
 Akshat Agrawal al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1, Issue 2,
September 2014, pp. 206-209

 © 2014 IJRAA All Rights Reserved page - 206-

Analytical Study on Hierarchical

Reinforcement learning through Neural

Network

Akshat Agrawal

Assistant Professor, CSE Dept. ASET, Amity University Haryana, India
Abstract— Reinforcement learning is an attractive method of machine learning. However, as the state space of a given

problem increases, reinforcement learning becomes increasingly inefficient. Hierarchical reinforcement learning is one

method of increasing the efficiency of reinforcement learning. It involves breaking the overall goal of a problem into a

hierarchy subgoals, and then attempting to achieve each subgoal separately. This paper discusses various approaches

at hierarchical reinforcement learning, and of automatic subgoal discovery by agents.

 Keywords— Reinforcement learning, hierarchical reinforcement learning.

I. INTRODUCTION

1.1 Hierarchical Reinforcement Learning Reinforcement
learning has been applied to various problems with great

success. However, because of the table structure of state

action pairs, with large state spaces, reinforcement learning

becomes increasingly inefficient. A method for dealing with

this is that of hierarchical reinforcement learning.

Hierarchical reinforcement learning is an approach to

reinforcement learning which splits the global goals of a
reinforcement learning agent up into smaller subgoals, and

then attempts to tackle each subgoal separately. By doing this

the state space is decreased and therefore the efficiency

increased. In [Kaelbling, Littman and Moore, 1996],

hierarchical reinforcement learning is mentioned as a good

way of increasing efficiency in reinforcement learning. In

hierarchical reinforcement learning, conventional methods of

reinforcement learning are used for learning at each level of

the hierarchy, and therefore hierarchical reinforcement

learning does not lose the desirable qualities of reinforcement

learning. Reinforcement learning is very good at dealing with
stochastic errors which might creep into the description of the

state. A hierarchical reinforcement learning approach to

navigating a gridworld was used in [Bakker and

Schmidhuber, 2004], and to test its ability to handle stochastic

errors, the latter were introduced into the description of the

state. The algorithm dealt with them very well, and was

almost as efficient as the errorless example. For reinforcement

learning, the current choices of actions by an agent for its

different states is known as its policy. In hierarchical

reinforcement learning, with the breaking up of an overall

goal into subgoals, comes the introduction of subpolicies.

These subpolicies are a common aspect in literature on
hierarchical reinforcement learning and are given different

names by various researchers, such as actions, options, skills,

behaviours and modes [Barto and Mahadevan, 2003]. Various

methods for hierarchical reinforcement learning exist, and

these will be discussed in greater detail in the rest of this

paper.

1.2 An Application of Hierarchical Reinforcement

Learning

Hierarchical reinforcement learning has been applied to some

complex problems with great success. In [Pfeiffer, 2004] a

hierarchical reinforcement learning approach was used to

create a program which plays a board game called The

Settlers of Catan, which is a popular modern board game in
the German-speaking area. It is a very complex board game

and therefore a flat reinforcement learning approach would

have been inefficient. In their approach they use hierarchical

reinforcement learning and model trees for value function

approximation. Both Q-learning and SARSA are used as the

conventional reinforcement learning algorithms at different

stages of the learning process. Self-play is used for the actual

training process. Self-play is a method where an agent is

played against a copy of itself. Self-play is used for learning

strong policies in adverserial domains. The major drawback

of self-play though is that without sufficient exploration,
agents only learn to play against a very small set of policies.

1.3 Value Function Approximation

Another way of dealing with very large state spaces is to use

value function approximators, which try to map the state-

action pairs to some form of function rather than storing all

state-action pairs in a table, as described in [Sutton and Barto,

1998]. One of the most impressive applications of

reinforcement learning to date is that of TD-Gammon by

[Tesauro,1995], which made use of value function

approximation. TD-Gammon is a backgammon playing

program that used the reinforcement learning algorithm

TD(_), and nonlinear function approximation using a
multilayer neural network trained by backpropagating TD

errors. This program was very successful and by the third

version was playing at the level of the best human players in

the world. The program played the opening moves differently

from the conventional way of playing them, to great success,

and the best players in the world have now altered their way

of playing to be like that of TD-Gammon. There are various

methods of value function approximation and not all of them

are effective for all situations. [Sutton and Barto, 1998]

describes how for bootstrapping methods of reinforcement

learning, value function approximation only works over a
rather narrow range of conditions. Even with function

approximation, with increasingly complex problems,

 Akshat Agrawal al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1, Issue 2,
September 2014, pp. 206-209

 © 2014 IJRAA All Rights Reserved page - 207-

reinforcement learning gets increasingly inefficient. Value

function approximation is an alternative approach to reducing

the state space, and can also be used in conjunction with

hierarchical reinforcement learning, as in [Pfeiffer, 2004].

However, for this paper, I will not discuss value functions any

further, but see [Sutton and Barto, 1998].

II. DIFFERENT APPROACHES TO HIERARCHICAL

REINFORCEMENT LEARNING

As [Bakker and Schmidhuber, 2004] highlights, most studies

on hierarchical reinforcement learning assume that the actual

hierarchical structure is given by the designer, and the agent is

allowed to learn within this concrete structure. For most

problems, where the hierarchical structure can easily be

extracted, this is sufficient. However, in some cases, it might

be desirable for the agent itself to be able to identify subgoals,

as this minimizes the designers role in the system. It also

makes the learning process more flexible, as an agent can

automatically learn a new hierarchical structure, if the
hierarchical structure is suddenly changed. In this section I

will give a brief overview of some commom algorithms of

hierarchical reinforcement learning, starting with those in

which the hierarchical structure is supplied by the designer,

and then those in which the agent attempts to uncover the

hierarchical structure for itself.

2.1 Navigating Continuous Spaces using Hierarchical

Reinforcement Learning

[Borga, 1993] describes his algorithm for hierarchical

reinforcement learning in which two different hierarchical

levels are given by the designer. The lower level is made up
of certain actions, and the higher level is a set of strategies,

each strategy consisting of a series of actions. The algorithm

he describes is specifically for navigating continuous

environments and hence the possible actions are a set of

vectors, specifying in which direction to move. He gives an

example problem, to which his algorithm could be applied, of

trying to walk around an obstacle. In this case, an action

would be a step in a certain direction and two different

strategies would be to either choose a path to the left of the

obstacle, or a path to the right of the obstacle.

2.2 Feudal Reinforcement Learning

[Dayan and Hinton, 1993] give an approach to hierarchical
reinforcement learning, in which the hierarchical structure is

given by the designer. They call it Feudal reinforcement

learning and in it, they apply their algorithm to a task in

which an agent has to navigate a grid world maze which

contains in it a barrier. The hierarchical structure is designed

by the designer to consist of multiple levels. At each level of

the hierarchy the grid world blocks are grouped into

increasingly large blocks, as in figure 1. Managers are

assigned at each level of the hierarchy. Managers are in

charge of choosing which sub-manager to assign next to

complete a desired goal . Therefore each manager will have a
super-manager, except for the highest level manager. In the

same way, every manager will have a number of different

submanagers which it will have control over, and only the

lowest level managers are allowed to perform actions inside

the grid world. There are certain rules that need to be applied

when applying this method. Managers must reward sub-

managers for achieving the manager’s desired task, even if

this task is not desired by the super-manager. Similarly, sub-

managers do not get rewarded even if they perform the

desired task of the super-manager, unless they satisfy what the

manager has told them to do. Therefore rewards are strictly
only given one level down the hierarchy.

Figure 1: Hierarchical breakdown of a maze into sub-mazes

from [Dayan and Hinton, 1993]

Managers also only need to know the state of the system at

the granularity of their own choice of tasks. In testing the

performance of this system, the designers tested it on a given
gridworld and compared the results to that of a flat

reinforcement learning agent. For the first few iterations, the

flat reinforcement learning agent outperformed the Feudal

reinforcement learning agent, but the Feudal reinforcement

learning agent quickly overtook the performance of the flat

reinforcement learning agent and after about 500 iterations

was by far outperforming it.

2.3 MAXQ Value Function decomposition

Another method of hierarchical reinforcement learning, called

MAXQ value function decomposition, is proposed by

[Dieterich, 1999]. It is an algorithm which expects the
hierarchical structure to be supplied by the designer. It

suggests breaking the main problem’s value function up into

an additive combination of smaller value functions, each

associated with a smaller problem. As an example the author

gives a problem where a taxi agent needs to move around a

gridworld picking up and dropping off passengers at there

desired locations. The author breaks up the problem into a

hierarchy of problems, represented by figure 2. The MAXQ

algorithm is tested against flat Q-Learning and significantly

outperforms it.

 Akshat Agrawal al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1, Issue 2,
September 2014, pp. 206-209

 © 2014 IJRAA All Rights Reserved page - 208-

 Figure 2: Hierarchy of subproblems for the taxi problem from

[Dieterich, 1999]

2.4 Reducing the State Space in Hierarchical

Reinforcment Learning

[Asadi and Huber, 2004] give a method for dividing up the

global state space of a problem into smaller state spaces.

Their method is an extension of a method called _-learning. It

describes how a problem’s state space can be divided up into

a series of intervals if the states in the same interval block

have the same properties in terms of transitions and rewards.

This type of division can be used to reduce the overall state

space of the given problem. This method is not directly

related to my work. However, the different divisions of the
state space could be thought of as subgoals, and hence we

could say that this method fits in with the idea of

automatically discovering subgoals. This method was tested

on a gridworld problem to see its ability to reduce state space.

The algorithm worked well, and reduced the state space to the

full extent which the restrictions of the method allowed.

2.5 Automatic Discovery of Subgoals in Hierarchical

Reinforcement Learning Using Diverse Density

[McGovern and Barto, 2001] propose another algorithm for

the automatic discovery of subgoals. Their theory is that

subgoals often occur at bottlenecks in the state space. As an

example they describe a gridworld in which there are different
rooms and connecting the rooms are doorways. If an agent

starts inside one room, and the goal is in another room,

getting through the door to the other room could be thought of

as a subgoal, because it needs to be accomplished before the

final goal is reached. The doorway can also be thought of as a

bottleneck in the state space, and hence the correlation

between bottlenecks and subgoals. Bottlenecks are not

confined to navigation tasks though, and the concept of

bottlenecks can be applied to a range of different state spaces.

As a general definition of bottlenecks the authors talk about

an agents path through the state space as its trajectory, and say
that a bottleneck is a region which the agent experiences

somewhere in the state space on every successful trajectory,

but not at all on an unsuccessful trajectory. A method of

finding bottlenecks for general state spaces, and hence for

finding subgoals is then given, which uses the concept of

diverse density.

These types of bottleneck subgoals show that the reason

hierarchical reinforcement learning would be more efficient
than flat reinforcement learning isn’t only because breaking

goals up into subgoals significantly decreases the state space,

but also because it enables more efficient exploration. In flat

reinforcement learning, if an agent starts in a room, but has to

get through a door to get to the goal, it might spend far too

much time exploring the first room, because the chances of it

finding its way through the door while still exploring are quite

slim. The algorithm was tested in a gridworld navigation task,

and the agent correctly identified a doorway as a subgoal.

2.6 Automatic Discovery of Subgoals Using Learned

Policies

[Goel and Huber, 2003] offer another method of automatic
subgoal discovery. The authors agree with [McGovern and

Barto, 2001] that a good example of a subgoal is that of a

doorway in a gridworld navigation task. They describe a

subgoal as a state with the following structural property: the

state space trajectories originating from a significantly larger

than expected number of states lead to the subgoal state while

its successor state does not have this property. This property

is due to the fact that states that are not a subgoal have a much

higher connectivity than states that are a subgoal. This can be

understood quite easily by considering the gridworld

navigation task. The doorways have much less connectivity
with other states than the open spaces in the rooms, and

therefore would be identified as subgoals by this algorithm,

which is what is desired. This algorithm was also tested on a

gridworld navigation task, where there were multiple

doorways, and the algorithm recognised all doorways as

subgoals, except one, which it failed to recognise as a

subgoal. The authors explained that the reason for this one

failure was that the size of the room with the undiscovered

doorway subgoal was significantly smaller than the other

rooms. Although this did not seem like a significant

drawback, it suggests that this algorithm may have

limitations.

III. CONCLUSION

Because of the advantages of automatic subgoal discovery,

current research in hierarchical reinforcement learning seems

to be focused mainly on getting agents to automatically

discover subgoals for themselves. These are very useful,

because the more the agent can

figure out on its own, the more flexible and environment

independent it will be. Various algorithms have been formed

for the application of hierarchical reinforcement learning, but

because this is a recent area of study, theories are quickly

building on each other and changing. For an actual
implementation of hierarchical reinforcement learning to a

problem a specific solution may have to be tailor made, and

various algorithms may need to be mixed in order to achieve

the desired result.

 Akshat Agrawal al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1, Issue 2,
September 2014, pp. 206-209

 © 2014 IJRAA All Rights Reserved page - 209-

IV. REFERENCES

[1]. Asadi, M and Huber, M (2004). State Space
Reduction for Hierarchical Reinforcement

[2]. Learning. In Proceedings of the 17th International

FLAIRS Conference, pp. 509 - 514, Miami Beach,

FL. 2004 AAAI.

[3]. Bakker, B and Schmidhuber, J (2004). Hierarchical

Reinforcement Learning Based on Subgoal

Discovery and Subpolicy Specialization. In F.

Groen, N. Amato, A. Bonarini, E.Yoshida, and B.

Krse (Eds.), Proceedings of the 8-th Conference on

IntelligentAutonomous Systems, IAS-8, Amsterdam,

The Netherlands, p. 438-445.

[4]. Barto, A and Mahadevan, S (2003). Recent advances
in hierarchical reinforcement learning. DiscreteEvent

Systems journal, 2003.

[5]. Borga, M (1993). Hierarchical Reinforcement

Learning. S. Gielen and B. Kappen, ICANN’93,

Springer-Verlag, Amsterdam, p. 513

[6]. Dayan, P and Hinton, GE (1993). Feudal

Reinforcement Learning. In Advances in Neural

Information Processing Systems 5, 1993. Morgan

Kaufmann, San Mateo, CA

[7]. Dietterich, TG (1999). Hierarchical Reinforcement

Learning with the MAXQ Value Function
Decomposition. In Fifteenth International

Conference on Machine Learning.

[8]. Goel, S and Huber, M (2003). Subgoal Discovery for

Hierarchical Reinforcement Learning Using Learned

Policies, In Proceedings of the 16th International

FLAIRS Conference, pp. 346-350, St. Augustine,

FL. 2003 AAAI

[9]. Kaelbling LP, Littman ML and Moore AW, (1996).

Reinforcement Learning: A Survey. Journal of

Artifcial Intelligence Research, 4:237-285, 1996.

[10]. McGovern, A and Barto, A (2001).

Automatic discovery of subgoals in reinforcement
learning using diverse density. Proc. 18th

International Conf. on Machine Learning, 2001

[11]. Pfeiffer, M (2004). Reinforcement Learning

of Strategies for Settlers of Catan. Proceedings of the

International Conference on Computer Games:

Artificial Intelligence, Design and Education,

Reading, UK. November 2004

[12]. Sutton, RS and Barto, AG (1998).

Reinforcement Learning: An Introduction. MIT

Press, Cambridge, MA, 1998.

[13]. Tesauro, GJ (1995). Temporal Difference
Learning and TD-Gammon. Communications of the

ACM

