
 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET, Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 194

Replication in Distributed System Network
1Santosh Kumar Srivastava , 2Preeti Poonia , 3Seema

1Sr. System Administrator, 2,3M.Tech Scholar
1,2,3BRCM College of Engineering & Technology,Bahal, Bhiwani

Abstract – In Distributed System several nodes are connected

with each other and they co-operate their execution of

instructions to get a single goal. During this execution they may

be in a need of common set of data. As instructions are

executing at different machines, to ensure the availability of

data, replication is required. Replication increases availability

and finally concurrency increases. Though replication supports

concurrency, to maintain the consistency of data extra cost has

to be paid. Operations being performed on data may be in read-

only mode or read and write mode. The conflict mode

operations are handled carefully so that consistency of data may

be preserved. Replication may be done on different physical

machines or on a single machine. If replication is taking place

replica managers are required to maintain the consistency of

data. Replica Managers are connected with each other. Clients

interact with the replica managers to get a copy of desired data.

This paper is shedding light on the various aspects of replication

strategies in Distributed System.

Keywords – Distributed System, Replication, Consistency

Availability, Replica Manager.

I. INTRODUCTION

In Distributed System several machines are connected with

each other and they coordinate their execution to achieve a

dedicated task. Machines in this computing may suffer from

heterogeneities in terms of both hardware and software.
Transaction in distributed system may be flat or nested. Flat

transaction is one that starts and terminates on a single

machine. Nested transaction is one that initiates on a machine

and creates sub transactions. Distributed transaction is one

that takes place on different machines. A distributed

transaction may need a common set of data on each machine.

This requirement can be fulfilled into two ways: (1)

Providing a copy of common data on each machine or (2)

there is a machine containing several copies of the common

data. Let every transaction is locking the data in read only

mode then concurrency being provided by the replication

does not require any additional cost. If transactions are
locking the data in conflict mode then consistency and

concurrency requires additional cost

Fig.1. Compatibility Matrix

 In conventional database, compatibility matrix is

given as above.

read(Q): A transaction wants to read the value of data Q.

write(Q): A transaction wants to write the value of data Q.

 If two transactions issue read(Q) simultaneously,

lock to Q will be granted else not. In conflict mode operation,

a schedule is required that defines order of transactions on

data Q.

 Replicas of a data cannot be in different states at a

time. To maintain consistency communication among the
replicas must take place in spite of whether they are residing:

on different machines or on same machine.

I. REPLICATION SCENARIO IN DISTRIBUTED

SYSTEM

Various combinations of events and access scenarios of data

are possible in a distributed replicated environment. For

example, an application may want to download chunks of

data from different replicated servers for speedy access to

data; replicated data may be required to consolidate at a

central server on periodic basis; data distribution on network

of servers, where some of the servers may be mobile or
frequently connected data stored at multiple sites may need to

access and update the data. Based on these requirements,

three types of replication scenarios can be identified:

 Read-only queries

 Update transactions

 Managing mobile clients.

For read-only queries, the data can be accessed by a query

without worrying about the correctness of the data. As

typically, the data may be generated at some site and can be

read by other sites. The data can be conveniently stored at

different replicated servers. Contrary to read-only queries,
update transactions need special consideration during design

time. The replica management protocol may be simple if

only a single site is to update the data. But, as the data can be

modified by multiple sites, the consistency of the data may be

compromised. To maintain the consistency of data, the order

in which the transactions are executed must be maintained.

One of the widely excepted correctness criterions in

replicated environment is 1-copy serializability (1SR) [6, 7].

Conflicts can also be resolved with other requirements such

as priority-based (a server with higher priority’s update is

given preference over lower priority), timestamp-based (the

sequence of conflicting operations must be maintained
throughout scheduling), and data partitioning (the data is

partitioned and specific sites are given update rights to the

partition). Mobile computing has changed the face of

computing in recent times, as well as introduced new and

challenging problems in data management. In today’s

scenario, many employees work away from the office,

interacting with clients and collecting data. Sometimes

mobile devices do not have enough space to store the data,

while at other times they need to access real-time data from

read(Q

)
write(

Q)

write

(Q)

read

(Q)
OK NO

NO NO

 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET, Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 195

the office. In these cases, data is downloaded on demand

from the local server.

II. ADVANTAGE OF REPLICATION

 Service enhancement is the motivational factor

behind replication. Replication encourages the followings:

 Performance Enhancement

 Increased Availabilty

 Fault Tolerant

Let us consider that we are maintaining n replicas of a

data object and p defines its probability of unreachability.

Then total availability is stated as (1-pn). Further replication

supports the following cases:

 Server Failure

 Network Partitioning

 Disconnected Operation

Highly available data is not necessarily strictly correct

data. It may be out of date. Two transactions may perform
operations in conflicting modes and can leave the data in

inconsistent state. A fault tolerance mechanism should be

there to provide an up to date copy of the data.

If replication is made on f servers and (f-1) servers crash

then we will have one server to provide us the desired data.

Services based on replication should offer location

transparency. Location transparency says that client should

not normally have to be aware that multiple copies of data

exist.

Next section of this paper is describing the challenges

associated with data replication.
III. CHALLENGES IN DATA REPLICATION

A. Data Consistency

 Maintaining data integrity and consistency in a

replicated environment is of prime importance. High

precision applications may require strict consistency.

B. Downtime During New Replica Creation

If strict data consistency is to be maintained,

performance is severely affected if a new replica is to be

created as sites will not be able to fulfill requests due to

consistency requirements.

C. Maintenance Overhead

If the files are replicated at more then one sites, it
occupies storage space and it has to be administered. Thus,

there are overheads in storing multiple files.

D. Lower Write Performance

Performance of write operations can be dramatically

lower in applications requiring high updates in replicated

environment, because the transaction may need to update

multiple copies.

IV. REPLICATION TECHNIQUE IN DISTRIBUTED SYSTEM

There are number of techniques for file replication that are

used to maintain data consistency. Replication services

maintain all the copies or replicas having the same versions
of updates. This is known as maintaining consistency or

synchronization [3]. Replication techniques to provide

consistency can be divided into two main classes: [10]

• Optimistic- These schemes assume faults are rare and

implement recovery schemes to deal with inconsistency.

• Pessimistic- These schemes assume faults are more

common, and attempt to ensure consistency of every

access.

Schemes that allow access when all copies are not

available use voting protocols to decide if enough copies are

available to proceed.

A. Pessimistic Replication

This is a more conservative type scheme using prime site

techniques, locking or voting for consistent data update. As
this approach assumes that failure is more common it guards

against all concurrent updates. An update cannot be written if

a lock cannot be obtained or if majority of other sites cannot

be queried. In doing so, you will sacrifice data availability.

The pessimistic model is a bad choice where frequent

disconnections network and network partitions are common

occurrence [3].

B. Optimistic Replication

This approach assumes that concurrent updates or

conflicts are rare [3]. This scheme allows concurrent update,

updates can be done at any replica or copy. This increases the

data availability. However, when conflicts do occur, special
action must be taken to resolve the conflict and merge the

concurrent updates into a single data object. The merging is

referred to as conflict resolution. When conflicts do occur,

many of them can be resolved transparently and

automatically without user involvement [3]. This approach is

used for mobile computing.

V. REPLICATION RECONCILIATION

Updates and modifications must be propagated to all

replicas. This can be done immediately when the update

occurs or it can be done at a scheduled interval later.

Immediate propagation to all the replicas is fast but it is
expensive to do so if it is not important. Alternatively updates

can be done later, more like a batch processing. This is a

periodic reconciliation, which allows propagation to occur

when it is cheap or convenient. In systems which have

disconnected operations, periodic reconciliation must be

supported, as the immediate reconciliation will fail when the

systems is disconnected [1, 2, 4, 5].

VI. REPLICATION MODELS

There are three basic replication models the master-

slave, client-server and peer-to-peer models.

A. Master-slave model

In this model one of the copy is the master replica and all
the other copies are slaves. The slaves should always be

identical to the master. In this model the functionality of the

slaves are very limited, thus the configuration is very simple.

The slaves essentially are read-only. Most of the master-

slaves services ignore all the updates or modifications

performed at the slave, and “undo” the update during

synchronization, making the slave identical to the master [3].

The modifications or the updates can be reliably performed at

the master and the slaves must synchronize directly with the

master.

B. Client-server model
The client-server model like the master-slave designates one

server, which serves multiple clients. The functionality of the

clients in this model is more complex than that of the slave in

the master-slave model. It allows multiple inter-

communicating servers, all types of data modifications and

updates can be generated at the client. One of the replication

systems in which this model is successfully implemented is

 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET, Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 196

Coda. Coda is a distributed file system with its origin in

AFS2. It has many features that are very desirable for

network file systems [8]. Optimistic replication can use a

client-server model. In Client- server replication all the

updates must be propagated first to the server, which then

updates all the other clients. In the client-server model, one
replica of the data is designated as the special server replica.

All updates created at other replicas must be registered with

the server before they can be propagated further. This

approach simplifies replication system and limits cost, but

partially imposes a bottleneck at the server [11, 12]. Since all

updates must go through the server, the server acts as a

physical synchronization point [11]. In this model the

conflicts which occur are always be detected only at the

server and only the server needs to handle them. However, if

the single server machine fails or is unavailable, no updates

can be propagated to other replicas. This leads to

inconsistency as individual machines can accept their local
updates, but they cannot learn of the updates applied at other

machines. In a mobile environment where connectivity is

limited and changing, the server may be difficult or

impossible to contact, while other client replicas are simple

and cheap to contact. The peer model of optimistic

replication can work better in these conditions [11].

C. Peer-to-peer model

The Peer-to-peer model is very different from both the

master-slave and the client-server models. Here all the

replicas or the copies are of equal importance or they are all

peers. In this model any replica can synchronize with any
other replica, and any file system modification or update can

be applied at any replica. Optimistic replication can use a

peer-to-peer model. Peer-to-peer systems allow any replica to

propagate updates to any other replicas [8, 9, 10]. The peer-

to-peer model has been implemented in Locus, Rumor and in

other distributed environments such as xFS in the NOW

project. Peer-to-peer systems can propagate updates faster by

making use of any available connectivity. They provide a

very rich and robust communication framework. But they are

more complex in implementation and in the states they can

achieve [11]. One more problem with this model is

scalability. Peer models are implemented by storing all
necessary replication knowledge at every site thus each

replica has full knowledge about everyone else. As

synchronization and communication is allowed between any

replicas, these results in exceedingly large replicated data

structures and clearly does not scale well. Additionally,

distributed algorithms that determine global state must, by

definition, communicate with or hear about (via gossiping)

each replica at least once and often twice. Since all replicas

are peers, any single machine could potentially affect the

outcome of such distributed algorithms; therefore each must

participate before the algorithm can complete, again leading
to potential scaling problems [3]. Simulation studies in the

file system arena have demonstrated that the peer model

increases the speed of update propagation among a set of

replicas, decreasing the frequency of using an outdated

version of the data [5, 6].

VII. Architectural Model For Replica Management

The system model assumes that no network partitioning

occurs in system. Whenever a client needs a replica, clients

sends request to Front End (FE). On behalf of client, the FE

forwards this request to Replica Manager (RM). Replica

Managers (RMs) communicates each other to ensure
availability of an up to date copy of replica.

Fig.2. Architectural Model for Replica Management

VIII. NUMBERS OF REPLICA MANAGER

In a system, number of RMs may be constant or

dynamic. Multiple clients may be connected with a single FE.

If there exists multiple requests for replica at both the FE and

the RM may be overloaded. This additional load on RMs

may decrease the efficiency of entire system if constant RMs

exists in the system. The RMs can be dynamically created

there. In dynamic environment we have a better possibility of

QoS. Further in a system, mapping of client with FE may be

one to one or one to many (one client to many FEs).
IX. CACHING AT FRONT END

Front end may cache a replica. This caching scheme is

beneficial when a client requests for replica and at FE there

exist up to date copy of replica then FE sends back this copy

to the replica instead of forwarding this request to RM.

Replica may be temporal or non-temporal. Cached replica

has the life time and if it is expired then FE may delete this

from its cache and requests to RM to provide an up to date

copy of replica.

X. ROLE OF REPLICA MANAGER

A. Coordination
Replica Manager communicates each other to process a

request. This occurs in two different cases: when requested

RM is unable to process the request of FE due to heavy load,

it transfers the request to another RM. Second case is when

RMs has to reach on a final value of the replica. Both FE and

RM maintain ordering of requests at this level:

 Ordering at Front End

1). FIFO ordering: If client sends request r1 at t1 time and

r2 at t2 time then a correct FE will process the r1 first if
t1 <t2.

2). Casual ordering

 If a client is sending a request r1 at t1 time and r2 at t2

time then a correct FE will process r1 before r2 if r1-

>r2. The ‘->’ indicates happening before relationship.

3). Total ordering

If a client is connected with multiple FEs and an FE is

processing r1 before r2 then all other FEs with whom

client is connected performs same ordering.

 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET, Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 197

 Ordering at Replica Manager:

1). FIFO ordering

The RM executes the request in same manner as FE

sends. If FE forwards a request r1 at t1 time and r2 at t2

time to an RM and t1<t2 then RM process r1 before r2.

2). Casual ordering
If an FE serves two request r1 and r2 as: r1->r2 i.e. r1 is

happening before r2 then correct RM will process r1

before r2.

3). Total ordering

If an FE is connected with more than one RM and an

RM is executing r1 before r2 then all the other RMs

will be executing r1 before r2.

B. Execution

Updation submitted by client at RM is executed tentatively so

that they can undo its effect later.

C. Agreement

There exists an agreement in between RMs that whether

transaction committed by client will be aborted or committed.

D. Response

If an FE is connected with multiple RMs then for a request,

FE receives more than one response. Now it is up to the FE

which response will be used. One possible parameter will be

time. Similarly a client may be connected with multiple FEs.

In this case a client will receive more than one response for a
request. When multiple responses are received by a client,

client decides which one should be used or not. This selection

may be dependent on time. Model represented in fig (1) is a

generalization. Some variations on this model are possible.

These variations are known as passive (primary backup)

replication model and active replication model. Next two

sections are shedding light on these two variations.

XI. PASSIVE REPLICATION MODEL

In the passive or primary backup model of replication, there

is a single primary replica manager and one or more

secondary replica managers- called backups or slaves. In its

pure form, the FE communicates only with the replica
manager (primary) to obtain services. The primary replica

manager executes the operation and sends copies to the

backups (updated copies). Following are the steps invloved in

it.

A. Request

The FE issues the request containing the unique identifier, to

the primary replica manager.

B. Coordination

The primary takes each request automatically in the order in

which they are received. It checks the unique identifier; in

case it has already executed the request and if so it simply re-
sends the response.

C. Agreement

If the request is an update then the primary sends the updated

state, the response and the unique identifier to all the

backups. The backup sends an acknowledgment to the

primary.

D. Response

The primary responds to the front end and the FE sends the

response back to clients.

Fig.3. Passive Replication Model

In case of any failure in primary replication one of the
secondary becomes the primary. Passive backup model is

being presented in figure 4[10].

XII. ACTIVE REPLICATION

Front ends multicast their request to group of replica

managers. The RMs process the request (independent but

identically) and reply to the FE.

Fig.4. Passive Replication Model

If any replica manager caches then it has no impact on

overall performance of the services, since the remaining

replica managers continue to respond in normal way. Under

active replication, the sequences of events are as follows:

A. Request

The FE attaches the unique identifier to the request and

multicast it to the group of replica managers using totally

ordered, reliable multicast primitive. The FE is assumed to

fail by crashing at worst. It does not issue the next request

until it has received the response.

B. Coordination

The group communication system delivers the request to the

correct replica manager in the total order.

C. Execution

Every replica manager executes the request. Since they are
state machine and since request are delivered in the same

total order, correct replica managers process all the requests

identically. The response contains the clients unique request

identifier.

D. Agreement

No agreement phase is needed, because of multicast delivery

semantics.

E. Response Each replica manager sends its response to the

FE. The number of replies that the front end collects

depend upon the failure assumption on the multicast

algorithm[10].

C FE

RM

RM

RM

 Proceedings of
 National Conference on Innovative Trends in Computer Science Engineering (ITCSE-2015)

 held at BRCMCET, Bahal on 4th April 2015

IJRRA ISSN: 2349-7688 198

XIII. CONCLUSION

Replication increases availability and finally concurrency

increases. To ensure consistency among existing replicas is

cost consuming. This paper discusses various aspect of

replication in Distributed System. We have many examples
where replication is playing vital role. A tradeoff exists

among the degree of concurrency and the cost consumed in

maintaining the consistency of replicas. If RMs fail on

reaching an agreement, the updation submitted by the clients

are ignored. Maintaining replicas of non-temporal data is

easier than maintaining replicas of temporal data. Further

read-only operations are more supportive to replication than

write operation.

REFERENCES
[1]. Baentsch M., Molter G. and Sturm P., “ Introducing Application-level

Replication and Naming into today's Web,” International Journal of

Computer Networks and ISDN Systems, 28(7), 921-930,1996.

[2]. Bhagwan R., Moore D., Savage S., and Voelker G. M., “Replication

Strategies for Highly Available Peer-to-Peer Storage,” Proceedings of

International Workshop on Future Directions in Distributed

Computing, Italy, June 2002.

[3]. Cohen E., Shenker S., “Replication Strategies in Unstructured Peer-to-

Peer Networks,” Proceeding of Special Interest Group on Data

Communications (SIGCOMM), (pp: 177-190), Pittsburg, USA, August

2002.

[4]. D. Kempe, J. Kleinberg, and A. Demers. , “Spatial gossip and resource

location protocols”. Proceeding of 33rd ACM Symp. on Theory of

Computing, 2001.

[5]. M.-J. Lin and K. Marzullo, “ Directional gossip: Gossip in a wide area

network,” In Proceeding of 3rd European Dependable Computing

Conference on Dependable Computing, 1999.

[6]. K. Shen, “ Structure management for scalable overlay service

construction,” In Proceeding 1st USENIX/ACM Symp. on Networked

Systems Design and Implementation, 2004.

[7]. R. van Renesse, K. Birman, and W. Vogels. Astrolabe, “ A robust and

scalable technology for distributed system monitoring, management,

and data mining,” ACM Transactions on Computer Systems, 21(2),

May 2003.

[8]. Kistler J. J. and Satyanarayanan M., “ Disconnected Operation in the

Coda File System,” ACM Transactions on Computer Systems, 10(1),

3-25,1992.

[9]. Khan S. U. and Ahmad I. , “ Internet Content Replication: A Solution

from Game Theory (Technical Report CSE-2004-5)”, Department of

Computer Science and Engineering, University of Texas at Arlington,

2004.

[10]. Couloris, Dollimore and Kindberg, Distributed Systems Concepts and

Design, 4e,2005, Pearson Education.

[11]. Foster I.and Kesselman C.,The Grid: Blueprint for a New Computing

Infrastructure,2e,2004, Morgan Kaufmann Publishers, USA.Helal A.

A., Hedaya A. A. and Bhargava B. B. (1996). Replication Techniques

in Distributed Systems, Boston, Kluwer Academic Publishers.

