
Priyanka Sharma al. International Journal of Recent Research Aspects ISSN: 2349-7688,
Vol. 1, Issue 1, June 2014, pp. 30-34

© 2014 IJRRA All Rights Reserved page - 30-

Shortest Path Algorithms Technique for

Nearly Acyclic Graphs

Priyanka Sharma1, Surjeet Dalal2
1Student, M. Tech, ESEAR, Ambala

 2Assistant Professor, Dept. of CSE, E-Max group of Institutions, Ambala

Abstract—Dijkstra’s algorithm solves the single-source shortest path problem on any di- rected graph in O(m+nlogn)

worst-case time when a Fibonacci heap is used as the frontier set data structure. Here n is the number of vertices and

m is the number of edges in the graph. If the graph is nearly acyclic, then other algo- rithms can achieve a time

complexity lower than that of Dijkstra’s algorithm. Abuaiadh and Kingston gave a single source shortest path

algorithm for nearly acyclic graphs with O(m + nlogt) worst-case time complexity, where the new parameter t is the

number of delete-min operations performed in priority queue manipulation. For nearly acyclic graphs, the value of t is

expected to be small, allowing the algorithm to outperform Dijkstra’s algorithm. Takaoka, using a different definition

for acyclicity, gave an algorithm with O(m+nlogk) worst- case time complexity. In this algorithm, the new parameter k

is the maximum cardinality of the strongly connected components in the graph. This paper with the refrence of Shane

Saunders thesis presents several new shortest path algorithms that define trigger vertices, from which efficient

computation of shortest paths through underlying acyclic structures in the graph is possible. If trigger vertices are

defined as a set of precomputed feedback vertices, then the all-pairs shortest path prob- lem can be solved in O(mn +

nr2) worst-case time. This allows all-pairs to be solved in O(mn) worst-case time when a feedback vertex set smaller

than the square root of the number of edges is known.

Keywords—Acyclic, complexity, GSS, planarity, strongly connected components, topological ordering , Trigger vertex.

I. INTRODUCTION

Computing shortest paths in a graph G = (V,E) is used in

many real-world applications like route planning in road

networks, timetable information for railways, or

scheduling for airplanes, route planning systems for cars,

bikes, and hikers , spatial databases [Shekhar et al., 1997],
and web searching [Barrett et al., 2000]. In general,

Dijkstra’s algorithm finds an exact shortest path of length

d(s, t) between a given source s and target t. Unfortunately,

the algorithm is far too slow to be used on huge datasets.

Thus, several speed-up techniques have been developed

yielding faster query times for typical instances, e.g., road

or railway networks. In, basic speed-up techniques have

been combined systematically. One key observation of

their work was that it is most promising to combine

hierarchical and goal-directed techniques. However, since

the publication of , many powerful hierarchical speed-up
techniques have been developed, goal-directed techniques

have been improved, and huge data sets have been made

available to the community. In this work, we revisit the

systematic combination of speed-up techniques.

For our study, we exemplarily consider the following four

speed-up techniques:

Goal-Directed Search. The given edge weights are

modified to favor edges leading towards the target node

[Hart et al., 1968, Shekhar et al., 1993]. With graphs from

timetable information, a speed-up in running time of a

factor of roughly 1.5 is reported in [Schulz et al., 2000].

Bidirectional Search. Start a second search backwards,
from the target to the source (see[Ahuja et al., 1993],

Section 4.5). Both searches stop when their search

horizons meet. Experiments in [Pohl, 1969] showed that

search space can be reduced by a factor of 2, and in

[Kaindl and Kainz, 1997] it was shown that combinations

with goal-directed search can be beneficial.

Multi-Level Approach. This approach takes advantage of

hierarchical coarsenings of the given graph, where

additional edges have to be computed. These can be
regarded as distributed to multiple levels. Depending on

the given query, only a small fraction of these edges have

to be considered to find a shortest path. Using this

technique, speed-up factors of more than 3.5 were

observed for road map and public-transport graphs

[Holzer, 2003]. Timetable information queries could be

improved by a factor of 11 (see [Schulz et al., 2002]), and

also in [Jung and Pramanik, 2002] good improvement for

road maps is reported.

Shortest-Path Containers. These containers provide a

necessary condition for each edge, whether or not it has to
be respected during the search. More precisely, the

bounding box of all nodes that can be reached on a

shortest path using this edge is stored. Speedup factors in

the range between 10 and 20 can be achieved [Wagner and

Willhalm, 2003].

The combination of the four techniques is very natural,

since all of the techniques modify the search space of

Dijkstra’s algorithm independently of each other: Goal-

directed search directs the search space towards the target

of the search by modifying the edge lengths; bidirectional

search maintains two search spaces; the multi-level graph

approach runs common Dijkstra’s algorithm on a
subgraph of the augmented input graph; and with shortest-

path containers, search space can be pruned by ignoring

such edges that for sure do not contribute to a shortest

path.

© 2014 IJRRA All Rights Reserved page - 31-

Defination- Trigger vertices:- the definition of trigger

vertices depends on the specific algorithm. The simplest

such algorithm defines trigger vertices as the roots of trees

that result when the graph is decomposed into tree

structures.

Motivation:- The motivation of this thesis is to design
specialised shortest path algo- rithms for use on nearly

acyclic graphs. A nearly acyclic graph is a graph that

contains relatively few cycles for its size. One kind of

nearly acyclic graph can be visualised by extending the

strictly downhill example, described earlier, to allow some

uphill paths. In this nearly downhill analogy, most, but not

all, paths in the graph are downhill. Since such graphs are

not strictly downhill, an efficient strictly downhill shortest

path algorithm cannot be used. Therefore a standard

shortest path algorithm would normally be used to solve

shortest paths in such graphs. However, given that most of

the graph is downhill, there should be some more efficient

way to solve shortest paths. This requires a new

specialised algorithm for nearly downhill graphs to be

invented; that is, an algorithm for nearly acyclic graphs.

By designing new shortest path algorithms for nearly

acyclic graphs these kinds of problems may be solved

almost as efficiently as problems on acyclic graphs.

II. GRAPH TERMINOLOGY

This section reviews some basic graph theory terms that

are important to understanding some of the shortest path
algorithms described later. One of the most basic graph

theoretic definitions related to shortest paths is that of a

path. Firstly, the notation u → v denotes the existence of a

directed edge from vertex u to vertex v. Under this

notation, v0 → v1 → ... →vl represents a directed path of

length l, where each vi for 0 ≤i≤ l is a vertex on the path.

Here v0 is the first vertex on the path, and vl is the last

vertex on the path. A path can alternatively be denoted as

an ordering of vertices (v0,v1,v2,...,vl) such that there

exists an edge vi → vi+1 for all 0 ≤i≤ l−1. A path whose

first and last vertices are the same is called a cycle; that is,

a path of the form (v,w1,w2,...,wl,v), where l ≥ 0. One of

the simplest graph properties is that of acyclicity. The

concept of acyclicity is used throughout this thesis. A

graph is acyclic if it does not contain any cycles. A

topological ordering (v1,v2,...vk) of k vertices satisfies the

property i< j wherever there exists an edge vi →vj for any

1 ≤i≤ k and 1 ≤ j ≤ k. As will be seen, a topological

ordering of vertices can be used to compute shortest paths

more easily. It is possible to compute a topological

ordering of the vertices in a directed acyclic graph in
linear time. One method is to take the reverse of the

postorder of vertices produced by a depth first-search of a

nearly acyclic graph. Another kind of graph property is

that of planarity. A graph is planar if it can be drawn in a

plane without any edges crossing. It has been proved that

any planar undirected graph satisfies the inequality m ≤

3n − 6 for n ≥ 3. Consequently, planar directed graphs

satisfy m < 6n − 12. Therefore, the number of edges m in

a planar graph is O(n). The property of planarity is

analogous to that of acyclicity in that shortest paths

become easier to compute. A further structural property of

graphs is connectivity. A graph is strongly connected if

there exists a path from u to v for all pairs of vertices u

and v in the graph. A graph that is not strongly connected

can be partitioned into a set of maximal strongly

connected subgraphs, called strongly connected
components (or SC components for short). As will be seen,

the property of strong connectivity has also been used to

speed up shortest path computations.

III. ALGORITHM

Computing Shortest Paths by Tree Decomposition:-

This section presents a GSS algorithm which decomposes

a graph into trees in order to improve the time complexity

required when solving the shortest path problem on nearly

acyclic directed graphs. This serves as an introduction to

the new algorithm which uses a more general acyclic

decomposition. For certain kinds of graphs, the algorithm

in this section improves on Abuaiadh and Kingston’s
algorithm(when used for solving GSS problems), and

introduces improvement to Takaoka’s algorithm.

 Define IN(v) as the set of vertices u such that there is

an edge (u,v) in the graph. Then tree structures in a

graph can be identified as follows:

 A root vertex v in a tree structure has |IN(v)|> 1 or

|IN(v)|= 0.

 A non-root vertex v in a tree structure has |IN(v)|= 1.

Example of a graph viewed as linked tree strucrure

Such a tree structure is denoted using the notation tree(v)

where v is the root vertex of the tree. If there is a directed

edge from a vertex in a tree T to a root vertex w of some

other tree, then T is a neighbouring tree of w. In special

cases, where there exists a ring of vertices in the graph,

with each vertex v on the ring having IN(v) = 1, any

arbitrary vertex can be chosen as the root vertex of the

associated tree. Figure 4.1 illustrates a graph viewed as a

set of tree structures. In the simplified view, edges with

the same source tree and destination root vertex are

represented using a single pseudo-edge. From the
simplified view, it is easily seen that in general only one

delete min operation per tree structure is necessary. The

first step of the new algorithm is to scan each vertex v in

the graph to determine root and non-root vertices,

according to the value of |IN(v)|. 1 In this description, a

root vertex is called a trigger vertex. A trigger vertex

triggers shortest path distance updates into other vertices

in the tree. The rest of the algorithm consists of two

updating passes through the graph. Algorithm 1 gives the

first updating pass of the algorithm. This calcu- lates first-

tentative shortest path distances d1[v] for vertices in each
tree. No delete min operations are performed during this

first updating pass. At the beginning of the algorithm, each

vertex v has an associated GSS initial distance

Algorithm 1. First Stage of the Tree GSS(generalized

single source) Algorithm

/* assume trigger vertices are known */

1. Q =∅;

2. for each vertex v do d1[v] = d0[v];

© 2014 IJRRA All Rights Reserved page - 32-

3. for each trigger vertex u do {

4. add non-trigger vertices in OUT(u) to Q;

5. while there is a vertex v in Q do {

6. remove v from Q;

7. for each vertex w in OUT(v) do {

8. d1[w] = min(d1[w],d1[v] + c(v,w));
9. if w is not a trigger vertex then add w to Q;

10. }

11. }

12. }

d0[v]. The updating of vertices in a tree requires a queue

Q to be maintained. The queue can be maintained in either

first-in first-out (breadth first search) or last-in first-out

(depth first search) order. Alternatively, the algorithm can

be implemented as a recursive depth-first search,

eliminating the need for the algorithm to maintain a queue.

The distance updates in Algorithm 1 are restricted from
propagating between trees. This is not strictly necessary

for the algorithm to work, but for now it makes the

explanation simpler. A first-tentative shortest path

distance d1[v] is the shortest distance resulting from the

initial distance d0[v] or paths of the form:

(v1,v2,...,vk,v), k ≥ 1

for which:

d1[v] = d0[v1] + c(v1,v2) + ... + c(vk,v)

With path length defined in terms of the number of edges

traversed by the path, this path has length k. The

properties of such a path of length k are:

• Each vi, for all 1 ≤i≤ k, lies on the same tree T; that is,

vi ∈ T for all 1≤i≤ k.

• If vertex v is a non-trigger, then it is on the same tree as

vertices vi, for all 1 ≤i≤ k.

• If vertex v is a trigger vertex, then vertices vi, for all 1≤

i≤ k, are on a neighbouring tree of v.

Note that in this restricted algorithm no trigger vertex will

be involved in the first-tentative shortest path of another

trigger vertex. A trigger vertex can only be updated from

as far away as non-trigger vertices in neighbouring trees.
At the end of the first updating pass, the following

assertions hold:

• For each trigger vertex u, the shortest path to u that can

result from non-trigger vertices in neighbouring trees of u

has been calculated. This distance is given in d1[u].

Any improvements on d1[u], for any trigger vertex u,

must involve a path from another trigger vertex.

Algorithm 2 gives the second updating pass algorithm. For

the second up- dating pass, only trigger vertices are

involved in the frontier set F and solution set S. At lines 5

and 6, the trigger vertex u that has minimum d[u] is

selected and removed from F. Call this the minimum

trigger vertex. This vertex is then added to the solution set
S. Before the ith iteration at line 5, let the state of the

solution set S be:

S = {u1,u2,...,ui−1} (added in this order)

Then, the following theorem applies:

Theorem 1.

1. for trigger vertices uk∈ S, where 1 ≤ k ≤i − 1, d[uk]

is the shortest distance to vertex uk.

2. for all vertices v ∈tree(uk) and all uk, where 1 ≤ k ≤

i−1, d[v] is the shortest distance to vertex v.

Algorithm 2. Second Stage of the Tree GSS Algorithm

(Continues from Algorithm1)

1. S = ∅;

2. insert all trigger vertices with nonzero |IN(v)|

into F;

3. for each vertex v do d[v] = d1[v];

4. while F is not empty do {

5. select u such that d[u] is the minimum among

u in F; /* delete min */

6. remove u from F;

7. add u to S;

8. add u to Q;

9. while there is a vertex v in Q do {

10. remove v from Q;

11. for each vertex w inOUT(v) and not in S do {

12. d[w] = min(d[w],d[v] + c(v,w)); /* If w is a

trigger vertex, then a decrease key * operation

may occur. */

13. if w is not a trigger vertex then add w to Q;

14. }

15. }

16. }

3. for trigger vertices u ∈ F, d[u] is the distance of the

shortest path to u, which consists of an initial path of zero
or more non-triggers, followed by zero or more paths

through trees tree(v) for trigger vertices v ∈ S, to reach u.

Proof (By induction). Basis i = 1: Assertions 1 and 2

above are automatically true since S is empty. For

assertion 3 above, d[u] is correctly computed by

Algorithm 4.1 since S is empty. Induction step: Assume

the theorem is true for S = {u1,u2,...,ui−1}. If ui is the

minimum among trigger vertices in F, then d[ui] is the

shortest distance to ui since the distance for a path through

any other trigger vertex in F will be longer. In addition,

for v ∈ tree(ui), the shortest distance d[v] is correctly

computed since there is no shorter path to v that goes

through other triggers. Finally, for trigger vertices u

remaining in F, d[u] will be updated if tree(ui) is a
neighbouring tree of u. Therefore, for triggers u remaining

in F, the distance of the shortest path that goes through

trigger vertices in u1,u2,...,ui is correctly computed since

ui and tree(ui) will be the latest possible trigger and tree

structure to go through to reach u. Hence, the theorem is

true for S ={u1,u2,...,ui}. Let there be a total of n vertices

and m edges in the graph. The first updating pass through

the graph takes O(m) time. Now assume a Fibonacci heap

is used for F. Suppose there are r trigger vertices in the

graph, then there will be r delete min operations in the

second updating pass, each taking at most O(logr) time,

giving a combined worst-case time complexity O(rlogr).
The second updating pass also has an O(m) time

component, which accounts for each edge traversed, and

any decrease key operations. Combining these times, the

worst-case time complexity of the entire algorithm is

© 2014 IJRRA All Rights Reserved page - 33-

O(m+rlogr). For the conventional single-source problem,

the first updating pass can be simplified to only involve

the tree rooted at the source vertex. The GSS algorithm

will perform well when a graph is made up of large tree

structures; that is, r n. For the same graph, Abuaiadh and

Kingston’s algorithm could take O(m + nlogn) time to
compute GSS since the worst- case value for t is n. The

worst-case value of t is not as bad for conventional single-

source,2 taking at most O(m + nlogr) time since t is at

most r + 1. Applying tree decomposition with Abuaiadh

and Kingston’s concept of easy vertices produces a hybrid

GSS algorithm with a worst-case time complexity of O(m

+ rlogt), where t is the number of easy trigger vertices

resulting from r trigger vertices. This new GSS algorithm

can be applied in Takaoka’s single source algorithm for

acyclic graphs [27] when solving GSS on each SC

component. This gives a time complexity of O(m+rlogk),

where k is the maximum number of trigger vertices in any
single SC component, and r is the total number of trigger

vertices in the graph.

IV. FUTURE RESEARCH

Solving shortest paths on nearly acyclic graphs is still a

relatively new research area. There is much potential for

further improving on some of the new algorithms that

have been presented, and for extending some of the

concepts used. There are currently several different

measures for acyclicity that allow shortest paths to be

solved efficiently. By combining the minimum feedback
vertex set and SC decomposition measures, a superior

measure is obtained which supersedes all simpler

measures. Other ways to measure acyclicity may be dis-

covered in the future. It is hypothesised that there exists a

super-measure for acyclicity, which captures all forms of

acyclicity contained within a graph. Such a super-measure

could provide an efficient shortest path algorithm for any

form of nearly acyclic graph. Similar super-measures may

even exist for capturing other kinds of graph properties,

such as how planar a graph is. Combining such super-
measures may lead to a unified framework for solving

shortest path efficiently on any kind of graph.

V. REFERENCES

[1]. Abuaiadh, D. On the complexity of the shortest

path problem. PhD thesis, Basser Department of

Computer Science, University of Sydney,

Australia, July 1995.

[2]. Abuaiadh, D., and Kingston, J. Are Fibonacci

heaps optimal? In ISAAC ’94 (1994), Lecture

Notes in Computer Science, pp. 41–50.

[3]. Abuaiadh, D., and Kingston, J. Efficient shortest

path algorithms by graph decomposition. Tech.

rep., Basser Department of Computer Science,

University of Sydney, Australia, 1994. Technical

Report 93-475.

[4]. Aho, A. V., Hopcroft, J. E., and Ullman, J. D.

The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.

[5]. Ahuja, R. K., Mehlhorn, K., Orlin, J., and Tarjan,

R. E. Faster algorithms for the shortest path

problem. Journal of the ACM 37, 2 (1990), 213–

223.

[6]. Cormen, T. H., Leiserson, C. E., and Rivest, R. L.

Introduction to Algorithms, 2nd ed. MIT Press,

2001.

[7]. Dantzig, G. B. On the shortest route through a

network. Management Science 6 (1960), 187–

190.

[8]. Dijkstra, E. W. A note on two problems in

connexion with graphs. NumerischeMathematik

1 (1959), 269–271.

[9]. Driscoll, J. R., Gabow, H. N., Shrairman, R., and

Tarjan, R. E. Relaxed heaps: an alternative to

Fibonacci heaps with applications to parallel

computation. Communications of the ACM 31,

11 (1988), 1343– 1354.

[10]. Delling, D., Sanders, P., Schultes, D.,

Wagner, D.: Highway Hierarchies Star. In: 9th

DIMACS Implementation Challenge - Shortest

Paths (2006)

[11]. Sanders, P., Schultes, D.: Engineering

Highway Hierarchies. In: Azar, Y., Erlebach, T.

(eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816.

Springer, Heidelberg (2006)

[12]. Bauer, R., Delling, D.: SHARC: Fast

and Robust Unidirectional Routing.

In:Proceedings of the 10th Workshop on

Algorithm Engineering and Experiments

(ALENEX 2008), pp. 13–26. SIAM (2008)

[13]. Schieferdecker, D.: Systematic

Combination of Speed-Up Techniques for exact

Shortest-Path Queries. Master’s thesis,

Universit¨at Karlsruhe (TH) (2008)

[14]. Bast, H., Funke, S., Matijevic, D.,

Sanders, P., Schultes, D.: In Transit to Constant

Shortest-Path Queries in Road Networks. In:

Proceedings of the 9th Workshop onAlgorithm

Engineering and Experiments (ALENEX 2007),

pp. 46–59. SIAM(2007).

