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Abstract— Reinforcement learning is an attractive method of machine learning. However, as the state space of a given 

problem increases, reinforcement learning becomes increasingly inefficient. Hierarchical reinforcement learning is one 

method of increasing the efficiency of reinforcement learning. It involves breaking the overall goal of a problem into a 

hierarchy subgoals, and then attempting to achieve each subgoal separately. This paper discusses various approaches 

at hierarchical reinforcement learning, and of automatic subgoal discovery by agents. 
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I. INTRODUCTION  

1.1 Hierarchical Reinforcement Learning Reinforcement 
learning has been applied to various problems with great 

success. However, because of the table structure of state 

action pairs, with large state spaces, reinforcement learning 

becomes increasingly inefficient. A method for dealing with 

this is that of hierarchical reinforcement learning. 

Hierarchical reinforcement learning is an approach to 

reinforcement learning which splits the global goals of a 
reinforcement learning agent up into smaller subgoals, and 

then attempts to tackle each subgoal separately. By doing this 

the state space is decreased and therefore the efficiency 

increased. In [Kaelbling, Littman and Moore, 1996], 

hierarchical reinforcement learning is mentioned as a good 

way of increasing efficiency in reinforcement learning. In 

hierarchical reinforcement learning, conventional methods of 

reinforcement learning are used for learning at each level of 

the hierarchy, and therefore hierarchical reinforcement 

learning does not lose the desirable qualities of reinforcement 

learning. Reinforcement learning is very good at dealing with 
stochastic errors which might creep into the description of the 

state. A hierarchical reinforcement learning approach to 

navigating a gridworld was used in [Bakker and 

Schmidhuber, 2004], and to test its ability to handle stochastic 

errors, the latter were introduced into the description of the 

state. The algorithm dealt with them very well, and was 

almost as efficient as the errorless example. For reinforcement 

learning, the current choices of actions by an agent for its 

different states is known as its policy. In hierarchical 

reinforcement learning, with the breaking up of an overall 

goal into subgoals, comes the introduction of subpolicies. 

These subpolicies are a common aspect in literature on 
hierarchical reinforcement learning and are given different 

names by various researchers, such as actions, options, skills, 

behaviours and modes [Barto and Mahadevan, 2003]. Various 

methods for hierarchical reinforcement learning exist, and 

these will be discussed in greater detail in the rest of this 

paper. 

1.2 An Application of Hierarchical Reinforcement 

Learning 

Hierarchical reinforcement learning has been applied to some 

complex problems with great success. In [Pfeiffer, 2004] a 

hierarchical reinforcement learning approach was used to 

create a program which plays a board game called The 

Settlers of Catan, which is a popular modern board game in 
the German-speaking area. It is a very complex board game 

and therefore a flat reinforcement learning approach would 

have been inefficient. In their approach they use hierarchical 

reinforcement learning and model trees for value function 

approximation. Both Q-learning and SARSA are used as the 

conventional reinforcement learning algorithms at different 

stages of the learning process. Self-play is used for the actual 

training process. Self-play is a method where an agent is 

played against a copy of itself. Self-play is used for learning 

strong policies in adverserial domains. The major drawback 

of self-play though is that without sufficient exploration, 
agents only learn to play against a very small set of policies. 

1.3 Value Function Approximation 

Another way of dealing with very large state spaces is to use 

value function approximators, which try to map the state-

action pairs to some form of function rather than storing all 

state-action pairs in a table, as described in [Sutton and Barto, 

1998]. One of the most impressive applications of 

reinforcement learning to date is that of TD-Gammon by 

[Tesauro,1995], which made use of value function 

approximation. TD-Gammon is a backgammon playing 

program that used the reinforcement learning algorithm 

TD(_), and nonlinear function approximation using a 
multilayer neural network trained by backpropagating TD 

errors. This program was very successful and by the third 

version was playing at the level of the best human players in 

the world. The program played the opening moves differently 

from the conventional way of playing them, to great success, 

and the best players in the world have now altered their way 

of playing to be like that of TD-Gammon. There are various 

methods of value function approximation and not all of them 

are effective for all situations. [Sutton and Barto, 1998] 

describes how for bootstrapping methods of reinforcement 

learning, value function approximation only works over a 
rather narrow range of conditions. Even with function 

approximation, with increasingly complex problems, 
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reinforcement learning gets increasingly inefficient. Value 

function approximation is an alternative approach to reducing 

the state space, and can also be used in conjunction with 

hierarchical reinforcement learning, as in [Pfeiffer, 2004]. 

However, for this paper, I will not discuss value functions any 

further, but see [Sutton and Barto, 1998]. 

II. DIFFERENT APPROACHES TO HIERARCHICAL 

REINFORCEMENT LEARNING 

As [Bakker and Schmidhuber, 2004] highlights, most studies 

on hierarchical reinforcement learning assume that the actual 

hierarchical structure is given by the designer, and the agent is 

allowed to learn within this concrete structure. For most 

problems, where the hierarchical structure can easily be 

extracted, this is sufficient. However, in some cases, it might 

be desirable for the agent itself to be able to identify subgoals, 

as this minimizes the designers role in the system. It also 

makes the learning process more flexible, as an agent can 

automatically learn a new hierarchical structure, if the 
hierarchical structure is suddenly changed. In this section I 

will give a brief overview of some commom algorithms of 

hierarchical reinforcement learning, starting with those in 

which the hierarchical structure is supplied by the designer, 

and then those in which the agent attempts to uncover the 

hierarchical structure for itself. 

2.1 Navigating Continuous Spaces using Hierarchical 

Reinforcement Learning 

[Borga, 1993] describes his algorithm for hierarchical 

reinforcement learning in which two different hierarchical 

levels are given by the designer. The lower level is made up 
of certain actions, and the higher level is a set of strategies, 

each strategy consisting of a series of actions. The algorithm 

he describes is specifically for navigating continuous 

environments and hence the possible actions are a set of 

vectors, specifying in which direction to move. He gives an 

example problem, to which his algorithm could be applied, of 

trying to walk around an obstacle. In this case, an action 

would be a step in a certain direction and two different 

strategies would be to either choose a path to the left of the 

obstacle, or a path to the right of the obstacle. 

2.2 Feudal Reinforcement Learning 

[Dayan and Hinton, 1993] give an approach to hierarchical 
reinforcement learning, in which the hierarchical structure is 

given by the designer. They call it Feudal reinforcement 

learning and in it, they apply their algorithm to a task in 

which an agent has to navigate a grid world maze which 

contains in it a barrier. The hierarchical structure is designed 

by the designer to consist of multiple levels. At each level of 

the hierarchy the grid world blocks are grouped into 

increasingly large blocks, as in figure 1. Managers are 

assigned at each level of the hierarchy. Managers are in 

charge of choosing which sub-manager to assign next to 

complete a desired goal . Therefore each manager will have a 
super-manager, except for the highest level manager. In the 

same way, every manager will have a number of different 

submanagers which it will have control over, and only the 

lowest level managers are allowed to perform actions inside 

the grid world. There are certain rules that need to be applied 

when applying this method. Managers must reward sub-

managers for achieving the manager’s desired task, even if 

this task is not desired by the super-manager. Similarly, sub-

managers do not get rewarded even if they perform the 

desired task of the super-manager, unless they satisfy what the 

manager has told them to do. Therefore rewards are strictly 
only given one level down the hierarchy. 

  
Figure 1: Hierarchical breakdown of a maze into sub-mazes 

from [Dayan and Hinton, 1993] 

Managers also only need to know the state of the system at 

the granularity of their own choice of tasks. In testing the 

performance of this system, the designers tested it on a given 
gridworld and compared the results to that of a flat 

reinforcement learning agent. For the first few iterations, the 

flat reinforcement learning agent outperformed the Feudal 

reinforcement learning agent, but the Feudal reinforcement 

learning agent quickly overtook the performance of the flat 

reinforcement learning agent and after about 500 iterations 

was by far outperforming it. 

2.3 MAXQ Value Function decomposition 

Another method of hierarchical reinforcement learning, called 

MAXQ value function decomposition, is proposed by 

[Dieterich, 1999]. It is an algorithm which expects the 
hierarchical structure to be supplied by the designer. It 

suggests breaking the main problem’s value function up into 

an additive combination of smaller value functions, each 

associated with a smaller problem. As an example the author 

gives a problem where a taxi agent needs to move around a 

gridworld picking up and dropping off passengers at there 

desired locations. The author breaks up the problem into a 

hierarchy of problems, represented by figure 2. The MAXQ 

algorithm is tested against flat Q-Learning and significantly 

outperforms it. 
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 Figure 2: Hierarchy of subproblems for the taxi problem from 

[Dieterich, 1999] 

2.4 Reducing the State Space in Hierarchical 

Reinforcment Learning 

[Asadi and Huber, 2004] give a method for dividing up the 

global state space of a problem into smaller state spaces. 

Their method is an extension of a method called _-learning. It 

describes how a problem’s state space can be divided up into 

a series of intervals if the states in the same interval block 

have the same properties in terms of transitions and rewards. 

This type of division can be used to reduce the overall state 

space of the given problem. This method is not directly 

related to my work. However, the different divisions of the 
state space could be thought of as subgoals, and hence we 

could say that this method fits in with the idea of 

automatically discovering subgoals. This method was tested 

on a gridworld problem to see its ability to reduce state space. 

The algorithm worked well, and reduced the state space to the 

full extent which the restrictions of the method allowed. 

2.5 Automatic Discovery of Subgoals in Hierarchical 

Reinforcement Learning Using Diverse Density 

[McGovern and Barto, 2001] propose another algorithm for 

the automatic discovery of subgoals. Their theory is that 

subgoals often occur at bottlenecks in the state space. As an 

example they describe a gridworld in which there are different 
rooms and connecting the rooms are doorways. If an agent 

starts inside one room, and the goal is in another room, 

getting through the door to the other room could be thought of 

as a subgoal, because it needs to be accomplished before the 

final goal is reached. The doorway can also be thought of as a 

bottleneck in the state space, and hence the correlation 

between bottlenecks and subgoals. Bottlenecks are not 

confined to navigation tasks though, and the concept of 

bottlenecks can be applied to a range of different state spaces. 

As a general definition of bottlenecks the authors talk about 

an agents path through the state space as its trajectory, and say 
that a bottleneck is a region which the agent experiences 

somewhere in the state space on every successful trajectory, 

but not at all on an unsuccessful trajectory. A method of 

finding bottlenecks for general state spaces, and hence for 

finding subgoals is then given, which uses the concept of 

diverse density. 

These types of bottleneck subgoals show that the reason 

hierarchical reinforcement learning would be more efficient 
than flat reinforcement learning isn’t only because breaking 

goals up into subgoals significantly decreases the state space, 

but also because it enables more efficient exploration. In flat 

reinforcement learning, if an agent starts in a room, but has to 

get through a door to get to the goal, it might spend far too 

much time exploring the first room, because the chances of it 

finding its way through the door while still exploring are quite 

slim. The algorithm was tested in a gridworld navigation task, 

and the agent correctly identified a doorway as a subgoal. 

2.6 Automatic Discovery of Subgoals Using Learned 

Policies 

[Goel and Huber, 2003] offer another method of automatic 
subgoal discovery. The authors agree with [McGovern and 

Barto, 2001] that a good example of a subgoal is that of a 

doorway in a gridworld navigation task. They describe a 

subgoal as a state with the following structural property: the 

state space trajectories originating from a significantly larger 

than expected number of states lead to the subgoal state while 

its successor state does not have this property. This property 

is due to the fact that states that are not a subgoal have a much 

higher connectivity than states that are a subgoal. This can be 

understood quite easily by considering the gridworld 

navigation task. The doorways have much less connectivity 
with other states than the open spaces in the rooms, and 

therefore would be identified as subgoals by this algorithm, 

which is what is desired. This algorithm was also tested on a 

gridworld navigation task, where there were multiple 

doorways, and the algorithm recognised all doorways as 

subgoals, except one, which it failed to recognise as a 

subgoal. The authors explained that the reason for this one 

failure was that the size of the room with the undiscovered 

doorway subgoal was significantly smaller than the other 

rooms. Although this did not seem like a significant 

drawback, it suggests that this algorithm may have 

limitations. 

III. CONCLUSION 

Because of the advantages of automatic subgoal discovery, 

current research in hierarchical reinforcement learning seems 

to be focused mainly on getting agents to automatically 

discover subgoals for themselves. These are very useful, 

because the more the agent can 

figure out on its own, the more flexible and environment 

independent it will be. Various algorithms have been formed 

for the application of hierarchical reinforcement learning, but 

because this is a recent area of study, theories are quickly 

building on each other and changing. For an actual 
implementation of hierarchical reinforcement learning to a 

problem a specific solution may have to be tailor made, and 

various algorithms may need to be mixed in order to achieve 

the desired result. 
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