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Abstract—Dijkstra’s algorithm solves the single-source shortest path problem on any di- rected graph in O(m+nlogn) 

worst-case time when a Fibonacci heap is used as the frontier set data structure. Here n is the number of vertices and 

m is the number of edges in the graph. If the graph is nearly acyclic, then other algo- rithms can achieve a time 

complexity lower than that of Dijkstra’s algorithm. Abuaiadh and Kingston gave a single source shortest path 

algorithm for nearly acyclic graphs with O(m + nlogt) worst-case time complexity, where the new parameter t is the 

number of delete-min operations performed in priority queue manipulation. For nearly acyclic graphs, the value of t is 

expected to be small, allowing the algorithm to outperform Dijkstra’s algorithm. Takaoka, using a different definition 

for acyclicity, gave an algorithm with O(m+nlogk) worst- case time complexity. In this algorithm, the new parameter k 

is the maximum cardinality of the strongly connected components in the graph. This paper with the refrence of Shane 

Saunders thesis presents several new shortest path algorithms that define trigger vertices, from which efficient 

computation of shortest paths through underlying acyclic structures in the graph is possible. If trigger vertices are 

defined as a set of precomputed feedback vertices, then the all-pairs shortest path prob- lem can be solved in O(mn + 

nr2) worst-case time. This allows all-pairs to be solved in O(mn) worst-case time when a feedback vertex set smaller 

than the square root of the number of edges is known. 
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I. INTRODUCTION 

Computing shortest paths in a graph G = (V,E) is used in 

many real-world applications like route planning in road 

networks, timetable information for railways, or 

scheduling for airplanes, route planning systems for cars, 

bikes, and hikers , spatial databases [Shekhar et al., 1997], 
and web searching [Barrett et al., 2000]. In general, 

Dijkstra’s algorithm finds an exact shortest path of length 

d(s, t) between a given source s and target t. Unfortunately, 

the algorithm is far too slow to be used on huge datasets. 

Thus, several speed-up techniques have been developed  

yielding faster query times for typical instances, e.g., road 

or railway networks. In, basic speed-up techniques have 

been combined systematically. One key observation of 

their work was that it is most promising to combine 

hierarchical and goal-directed techniques. However, since 

the publication of , many powerful hierarchical speed-up 
techniques have been developed, goal-directed techniques 

have been improved, and huge data sets have been made 

available to the community. In this work, we revisit the 

systematic combination of speed-up techniques. 

For our study, we exemplarily consider the following four 

speed-up techniques:  

Goal-Directed Search. The given edge weights are 

modified to favor edges leading towards the target node 

[Hart et al., 1968, Shekhar et al., 1993]. With graphs from 

timetable information, a speed-up in running time of a 

factor of roughly 1.5 is reported in [Schulz et al., 2000]. 

Bidirectional Search. Start a second search backwards, 
from the target to the source (see[Ahuja et al., 1993], 

Section 4.5). Both searches stop when their search 

horizons meet. Experiments in [Pohl, 1969] showed that 

search space can be reduced by a factor of 2, and in 

[Kaindl and Kainz, 1997] it was shown that combinations 

with goal-directed search can be beneficial. 

Multi-Level Approach. This approach takes advantage of 

hierarchical coarsenings of the given graph, where 

additional edges have to be computed. These can be 
regarded as distributed to multiple levels. Depending on 

the given query, only a small fraction of these edges have 

to be considered to find a shortest path. Using this 

technique, speed-up factors of more than 3.5 were 

observed for road map and public-transport graphs 

[Holzer, 2003]. Timetable information queries could be 

improved by a factor of 11 (see [Schulz et al., 2002]), and 

also in [Jung and Pramanik, 2002] good improvement for 

road maps is reported. 

Shortest-Path Containers. These containers provide a 

necessary condition for each edge, whether or not it has to 
be respected during the search. More precisely, the 

bounding box of all nodes that can be reached on a 

shortest path using this edge is stored. Speedup factors in 

the range between 10 and 20 can be achieved [Wagner and 

Willhalm, 2003]. 

The combination of the four techniques is very natural, 

since all of the techniques modify the search space of 

Dijkstra’s algorithm independently of each other: Goal-

directed search directs the search space towards the target 

of the search by modifying the edge lengths; bidirectional 

search maintains two search spaces; the multi-level graph 

approach runs common Dijkstra’s algorithm on a 
subgraph of the augmented input graph; and with shortest-

path containers, search space can be pruned by ignoring 

such edges that for sure do not contribute to a shortest 

path. 
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Defination- Trigger vertices:- the definition of trigger 

vertices depends on the specific algorithm. The simplest 

such algorithm defines trigger vertices as the roots of trees 

that result when the graph is decomposed into tree 

structures. 

Motivation:- The motivation of this thesis is to design 
specialised shortest path algo- rithms for use on nearly 

acyclic graphs. A nearly acyclic graph is a graph that 

contains relatively few cycles for its size. One kind of 

nearly acyclic graph can be visualised by extending the 

strictly downhill example, described earlier, to allow some 

uphill paths. In this nearly downhill analogy, most, but not 

all, paths in the graph are downhill. Since such graphs are 

not strictly downhill, an efficient strictly downhill shortest 

path algorithm cannot be used. Therefore a standard 

shortest path algorithm would normally be used to solve 

shortest paths in such graphs. However, given that most of 

the graph is downhill, there should be some more efficient 

way to solve shortest paths. This requires a new 

specialised algorithm for nearly downhill graphs to be 

invented; that is, an algorithm for nearly acyclic graphs. 

By designing new shortest path algorithms for nearly 

acyclic graphs these kinds of problems may be solved 

almost as efficiently as problems on acyclic graphs. 

II. GRAPH TERMINOLOGY 

This section reviews some basic graph theory terms that 

are important to understanding some of the shortest path 
algorithms described later. One of the most basic graph 

theoretic definitions related to shortest paths is that of a 

path. Firstly, the notation u → v denotes the existence of a 

directed edge from vertex u to vertex v. Under this 

notation, v0 → v1 → ... →vl represents a directed path of 

length l, where each vi for 0 ≤i≤ l is a vertex on the path. 

Here v0 is the first vertex on the path, and vl is the last 

vertex on the path. A path can alternatively be denoted as 

an ordering of vertices (v0,v1,v2,...,vl) such that there 

exists an edge vi → vi+1 for all 0 ≤i≤ l−1. A path whose 

first and last vertices are the same is called a cycle; that is, 

a path of the form (v,w1,w2,...,wl,v), where l ≥ 0. One of 

the simplest graph properties is that of acyclicity. The 

concept of acyclicity is used throughout this thesis. A 

graph is acyclic if it does not contain any cycles. A 

topological ordering (v1,v2,...vk) of k vertices satisfies the 

property i< j wherever there exists an edge vi →vj for any 

1 ≤i≤ k and 1 ≤ j ≤ k. As will be seen, a topological 

ordering of vertices can be used to compute shortest paths 

more easily. It is possible to compute a topological 

ordering of the vertices in a directed acyclic graph in 
linear time. One method is to take the reverse of the 

postorder of vertices produced by a depth first-search of a 

nearly acyclic graph. Another kind of graph property is 

that of planarity. A graph is planar if it can be drawn in a 

plane without any edges crossing. It has been proved that 

any planar undirected graph satisfies the inequality m ≤ 

3n − 6 for n ≥ 3. Consequently, planar directed graphs 

satisfy m < 6n − 12. Therefore, the number of edges m in 

a planar graph is O(n). The property of planarity is 

analogous to that of acyclicity in that shortest paths 

become easier to compute. A further structural property of 

graphs is connectivity. A graph is strongly connected if 

there exists a path from u to v for all pairs of vertices u 

and v in the graph. A graph that is not strongly connected 

can be partitioned into a set of maximal strongly 

connected subgraphs, called strongly connected 
components (or SC components for short). As will be seen, 

the property of strong connectivity has also been used to 

speed up shortest path computations. 

III. ALGORITHM 

Computing Shortest Paths by Tree Decomposition:- 

This section presents a GSS algorithm which decomposes 

a graph into trees in order to improve the time complexity 

required when solving the shortest path problem on nearly 

acyclic directed graphs. This serves as an introduction to 

the new algorithm which uses a more general acyclic 

decomposition. For certain kinds of graphs, the algorithm 

in this section improves on Abuaiadh and Kingston’s 
algorithm(when used for solving GSS problems), and 

introduces improvement to Takaoka’s algorithm.  

 Define IN(v) as the set of vertices u such that there is 

an edge (u,v) in the graph. Then tree structures in a 

graph can be identified as follows:  

 A root vertex v in a tree structure has |IN(v)|> 1 or 

|IN(v)|= 0. 

 A non-root vertex v in a tree structure has |IN(v)|= 1. 

Example of a graph viewed as linked tree strucrure 

Such a tree structure is denoted using the notation tree(v) 

where v is the root vertex of the tree. If there is a directed 

edge from a vertex in a tree T to a root vertex w of some 

other tree, then T is a neighbouring tree of w. In special 

cases, where there exists a ring of vertices in the graph, 

with each vertex v on the ring having IN(v) = 1, any 

arbitrary vertex can be chosen as the root vertex of the 

associated tree. Figure 4.1 illustrates a graph viewed as a 

set of tree structures. In the simplified view, edges with 

the same source tree and destination root vertex are 

represented using a single pseudo-edge. From the 
simplified view, it is easily seen that in general only one 

delete min operation per tree structure is necessary. The 

first step of the new algorithm is to scan each vertex v in 

the graph to determine root and non-root vertices, 

according to the value of |IN(v)|. 1 In this description, a 

root vertex is called a trigger vertex. A trigger vertex 

triggers shortest path distance updates into other vertices 

in the tree. The rest of the algorithm consists of two 

updating passes through the graph. Algorithm 1 gives the 

first updating pass of the algorithm. This calcu- lates first-

tentative shortest path distances d1[v] for vertices in each 
tree. No delete min operations are performed during this 

first updating pass. At the beginning of the algorithm, each 

vertex v has an associated GSS initial distance 

Algorithm 1. First Stage of the Tree GSS(generalized 

single source) Algorithm 

/* assume trigger vertices are known */ 

1. Q =∅;  

2. for each vertex v do d1[v] = d0[v];  
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3. for each trigger vertex u do {  

4. add non-trigger vertices in OUT(u) to Q;  

5. while there is a vertex v in Q do {  

6. remove v from Q;  

7. for each vertex w in OUT(v) do {  

8. d1[w] = min(d1[w],d1[v] + c(v,w));  
9. if w is not a trigger vertex then add w to Q;  

10. } 

11. } 

12. } 

 

d0[v]. The updating of vertices in a tree requires a queue 

Q to be maintained. The queue can be maintained in either 

first-in first-out (breadth first search) or last-in first-out 

(depth first search) order. Alternatively, the algorithm can 

be implemented as a recursive depth-first search, 

eliminating the need for the algorithm to maintain a queue. 

The distance updates in Algorithm 1 are restricted from 
propagating between trees. This is not strictly necessary 

for the algorithm to work, but for now it makes the 

explanation simpler. A first-tentative shortest path 

distance d1[v] is the shortest distance resulting from the 

initial distance d0[v] or paths of the form: 

(v1,v2,...,vk,v), k ≥ 1 

for which: 

d1[v] = d0[v1] + c(v1,v2) + ... + c(vk,v) 

With path length defined in terms of the number of edges 

traversed by the path, this path has length k. The 

properties of such a path of length k are: 

• Each vi, for all 1 ≤i≤ k, lies on the same tree T; that is, 

vi ∈ T for all 1≤i≤ k. 

• If vertex v is a non-trigger, then it is on the same tree as 

vertices vi, for all 1 ≤i≤ k.  

• If vertex v is a trigger vertex, then vertices vi, for all 1≤

i≤ k, are on a neighbouring tree of v. 

Note that in this restricted algorithm no trigger vertex will 

be involved in the first-tentative shortest path of another 

trigger vertex. A trigger vertex can only be updated from 

as far away as non-trigger vertices in neighbouring trees. 
At the end of the first updating pass, the following 

assertions hold: 

• For each trigger vertex u, the shortest path to u that can 

result from non-trigger vertices in neighbouring trees of u 

has been calculated. This distance is given in d1[u]. 

Any improvements on d1[u], for any trigger vertex u, 

must involve a path from another trigger vertex. 

Algorithm 2 gives the second updating pass algorithm. For 

the second up- dating pass, only trigger vertices are 

involved in the frontier set F and solution set S. At lines 5 

and 6, the trigger vertex u that has minimum d[u] is 

selected and removed from F. Call this the minimum 

trigger vertex. This vertex is then added to the solution set 
S. Before the ith iteration at line 5, let the state of the 

solution set S be: 

S = {u1,u2,...,ui−1} (added in this order) 

Then, the following theorem applies: 

Theorem 1. 

1. for trigger vertices uk∈ S, where 1 ≤ k ≤i − 1, d[uk] 

is the shortest distance to vertex uk. 

2. for all vertices v ∈tree(uk) and all uk, where 1 ≤ k ≤ 

i−1, d[v] is the shortest distance to vertex v. 

Algorithm 2. Second Stage of the Tree GSS Algorithm 

(Continues from Algorithm1) 

1. S = ∅;  

2. insert all trigger vertices with nonzero |IN(v)| 

into F;  

3. for each vertex v do d[v] = d1[v];  

4. while F is not empty do {  

5. select u such that d[u] is the minimum among 

u in F; /* delete min */  

6. remove u from F;  

7. add u to S;  

8. add u to Q;  

9. while there is a vertex v in Q do {  

10. remove v from Q;  

11. for each vertex w inOUT(v) and not in S do {  

12. d[w] = min(d[w],d[v] + c(v,w)); /* If w is a 

trigger vertex, then a decrease key * operation 

may occur. */  

13. if w is not a trigger vertex then add w to Q;  

14. } 

15. } 

16. } 

3. for trigger vertices u ∈ F, d[u] is the distance of the 

shortest path to u, which consists of an initial path of zero 
or more non-triggers, followed by zero or more paths 

through trees tree(v) for trigger vertices v ∈ S, to reach u. 

Proof (By induction). Basis i = 1: Assertions 1 and 2 

above are automatically true since S is empty. For 

assertion 3 above, d[u] is correctly computed by 

Algorithm 4.1 since S is empty. Induction step: Assume 

the theorem is true for S = {u1,u2,...,ui−1}. If ui is the 

minimum among trigger vertices in F, then d[ui] is the 

shortest distance to ui since the distance for a path through 

any other trigger vertex in F will be longer. In addition, 

for v ∈ tree(ui), the shortest distance d[v] is correctly 

computed since there is no shorter path to v that goes 

through other triggers. Finally, for trigger vertices u 

remaining in F, d[u] will be updated if tree(ui) is a 
neighbouring tree of u. Therefore, for triggers u remaining 

in F, the distance of the shortest path that goes through 

trigger vertices in u1,u2,...,ui is correctly computed since 

ui and tree(ui) will be the latest possible trigger and tree 

structure to go through to reach u. Hence, the theorem is 

true for S ={u1,u2,...,ui}. Let there be a total of n vertices 

and m edges in the graph. The first updating pass through 

the graph takes O(m) time. Now assume a Fibonacci heap 

is used for F. Suppose there are r trigger vertices in the 

graph, then there will be r delete min operations in the 

second updating pass, each taking at most O(logr) time, 

giving a combined worst-case time complexity O(rlogr). 
The second updating pass also has an O(m) time 

component, which accounts for each edge traversed, and 

any decrease key operations. Combining these times, the 

worst-case time complexity of the entire algorithm is 
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O(m+rlogr). For the conventional single-source problem, 

the first updating pass can be simplified to only involve 

the tree rooted at the source vertex. The GSS algorithm 

will perform well when a graph is made up of large tree 

structures; that is, r  n. For the same graph, Abuaiadh and 

Kingston’s algorithm could take O(m + nlogn) time to 
compute GSS since the worst- case value for t is n. The 

worst-case value of t is not as bad for conventional single-

source,2 taking at most O(m + nlogr) time since t is at 

most r + 1. Applying tree decomposition with Abuaiadh 

and Kingston’s concept of easy vertices produces a hybrid 

GSS algorithm with a worst-case time complexity of O(m 

+ rlogt), where t is the number of easy trigger vertices 

resulting from r trigger vertices. This new GSS algorithm 

can be applied in Takaoka’s single source algorithm for 

acyclic graphs [27] when solving GSS on each SC 

component. This gives a time complexity of O(m+rlogk), 

where k is the maximum number of trigger vertices in any 
single SC component, and r is the total number of trigger 

vertices in the graph. 

IV. FUTURE RESEARCH 

Solving shortest paths on nearly acyclic graphs is still a 

relatively new research area. There is much potential for 

further improving on some of the new algorithms that 

have been presented, and for extending some of the 

concepts used. There are currently several different 

measures for acyclicity that allow shortest paths to be 

solved efficiently. By combining the minimum feedback 
vertex set and SC decomposition measures, a superior 

measure is obtained which supersedes all simpler 

measures. Other ways to measure acyclicity may be dis- 

covered in the future. It is hypothesised that there exists a 

super-measure for acyclicity, which captures all forms of 

acyclicity contained within a graph. Such a super-measure 

could provide an efficient shortest path algorithm for any 

form of nearly acyclic graph. Similar super-measures may 

even exist for capturing other kinds of graph properties, 

such as how planar a graph is. Combining such super-
measures may lead to a unified framework for solving 

shortest path efficiently on any kind of graph. 
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