Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 73

positives” that cause resources to be wasted hunting down

non-existent bugs.

A third common misconception is that programs designed to

improve application security are focused only on software

coding. Many security and compliance requirements are
missed during the requirements and design phases of the life

cycle, and many vulnerabilities are created during the

deployment and maintenance phases.

B) Phases of Implementing Security Standards

 Requirements analysis and Design:

In the Requirements and Analysis phase, analysts consider

the requirements and goals of the application, as well as

possible problems and constraints. Part of this process

involves threat modeling, which identifies threats and

vulnerabilities relevant to the application.

The OWASP can be used as guides to potential attacks. A

thorough examination of which of those risks could affect the
software will suggest ways the application design can be

shaped to achieve security objectives, and where resources

could be applied to develop countermeasures.

 Development:

a) In the Development phase, specific coding standards

that have been proven to defend against the risks can be

adopted. As an example, developers could be required

to have their software encode user-supplied input; that

is, to tell the database “these characters come from a

user screen, so they are definitely data and should never

be executed as commands.”
b) To address some of the “Failure to Restrict URL

Access” issues, coding standards might require that

every web page be protected by role-based permissions.

For example, special logon screens for managers could

be added to prevent attackers (and non-management

employees) from accessing management screens.

c) Code reviews are another activity that typically occurs

during the Development phase. Most developers review

code only to make sure that it has the features and

functions described in the specification. But developers

trained to look also for vulnerabilities in the code

related to the OWASP will find many types of security
issues.

 Testing:

When the quality assurance group builds the test plan, it can

ensure that specific tests are run to simulate attacks related to

the risks. Static analysis tools which read through software

code can be programmed to look for clues in the code that the

application may be vulnerable to risks. Web scanning tools

can be programmed to simulate attacks based on

vulnerabilities. For example, they could be set up to attempt

injection attacks on all customer input screens.

C) Deployment
Computer systems and software that are not configured with

security in mind can open up systems to attacks. That is why

the OWASP can be very helpful in the Deployment phase of

the software life cycle. For example, many problems can be

prevented by ensuring that unnecessary utility software is

shut off on servers, and that auditing and logging services are

always turned on.

D) Maintenance:

Finally, in the maintenance phase of the life cycle, a focus on

the OWASP model will ensure that organizations conduct
ongoing reviews and code scanning; to find out if changes to

the application over time might have created any new

vulnerabilities.

In short, integrating the OWASP into every phase of the

software development life cycle forces development

organizations to adopt security best practices and learn how

to use software testing tools. These best practices and testing

tools help eliminate mitigate the risks, not just of the

OWASP project, but for many types of security risks.

III.SECURITY RISKS

It is also necessary to discuss about three security risks and
how to prevented application from these risks:

A) A1-Injection [4]:

Threat Agents:

Consider anyone who can send untrusted data to the system,

including external users, internal users, and administrators.

Attack Vectors:

Attacker sends simple text-based attacks that exploit the

syntax of the targeted interpreter. Almost any source of data

can be an injection vector, including internal sources.

Security Weakness:

Injection flaws occur when an application sends untrusted
data to an interpreter. Injection flaws are very prevalent,

particularly in legacy code. They are often found in SQL

queries. Injection flaws are easy to discover when examining

code, but frequently hard to discover via testing. Scanners

and fuzzers can help attackers find injection flaws.

Impacts on application:

Injection can result in data loss or corruption, lack of

accountability, or denial of access. Injection can sometimes

lead to complete host takeover. All data could be stolen,

modified, or deleted.

Vulnerable To 'Injection:

The best way to find out if an application is vulnerable to
injection is to verify that all use of interpreters clearly

separates untrusted data from the command or query. For

SQL calls, this means using bind variables in all prepared

statements and stored procedures, and avoiding dynamic

queries.

Checking the code is a fast and accurate way to see if the

application uses interpreters safely. Code analysis tools can

help a security analyst find the use of interpreters and trace

the data flow through the application. Penetration testers can

validate these issues by crafting exploits that confirm the

vulnerability.
Automated dynamic scanning which exercises the application

may provide insight into whether some exploitable injection

flaws exist. Scanners cannot always reach interpreters and

have difficulty detecting whether an attack was successful.

Poor error handling makes injection flaws easier to discover

Example Attack Scenarios:

 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET , Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 74

Scenario #1: The application uses untrusted data in the

construction of the following vulnerable SQL call:

String query = "select * from userreg where name='" +

request.getParameter ("name") + "'";
Scenario #2: Similarly, an application’s blind trust in

frameworks may result in queries that are still vulnerable,

(e.g., Hibernate Query Language (HQL)):

Query HQLQuery = session.createQuery (“FROM userreg

where name='“ + request.getParameter ("name") + "'");

In both cases, the attacker modifies the ‘id’ parameter value

in her browser to send: ' or '1'='1. For example:

http://example.com/app/accountView?id=' or '1'='1

This changes the meaning of both queries to return all the

records from the accounts table. More dangerous attacks

could modify data or even invoke stored procedures.

Preventing Injection Attack:
Preventing injection requires keeping untrusted data separate

from commands and queries.

1. The preferred option is to use a safe API, which avoids the

use of the interpreter entirely or provides a parameterized

interface. Be careful with APIs, such as stored procedures

that are parameterized, but can still introduce injection under

the hood.

2. If a parameterized API is not available, you should

carefully escape special characters using the specific escape

syntax for that interpreter. OWASP’s ESAPI provides many

of these escaping routines.
3. Positive or “white list” input validation is also

recommended, but is not a complete defense as many

applications require special characters in their input. If

special characters are required, only approaches 1 and 2

above will make their use safe.

To prevent web application from SQL Injection parameters is

used in SQL Query as:

PreparedStatement ps=con.prepareStatement (“select * from

userreg where name=? and pass=?");

ps.setString (1, name);

ps.setString (2, pass);

ResultSet rs=ps.executeQuery ();

B)A3-Cross-Site Scripting (XSS) [5]:

Threat Agents:

 Consider anyone who can send untrusted data to the system,

including external users, internal users, and administrators

Attack Vectors:

Attacker sends text-based attack scripts like javascripts that

exploit the interpreter in the browser. Almost any source of

data can be an attack vector, including internal sources such

as data from the database.

Security Weakness:

XSS is the most prevalent web application security flaw.
XSS flaws occur when an application includes user supplied

data in a page sent to the browser without properly validating

or escaping that content. There are two different types of

XSS flaws: 1) Stored and 2) Reflected, and each of these can

occur on the a) Server or b) on the Client.

Detection of most Server XSS flaws is fairly easy via testing

or code analysis. Client XSS is very difficult to identify.

Impacts on application:

Attackers can execute scripts in a victim’s browser to hijack

user sessions, deface web sites, insert hostile content, redirect

users, hijack the user’s browser using malware, etc.

Vulnerable To ‘Cross-Site Scripting’:
A system is vulnerable if it does not ensure that all user

supplied input is properly escaped, or it does not verify it to

be safe via input validation, before including that input in the

output page. Without proper output escaping or validation,

such input will be treated as active content in the browser. If

Ajax is being used to dynamically update the page, are you

using safe JavaScript APIs? For unsafe JavaScript APIs,

encoding or validation must also be used.

Automated tools can find some XSS problems Automated

tools can find some XSS problems automatically. However,

each application builds output pages differently and uses

different browser side interpreters such as JavaScript,
ActiveX, Flash, and Silver light, making automated detection

difficult. Therefore, complete coverage requires a

combination of manual code review and penetration testing,

in addition to automated approaches. Web 2.0 technologies,

such as Ajax, make XSS much more difficult to detect via

automated tools.

Example Attack Scenarios:

The application uses untrusted data in the construction of the

following HTML snippet without validation or escaping:

(String) page += "<input name='creditcard' type='TEXT'

value='" + request.getParameter ("CC") + "'>";
The attacker modifies the 'CC' parameter in their browser to:

'><script>document.location='http://www.attacker.com/cgi-

bin/cookie.cgi ?foo='+document.cookie</script>'.

This causes the victim’s session ID to be sent to the

attacker’s website, allowing the attacker to hijack the user’s

current session.

Note that attackers can also use XSS to defeat any automated

CSRF defense the application

Preventing 'Cross-Site Scripting' :

Preventing XSS requires separation of untrusted data from

active browser content.

1. The preferred option is to properly escape all untrusted
data based on the HTML context (body, attribute, JavaScript,

CSS, or URL) that the data will be placed into. See the

OWASP XSS Prevention Cheat Sheet for details on the

required data escaping techniques.

2. Positive or “white list” input validation is also

recommended as it helps protect against XSS, but is not a

complete defense as many applications require special

characters in their input. Such validation should, as much as

possible, validate the length, characters, format, and business

rules on that data before accepting the input.

3. For rich content, consider auto-sanitization libraries like
OWASP’s AntiSamy or the Java HTML Sanitizer Project.

4. Consider Content Security Policy (CSP) to defend against

XSS across your entire site.

To prevent web application from Cross-Site Scripting

AntiSamy filter is used in application. AntiSamy is a library

for HTML and CSS encoding. The OWASP AntiSamy

 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET , Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 75

project is a few things. Technically, it is an API for ensuring

user-supplied HTML/CSS is in compliance within an

application's rules .t's an API that helps you make sure that

clients don't supply malicious cargo code in the HTML they
supply for their profile, comments, etc., that get persisted on

the server. The term "malicious code" in regards to web

applications usually mean "JavaScript." Cascading

Stylesheets are only considered malicious when they invoke

the JavaScript engine.

C)A6 - Security Misconfiguration [6]:

Threat Agents:

Consider anonymous external attackers as well as users with

their own accounts that may attempt to compromise the

system. Also consider insiders wanting to disguise their

actions.

Attack Vectors:
Attacker accesses default accounts, unused pages, unpatched

flaws, unprotected files and directories, etc. to gain

unauthorized access to or knowledge of the system.

Security Weakness:

Security misconfiguration can happen at any level of an

application stack, including the platform, web server,

application server, database, framework, and custom code.

Developers and system administrators need to work together

to ensure that the entire stack is configured properly.

Automated scanners are useful for detecting missing patches,

misconfigurations, use of default accounts, unnecessary
services, etc.

Impacts on application:

The system could be completely compromised without you

knowing it. All of your data could be stolen or modified

slowly over time.

Recovery costs could be expensive

Vulnerable To 'Security Misconfiguration':

Following questions needs to be answered for analyzing

vulnerability to security misconfiguration:

1. Is any of the software is out of date? This includes the OS,

Web/App Server, DBMS, applications, and all code libraries

(see new A9).
2. Are any unnecessary features enabled or installed (e.g.,

ports, services, pages, accounts, privileges)?

3. Are default accounts and their passwords still enabled and

unchanged?

4. Does error handling reveal stack traces or other overly

informative error messages to users?

5. Are the security settings in your development frameworks

(e.g., Struts, Spring, ASP.NET) and libraries not set to secure

values?

Without a concerted, repeatable application security

configuration process, systems are at a higher risk.

Example Attack Scenarios:

Scenario #1: The app server admin console is automatically

installed and not removed. Default accounts aren’t changed.

Attacker discovers the standard admin pages are on your

server, logs in with default passwords, and takes over.

Scenario #2: Directory listing is not disabled on your server.

Attacker discovers she can simply list directories to find any

file. Attacker finds and downloads all your compiled Java

classes, which she decompiles and reverse engineers to get

all your custom code. She then finds a serious access control

flaw in your application.

Scenario #3: App server configuration allows stack traces to
be returned to users, potentially exposing underlying flaws.

Attackers love the extra information error messages provide.

To Prevent 'Security Misconfiguration' :

The primary recommendations are to establish all of the

following:

1. A repeatable hardening process that makes it fast and easy

to deploy another environment that is properly locked down.

Development, QA, and production environments should all

be configured identically (with different passwords used in

each environment). This process should be automated to

minimize the effort required to setup a new secure

environment.
2. A process for keeping abreast of and deploying all new

software updates and patches in a timely manner to each

deployed environment. This needs to include all code

libraries as well (see new A9).

3. A strong application architecture that provides effective,

secure separation between components.

4. Consider running scans and doing audits periodically to

help detect future misconfigurations or missing patches.

IV.CONCLUSION

This paper presents a comprehensive survey of recent
research results in the area of web application security. We

described about security threats in web applications, and

implementation of some of OWASP security properties like

SQL Injection, Cross-Site Scripting, and Security

misconfiguration to make secure Web application. The

outcome of the above research has been implemented in

http://serbonline.in web application. In future, other security

features of OWASP [2] will be implemented.

REFERENCES

[1] https://www.owasp.org/images/c/c4/OWASP- Italy Day E

Gov09_04_Morana.pdf

[2] https://www.owasp.org/index.php/Top_10_2013-Top_10

[3] http://www.darkreading.com/vulnerabilities---threats/10-web-threats-

that-could-harm-your-business/d/d-id/1139318

[4] https://www.acunetix.com/websitesecurity/sql-injection/

[5] https://www.acunetix.com/websitesecurity/cross-site-scriptin/

[6] https://www.owasp.org/index.php/Insecure_Configuration_

Management

[7] Boyd, Stephen W., and Angelos D. Keromytis. "SQLrand: Preventing

SQL injection attacks." Applied Cryptography and Network Security.

Springer Berlin Heidelberg, 2004.

[8] Morana, Marco. "2013 AppSec Guide and CISO Survey: Making

OWASP Visible to CISOs." AppSec USA 2013. Owasp, 2013.

[9] Thompson, Bill. "Leveraging OWASP in Open Source Projects-CAS

AppSec Working Group." AppSec USA 2013. Owasp, 2013.

