
 Priyanka Chauhan al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 2, September 2014, pp. 189-196

 © 2014 IJRAA All Rights Reserved page - 189-

Efficient Load Balancing and Resource

Scheduling for Optimizing Cost and

Execution Time Using ACO-A*Algorithm

Priyanka Chauhan1, Ritu Bansal2
1Research Scholar, M. Tech, MRIU, Faridabad

2Assistant Professor, Dept. of CSE, MRIU Faridabad

Abstract—Grid computing is being accepted in a variety of areas from scholastic, business research to government use.

Grids are becoming platforms for elevated concert and distributed computing. Resources are energetic in

temperament so the load of resources varies with revolutionize in pattern of Grid so the Load Balancing of the tasks in

a Grid milieu can appreciably authority Grid’s performance. An underprivileged scheduling policy may leave many

processors idle while a intelligent one may devour an unduly large portion of the total CPU cycles. The main goal of

load balancing is to provide a distributed, low cost, scheme that balances the load across all the processors. To advance

the overall throughput of Grid resources, effective and efficient load balancing algorithms are fundamentally

important. A load balancing algorithm has been implemented and tested in a simulated Grid environment. In this

paper, A* algorithm is being implied with ACO algorithm. The proposed algorithm helps to afford the more efficient

load balancing scheduling in the grid computing environment. This algorithm is oriented on the risk assessment and

execution time instead of the risk assessment used in the existing algorithms.

Keywords—Grid Computing, Load balancing, ACO algorithm, A* algorithm, Execution time.

I. INTRODUCTION

Grid was originally conceived and designed in this

community to allow access to computing resources that were

geographically dispersed. The notion was that underutilized

resources in places other than where the researchers were

physically located could be used. Also fundamental in the
formative thinking was the prospect of sharing access to

data, typically in the form of files that were being jointly

produced and used by collaborators in disparate locations.

Before discussing more about Grids lets go back to birth of

distributed computing: In the early 1970's when computers

were first linked by networks, the idea of harnessing unused

CPU cycles was born.

An enterprise-computing grid is characterized by three

primary features Client

a) Diversity

b) Decentralisation
c) Dynamism

a) Diversity:

A typical computing grid consists of many hundreds of

managed resources of various kinds grid) being developed in

a loosely coordinated manner throughout academia and the

commercial sector.

The bottom horizontal layer of the Community Grid Model

consists of the hardware resources that underlie the Grid.

Such resources include computers, networks, data archives,

instruments, visualization devices and so on. Moreover, the

resource pool represented by this layer is highly dynamic,

both as a result of new resources being added to the mix and
old resources being retired, and as a result of varying

observable performance of the resources in the shared, multi-

user environment of the Grid.

Figure 1 Elements of Grids

The next horizontal layer (common infrastructure) consists

of the software services and systems, which virtualized the

Grid. The key concept at the common infrastructure layer is
community agreement on software, which will represent the

Grid as a unified virtual platform and provide the target for

more focused software and applications. The next horizontal

layer (user and application-focused Grid middle-ware, tools

and services) contains software packages built atop the

common infrastructure. This software serves to enable

applications to more productively use Grid resources by

masking some of the complexity

b) Decentralization:
Traditional distributed systems have typically been managed

from a central administration point. A computing grid further

compounds these challenges since the resources can be even
more decentralized and may be geographically distributed

across many different data centers within an enterprise.

c) Dynamism:

Components of a traditional application typically run in a

static environment without the needing to address rapidly

changing demands. In computing grid, however, the systems

and applications need to be able to flexibly adapt to

changing demand. For instance, with the late binding nature

 Priyanka Chauhan al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 2, September 2014, pp. 189-196

 © 2014 IJRAA All Rights Reserved page - 190-

and cross-platform properties of web services, an application

deployed on the grid may consist of a constantly changing

set of components. At different points in time, these

components can be hosted on different nodes in the network.

Managing an application in such a dynamic environment can

be a challenging undertaking [3].
Grid computing can be used in a variety of ways to address

various kinds of application requirements. Often, grids are

categorized by the type of solutions that they best address.

The three primary types of grids are

a) Computational grid:

 A computational grid is focused on setting aside resources

specifically for computing power. In this type of grid, most

of the machines are high-performance servers.

b) Scavenging Grid:
A scavenging grid is most commonly used with large

numbers of desktop machines. Machines are scavenged for

available CPU cycles and other resources. Owners of the
desktop machines are usually given control over when their

resources are available to participate in the grid.

c) Data grid:
A data grid is responsible for housing and providing access

to data across multiple organizations. Users are not

concerned with where this data is located as long as they

have access to the data. For example, you may have two

universities doing life science re-search, each with unique

data. A data grid would allow them to share their data,

manage the data, and manage security issues such as who

has access to what data. Another common distributed
computing model that is often associated with or confused

with Grid computing is peer-to-peer computing. In fact,

some consider this is another form of Grid computing

II. RELATED WORK

Tantawiet. al (1985) developed model for such a distributed

computer system, in which the host computers and the

communications network were represented by product-form

queuing networks. In this model, a job might be either

processed at the host to which it arrived or transferred to

another host. In the latter case, a transferred job incurred a

communication delay in addition to the queuing delay at the

host on which the job is processed. It was assumed that the
decision of transferring a job does not depend on the system

state, and hence was static in nature. Performance was

optimized by determining the load on each host that

minimizes the mean job response time. A nonlinear

optimization problem was formulated, and the properties of

the optimal solution was the special case where the

communication delay does not depend on the source-

destination pair is shown. Two efficient algorithms that

determined the optimal load on each host computer are

presented. The first algorithm, called the parametric-study

algorithm, generated the optimal solution as a function of the
communication time. This algorithm was suited for the study

of the effect of the speed of the communications network on

the optimal solution. The second algorithm is a single-point

algorithm; it yielded the optimal solution for given system

parameters. Queuing models of host computers,

communications networks, and a numerical example were

illustrated [11].

Yagoubiet. al (2007) proposed strategy which was based on

a neighbourhood load balancing whose goal was to decrease

the amount of messages exchanged between Grid resources.

As a consequence, the communication overhead induced by

task transfer and workload information flow was reduced,

leading to a high improvement in the global throughput of a
Grid. The first experiment results of their strategy were very

promising. In effect, they had obtained a significant

improvement of the mean response time with a reduction of

the communication cost [15].

Carreteroet. al (2007) presented Genetic Algorithms (GAs)

based schedulers for efficiently allocating jobs to resources

in a Grid system. Scheduling was a key problem in emergent

computational systems, such as Grid and P2P, in order to

benefit from the large computing capacity of such systems.

They presented an extensive study on the usefulness of GAs

for designing efficient Grid schedulers when makespan and

flowtime are minimized. Two encoding schemes had been
considered and most of GA operators for each of them are

implemented and empirically studied. The extensive

experimental study showed that GA-based schedulers

outperform existing GA implementations in the literature for

the problem and also revealed their efficiency when

makespan and flowtime were minimized either in a

hierarchical or a simultaneous optimization mode; previous

approaches considered only the minimization of the

makespan. Moreover, they were able to identify which GAs

versions work best under certain Grid characteristics, which

was very useful for real Grids. Our GA-based schedulers
were very fast and hence they could be used to dynamically

schedule jobs arrived in the Grid system by running in batch

mode for a short time [17].

Yajun et. al (2008) addressed the load balancing problem by

presenting a hybrid approach to the load balancing of

sequential tasks under grid computing environments. their

main objective was to arrive at task assignments that could

achieve minimum execution time, maximum node utilisation

and a well-balanced load across all the nodes involved in a

grid. A first-come-first-served and a carefully designed

genetic algorithm were selected as representatives of both

classes to work together to accomplish our goal. The
simulation results showed that theirr algorithm could achieve

a better load balancing performance as compared to its

‗pure‘ counterparts [18].

Saravanakumaret. al (2010) proposed Load Balancing on

Arrival (LBA) for small-scale (intraGrid) systems. It was

efficient in minimizing the response time for small-scale grid

environment. When a job arrives LBA computed system

parameters and expected finish time on buddy processors

and the job was migrated immediately. This algorithm

estimates system parameters such as job arrival rate, CPU

processing rate and load on each processor to make
migration decision. This algorithm also considered job

transfer cost, resource heterogeneity and network

heterogeneity while making migration decision [19].

Kumar et al. (2011) proposed a Load balancing algorithm for

fair scheduling, and compared it to other scheduling schemes

such as the Earliest Deadline First, Simple Fair Task order,

Adjusted Fair Task Order and Max Min Fair Scheduling for

a computational grid. It addressed the fairness issues by

 Priyanka Chauhan al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 2, September 2014, pp. 189-196

 © 2014 IJRAA All Rights Reserved page - 191-

using mean waiting time. It scheduled the task by using fair

completion time and rescheduled by using mean waiting

time of each task to obtain load balance. This algorithm

scheme tried to provide optimal solution so that it reduced

the execution time and expected price for the execution of all

the jobs in the grid system is minimized. The performance of
the proposed algorithm compared with other algorithm by

using simulation [26].

El-Zoghdy et al. (2012) addressed the problem of scheduling

and load balancing in heterogeneous computational grids.

They proposed a two-level load balancing policy for the

multi-cluster grid environment where computational

resources are dispersed in different administrative domains

or clusters which were located in different local area

networks. The proposed load balancing policy took into

account the heterogeneity of the computational resources. It

distributed the system workload based on the processing

elements capacity which leaded to minimize the overall job
mean response time and maximize the system utilization and

throughput at the steady state. To evaluate the performance

of the proposed load balancing policy, an analytical model

was developed. The results obtained analytically were

validated by simulating the model using Arena simulation

package. The results showed that the overall mean job

response time obtained by simulation was very close to that

obtained analytically. Also, the simulation results showed

that the performance of the proposed load balancing policy

outperformed that of the random and uniform distribution

load balancing policies in terms of mean job response time.
The improvement ratio decreased as the system workload

increased [27].

Keerthika et al. (2013) proposed a new scheduling

algorithm for computational grids that considers load

balancing, fault tolerance and user satisfaction based on the

grid architecture, resource heterogeneity, resource

availability and job characteristics such as user deadline.

This algorithm reduced the makespan of the schedule along

with user satisfaction and balanced load. A simulation was

conducted using Grid Simulator Toolkit (GridSim). The

simulation results showed that the proposed algorithm had

better makespan, hit rate and resource utilization [31].
Chandran et al. (2014) demonstrated a genetic algorithm

based resource scheduling strategy that focused on system

load balancing. The genetic algorithm approach computed

the impact in advance that it would have on the system after

the new resource is deployed in the system, by utilizing

historical data and current state of the system. It then picked

up the solution, which would have the least effect on the

system. By doing this it ensured the better load balancing

and reduced the number of dynamic migrations. The

approach presented in this project solves the problem of load

imbalance and high migration costs. Usually load imbalance
and high number of migrations occurred if the scheduling is

performed using the traditional algorithms [32].

Patel et al. (2014) highlighted the Resource sharing and

scheduling resources in Grid computing as a complex task

due to the heterogeneous and dynamic nature of the

resources. Resource sharing crisis brought Grid Technology

that needed algorithms and mechanisms to be redesigned for

resource handling. The analysis of algorithms is the

determination of the number of resources (such as time and

storage) necessary to execute them. In this paper, they could

implement the MCT (minimum completion time) and MET

(Minimum execution time) algorithm to increase the

performance in terms of their speed of execution [33].

III. LOAD

BALANCING

APPROACHES

Whose goal is to keep all computing nodes busy, and load

balancing which attempts to have an equal load on all the

nodes. The design of a load redistributing algorithm depends

on the performance objectives sought and the appropriate

redistribution approach. The ultimate goal of these strategies

is to minimise the system average and standard deviation of

the response time with minimum adverse effect on

individual users. A good handling of task partition, task

allocation and load balancing can significantly increase a

grid systems' efficiency. In this dissertation, balancing the
loads in electrical grid systems and optimizing grid

computing systems are analyzed. Unbalanced loads on

feeders increase power system investment and operating

costs. Three-phase lateral loads phase swapping is one of the

popular methods to balance such systems. One way to

provide load balancing in Grid Systems is with IP spraying,

the load balancing mechanism used for spreading HTTP

requests. The IP sprayer intercepts each HTTP request, and

redirects them to a server in the server cluster.

1) Types

Depending on the type of sprayer involved, the architecture
can provide scalability, load balancing and failover

requirements. Load balancing schemas are characterized in

terms of

 Allocation

 Agent

 Initiation and

 Policy types.

2) Initiation

Load balancing can be characterized based on the party that

initiated the process

 Sender Initiated
The sender makes a determination as to where a

generated task or arriving task is to be executed.

The queues of ready jobs tend to form at the target

PE‘s. Job transfer decisions are made at task arrival

time.

 Receiver Initiated

In a receiver initiated process, a server or target PE

determines which jobs at different sources, it will

process. The ready jobs tend to queue at the source

PE‘s. with job transfer decisions made at task

completion time.

IV. ALLOCATION

BASED LOAD

BALANCING IN

GRID

COMPUTING

Grid Systems can be characterized based on its allocation.

We will describe two only types of load balance allocation:

 Priyanka Chauhan al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 2, September 2014, pp. 189-196

 © 2014 IJRAA All Rights Reserved page - 192-

 Static

 Dynamic

1) Static allocation

These algorithms aim at finding an optimal assignment of

tasks by clustering or co-scheduling, and are achieved by

balancing the system loads periodically. They assume that
the process behavior is known and use graph theory models

to attempt a fair distribution of the load. The allocation

decisions of the system components are based on pre-

determined parameters. Early work on load balancing has

been carried out along this approach but due to inherent

drawbacks such as

 1) the static nature of the algorithm does not allow these

strategies to respond to short-term fluctuations in workload,

2) they require too much information such as arrival time

and execution cost of each job or module to be

implementable, and
 3) they involve intensive computation to obtain the optimal

schedule; the research effort has recently concentrated on the

two other heuristic approaches which are implementable and

achieve promising results. Quasi-static algorithms are a

variant of this category. These algorithms ignore the current

state of the system, but they tune their decision variables by

adapting to slowly changing system characteristics such as

the arrival rates of jobs. Static allocation are the simpler

case: random, variations of round robin and master-worker.

Random Allocation
Requests are assigned to any server picked randomly. Counts

on statistical average to have each server getting its share of
the load due to the random selection.

 Pros: Simple to implement.

 Cons: Can lead to overloading of one server while

under-utilization of others.

Round-Robin Allocation
Requests are assigned to one service from a list of the

servers on a rotating basis.

 Pros: Better than random allocation because the

requests are equally divided among the available

servers in an orderly fashion.

 Cons: Round robin algorithm is not enough for load
balancing based on processing overhead required

and if the server specifications are not identical to

each other in the server group.

Weighted Round-Robin Allocation
A weight is assigned to each server in the group. The most

powerful gets higher weight. If server A has weight 2, and

server B has 1, server A will receive twice the number of

requests B does.

 Pros: Takes care of the capacity of the servers in the

group.

 Cons: Does not consider the advanced load
balancing requirements such as processsing times

for each individual request.

“Worker” Pattern
One common pattern for doing this employs generic

―workers‖ that are designed specifically to take executable

entries from a space and run them. Using this model yields

the added benefit of automatic load balancing: rather than

having work pushed to them from a centralized load

balancer, workers in this model each regulates its own load

independently by taking entries at its own pace when it is

ready to process them.

2) Dynamic Allocation

Here scheduling is seen as a job routing problem. These

algorithms balance the loads upon the arrival of each job.

This is achieved by a continuous assessment of the system
load which is dynamic and unpredictable. The allocation of

the job is done in real time following a fixed policy based on

the recent system state information and currently perceived

system load imbalance or bases their decisions on statistical

averages. Extensive research work has been done in this

category. For the second type of load balancing allocation

complexity is exponentially higher. Two of the simplest

cases are allocation by sampling and predictive.

Sampling
Uses a sampling on the past to select the running node

(simpler). One other alternative is the use the average of the

last execution times to select the next processor to receive
the run. Some examples:

 Sampling of similar runs on the past

 Average of similar executions on the past

 Xsuffrage (task that will suffer the most if not

executed on the fastest processor)

 Min-Min

 Min-Max.

Predictive
Preferably based on prediction methods, e.g. ES

(Exponential Smoothing). ES is an equation that uses a

constant alpha, the last prediction, and the last real value to
calculate the future predicted value. This cannot be called

―prediction methods‖ literarily, because you have to be

wrong first to adjust your prediction. Uses sampling rate and

a constant. Nodes exchange and re-arrange tasks as the load

is predicted according to sampling rate. Some examples:

 Exponential Smoothing

 Norrish Equation

 Grover Model, etc

3) Adaptive Algorithms

Scheduling in this approach can be interpreted as an adaptive

control problem. These algorithms, like dynamic algorithms,
balance loads upon the arrival of each job, but also balance

loads whenever anomalies appear in the workload of the

system or individual nodes. They exhibit more flexibility by

adjusting their policy to match the dynamic system

characteristics. In the literature some algorithms with

different degrees and approaches of adaptability have been

reported. To support adaptability, most of these algorithms

use preemptive scheduling.

Although the term dynamic scheduling and adaptive

scheduling have often been used interchangeably in the

literature by grouping any policy that is not static under the
heading of dynamic, there is a clear distinction between the

two. A dynamic algorithm has a fixed policy in dealing with

its dynamic environmental inputs, whereas an adaptive

algorithm uses the environmental stimuli to modify the

scheduling policy itself.

V. PROPOSED ACO-A*ALGORITHM

The standard ACO algorithm is totally oriented on the risk

assessment factor. This algorithm has totally ignored the

 Priyanka Chauhan al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 2, September 2014, pp. 189-196

 © 2014 IJRAA All Rights Reserved page - 193-

concept of the execution time and resource cost. The

proposed algorithm utilize the A* algorithm in which it

calculate the evaluation value based on transition probability

and MIPS rating. After considering these factors the

proposed Heuristic Load Balancing Algorithm is presented

below:

Phase 1 (Initialization Phase)
Begin: Initialize all parameters including resources

(processing elements, MIPS rating), pheromone intensity,

Task set, resource cost, no. of resources, no. of task, resource

set

Phase 2 (Operational Phase)
While (Task set T! = Φ)

Begin: Select the next task t‟ from Task set T.

Determine next resource Ri for task assignment

having high evaluation value.

(Evaluation value = Transition Probability + MIPS
rating)

 Phase 3 (Result Phase)
Schedule task t‟ to Ri and update Task set by T = T

- {t}.

If any node fails or complete its execution part

update its pheromone intensity of that

corresponding resource.

 END While

 END

VI. RESULT

On executing the proposed algorithm having 15 resources
and 99 gridlets it show following output as given below:

Starting Execution of New Paper execution

Initializing GridSim package

Initialising...

Starting to create one Grid resource with *5 PE*of Rating

500

Starting to create one Grid resource with *4 PE*of Rating

650

Here we are using Time_shared allocation policy. We are

going to compare following algorithm as below:

 Existing heuristic load balancing algorithm based
on ACO algorithm

 Proposed heuristic load balancing algorithm based

modified ACO algorithm

Existing heuristic load balancing algorithm based on

modified ACO algorithm consist the combination of

following factors instead of transition probability as given

below:

 Transition probability

 MIPS Rating

Experiment: 1

The Total Execution Time of Existing algorithm compared

with Proposed algorithm with the following parameters.
Resource Allocation Policy=TIME_SHARED

Number of Resources =25

Number of Tasks = 10 to

TABLE 1

EXECUTION TIME WITH VARYING NO. OF TASKS IN

TIME SHARED ALLOCATION

Average Reduction in Total Execution Time is = 72.42 %.

Figure 2.shows that as the number of tasks increases the

difference between execution time taken by two algorithms

decreases. The execution time is reduced due to selection of
optimized node.

Figure 2.Number of Tasks Vs. Execution Time in

TIME_SHARED Allocation

Experiment: 2

The Total Execution Cost ofExisting algorithm compared

with Proposed algorithm with the following parameters.

Resource Allocation Policy=TIME_SHARED

Number of Resources =25

Number of Tasks = 10 to 50

TABLE 2

EXECUTION COST WITH VARYING NO. OF TASKS IN

TIME SHARED ALLOCATION

 Priyanka Chauhan al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 2, September 2014, pp. 189-196

 © 2014 IJRAA All Rights Reserved page - 194-

Average Reduction in Total Execution Cost is = 29.55 %.

Figure 3.shows that as the number of tasks increases the

difference between execution cost the task acquired by two

algorithms decreases. The more reliable resources are being

selected.

Figure 8.2 Number of Tasks Vs. Execution Cost in

TIME_SHARED Allocation

Experiment: 3

The Total Execution Time of Existing algorithm with

Proposed algorithm with the following parameters.

Allocation Policy=SPACE_SHARED

Number of Resources =10 to 50

Number of Tasks = 25
TABLE 3

EXECUTION TIME WITH VARYING NO. OF

RESOURCES IN SPACE SHARED ALLOCATION

Average Reduction in Total Execution Time is = 55.20%.

Figure 4 Number of Resources Vs. Execution Time in

SPACE_SHARED Allocation

Experiment: 4

The Total Execution Time of Existing algorithm with

Proposed algorithm with the following parameters.

Allocation Policy=SPACE_SHARED

Number of Resources =10 to 50

Number of Tasks = 25
TABLE 4

EXECUTION COST WITH VARYING NO. OF RESOURCES IN SPACE

SHARED ALLOCATION

 Priyanka Chauhan al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 2, September 2014, pp. 189-196

 © 2014 IJRAA All Rights Reserved page - 195-

Average Reduced in Total Execution Cost is = 29.44 %. .

The more reliable resources are being selected.

Figure 5: Number of Resources Vs. Execution Cost in

SPACE_SHARED Allocation

VII. CONCLUSIONS

We have performed these experiments based on the ACO
and ACO-A*Algorithm and it found that the proposed

algorithm performs better than the Existing in terms of

Execution Cost and Execution Time with both

TIME_SHARED OR SPACE_SHARED allocation policies.

Both the Execution time and Cost is reduced using ACO-A*.

Result of these experiments can be summarized as:

TABLE 5

SUMMARY OF REDUCTION OF EXECUTION COST

AND TIME

VIII. FUTURE SCOPE

The work performed in this thesis can be used as the basis

for an improved load balancing module in Condor. This not

only improves the performance of grid application but also

makes it more powerful, reliable and capable of handling

more complex and large problems in Grid environment. A

further extension to this work would be in making this Load

balancing Module a middleware independent module. We

may add other parameters like time delay etc.

REFERENCES

[1]. Akshay Luther, RajkumarBuyya, Rajiv Ranjan, and

SrikumarVenugopal, "Peer-to-Peer Grid Computing

and a .NET-based Alchemi Framework", GRIDS

Laboratory, The University of Melbourne, Australia

[2]. Asser N. Tantawim& Don Towsley, Optimal static

load balancing in distributed computer systems,

Journal of the ACM (JACM), Volume 32 Issue 2,

April 1985 Pages 445-465

[3]. AzzedineBoukerche and Robson Eduardo De

Grande, Dynamic Load Balancing Using Grid

Services for HLA-Based Simulations on Large-

Scale Distributed Systems, proceeding 2009 13th

IEEE/ACM International Symposium on

Distributed Simulation and Real Time Applications,

pp. 174-182.

[4]. A.Oufimtsev, L. Murphy. Method Input Parameters

And Performance Of EJB Applications. In

Proceedings of 19th Conference on Object-Oriented

Programming, Systems, Languages, and

Applications, 2004.

[5]. Berman F., fox G., Hey Y., ―Grid Computing:

Making the Global Infrastructure a Reality‖, Wiley

Series inCommunications Networking &

Distributed Systems, 2003.

[6]. BelabbasYagoubi, YahyaSlimani, Load Balancing

Strategy in Grid Environment, Journal of

 Priyanka Chauhan al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 2, September 2014, pp. 189-196

 © 2014 IJRAA All Rights Reserved page - 196-

Information Technology and Applications, Vol. 1

No. 4 March, 2007, pp. 285-296.

[7]. Belabbas Yagoubi & Meriem Meddeber,

Distributed Load Balancing Model for Grid

Computing, ARIMA Journal vol. 12 (2010), pp. 43-

60.

[8]. B. Yagoubi , Task Load Balancing Strategy for

Grid Computing .IEEE Computer, vol. 38, num. 11,

pages 89–96, 2006

[9]. Buyya R., ―A Grid simulation toolkit for resource

modelling and application scheduling for parallel

and distributed computing‖,

www.buyya.com/gridsim/.

[10]. C. Campbell. Constructive learning techniques for

designing neural network systems.In C. T. Leondes,

editor, Neural Network Systems Technologies and

Applications, San Diego, 1997.Academic Press.

[11]. C.-J. Wang, P. Krueger, M. T. Liu. Intelligent job

selection for distributed scheduling. In Proceedings

of the 13th IEEE International Conference on

Distributed Computing Systems, pages 517--524,

1993.

[12]. D. Gupta, P. Bepari. Load sharing in distributed

systems, In Proceedings of the National Workshop

on Distributed Computing, January 1999.

[13]. El-Zoghdy, S.F.; Aljahdali, S., "A two-level load

balancing policy for grid computing," Multimedia

Computing and Systems (ICMCS), 2012

International Conference on , vol., no., pp.617,622,

10-12 May 2012

[14]. Foster I., Kesselman C. (editors), ―The Grid2:

Blueprint for a New Computing Infrastructure‖,

Morgan Kaufmann (second edition), USA, 2004.

[15]. Francois Grey, MattiHeikkurinen, Rosy

Mondardini, RobindraPrabhu, ―Brief History of

Grid‖,
http://Gridcafe.web.cern.ch/Gridcafe/Gridhistory/hi

story.html.

http://www.buyya.com/gridsim/

