
Dr. Gundeep Tanwar al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 3, December 2014, pp. 74-79

 © 2014 IJRRA All Rights Reserved page - 75-

Shortest Path Algorithms Techniques in

Case retrieval phase of case-based

Reasoning

Dr. Gundeep Tanwar

Associate Professor, BRCM College of Engineering, Bhiwani, Haryana

Abstract— This paper discuss the shortest path algorithm in the case retrieval phase of the case-based reasoning approach.

The case-based reasoning approach is mainly used in the problem solving phenomena with utilization of past problem

solving experiences. The case retrieval phase is concerned with finding the similar cases in the case base. this phase makes

the impact on the performance of the case-based reasoning system. There exists multiple case retrieval phases,

Shortest paths, or close to shortest paths, are commonly used in everyday situations. The paper reviews the various

algorithms available for the problem. One of the famous technique Dijkstra’s algorithm solves the single-source shortest

path problem on any directed graph in O(m+nlogn) worst-case time when a Fibonacci heap is used as the frontier set

data structure.

 Keywords— Case-based reasoning, case retrieval, Shortest path algorithm.

I. INTRODUCTION

Case-based reasoning is a problem solving paradigm that in

many respects is fundamentally different from other major AI

approaches. Instead of relying solely on general knowledge of

a problem domain, or making associations along generalized

relationships between problem descriptors and conclusions,

CBR is able to utilize the specific knowledge of previously

experienced, concrete problem situations (cases). A new

problem is solved by finding a similar past case, and reusing it

in the new problem situation. A second important difference is

that CBR also is an approach to incremental, sustained learning,

since a new experience is retained each time a problem has been

solved, making it immediately available for future problems.

The CBR field has grown rapidly over the last few years, as

seen by its increased share of papers at major conferences,

available commercial tools, and successful applications in daily

use.

The description of CBR principles, methods, and systems is

made within a general analytic scheme. Other authors have

recently given overviews of case-based reasoning. To solve a

new problem, the CBR remembers previous similar situation

and reuses information and knowledge of that situation. The

CBR paradigm covers a range of different methods for

organizing, retrieving, utilizing and indexing the knowledge

retained in past cases. Cases may be kept as concrete

experiences, or a set of similar cases may form a generalized

case. Cases may be stored as separate knowledge units, or

splitted up into subunits and distributed within the knowledge

structure. Cases may be indexed by a prefixed or open

vocabulary, and within a flat or hierarchical index structure.

The solution from a previous case may be directly applied to

the present problem, or modified according to differences

between the two cases. The matching of cases, adaptation of

solutions, and learning from an experience may be guided and

supported by a deep model of general domain knowledge, by

more shallow and compiled knowledge, or be based on an

apparent, syntactic similarity only.

CBR methods may be purely self-contained and automatic, or

they may interact heavily with the user for support and guidance

of its choices. Some CBR method assume a rather large amount

of widely distributed cases in its case base, while others are

based on a more limited set of typical ones. Past cases may be

retrieved and evaluated sequentially or in parallel. Actually,

"case-based reasoning" is just one of a set of terms used to refer

to systems of this kind.

II. CASE RETRIEVAL PHASE

A CBR tool should support the four main processes of CBR:

retrieval, reuse, revision and retention. A good tool should

support a variety of retrieval mechanisms and allow them to be

mixed when necessary. In addition, the tool should be able to

handle large case libraries with retrieval time increasing

linearly (at worst) with the number of cases

Case retrieval is a process that a retrieval algorithm retrieves the

most similar cases to the current problem. Case retrieval

requires a combination of search and matching. In general, two

retrieval techniques are used by the major CBR applications:

nearest neighbor retrieval algorithm and inductive retrieval

algorithm.

Nearest-Neighbor Retrieval

Nearest-neighbor retrieval is a simple approach that computes

the similarity between stored cases and new input case based on

weight features. A typical evaluation function is used to

compute nearest-neighbor matching [Kolodner, 1993] as shown

in Figure 1:

Figure 1 Nearest-neighbor evaluation function

Where wi is the importance weight of a feature, sim is the

similarity function of features, and fi
I and fi

R are the values

for feature i in the input and retrieved cases respectively.












n

i

i

R

i

I

i

n

i

i

RI

w

ffsimw

CaseCasesimilarity

1

1

),(

),(

Dr. Gundeep Tanwar al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 3, December 2014, pp. 74-79

 © 2014 IJRRA All Rights Reserved page - 76-

Figure 3.2 Finding the nearest neighbor of the new case

NC.

Figure 2 displays a simple scheme for nearest-neighbor

matching. In this 2-dimensional space, case3 is selected as the

nearest neighbor because similarity(NC, case3)> similarity(NC,

case1) and similarity(NC, case3)> similarity(NC, case2).

III. REVIEW OF LITERATURE

Pan et al. (2007) presented a novel algorithm for automatically

mining a high-quality case base from a raw case set that could

preserve and sometimes even improve the competence of case-

based reasoning. In this paper, they analyzed two major

problems in previous case-mining algorithms. The first problem

was caused by noisy cases such that the nearest neighbor cases

of a problem may not provide correct solutions. The second

problem was caused by uneven case distribution, such that

similar problems may have dissimilar solutions. To solve these

problems, they developed a theoretical framework for the error

bound in case-based reasoning, and proposed a novel case-base

mining algorithm guided by the theoretical results that returned

a high-quality case base from raw data efficiently. They

supported their theory and algorithm with extensive empirical

evaluation using different benchmark data sets.

Wang et al. (2007) presented a new cost estimation concept

based on the case-based reasoning (CBR) approach instead of a

traditionally intuitive estimation method. In CBR model, two

retrieval techniques, ‘Inductive Indexing’ and ‘Nearest

Neighbor’, were then applied to retrieve relevant cases from the

knowledge-based database. Two of the most common types of

Taiwan historical buildings were tested to explore the

restoration cost implications. The result revealed that the CBR

solution could effectively predict the actual restoration cost,

solve order change problems, and reduce the budget review

time. These applications were also useful for many other

countries, especially for those seismic belt regions, that were

facing similar problems regarding historical building

restoration.

Gomes et al. (2004) developed a system capable of providing

these requirements. It had a central knowledge base that could

be used through Case-Based Reasoning. The knowledge base

integrated a common ontology called WordNet, providing

classification for software objects. This paper focuses on the

retrieval of design models using the combination of WordNet

and Case-Based Reasoning. They also presented a retrieval

example, and experimental work showing the performance of

the retrieval and ranking mechanisms.

Velandia et al. (2008) developed proposed most CBR retrieval

algorithms which employed a modified version of the nearest

neighbour rule that used a distance function as similarity

measure, which in turn depends upon the attribute type. The

application of moment-based retrieval used in image

recognition for CBR retrieval is studied in this paper.

Comparison with the classical retrieval algorithms that used

standard distance measures showed that low-order geometric,

central, and Legendre moments retrieve the same cases as the

Euclidean distance does, whereas high-order geometric, central,

and Legendre moments retrieved different cases. It was

suggested that there was not a single distinguished approach to

similarity in CBR, rather CBR systems should allow the

integration of different approaches to similarity and the

selection of different concepts.

The use of shorter paths occurs naturally when traveling

between two locations, whether this is travel from one room to

another, from one street address to another, or from one city to

another. Taking a long path typically makes no sense, since

doing so results in time being wasted. Thus, shorter paths are

preferred for reasons of efficiency. To achieve the greatest

efficiency when traveling between two points, it is necessary to

take a path that is shortest among all possible paths; that is, the

shortest path. Generally speaking, a shortest path is one of

minimal cost.

The problem of computing shortest paths commonly arises

when the most cost-efficient route through a transportation or

communication network needs to be found. In the case of

transportation, cost may be represented by a combination of

factors, including distance traveled, time spent, fuel used, tolls

paid, or many other factors.

Basic Terminology:-
The exact definition being used for cost depends on the specific

problem being solved. While shorter paths tend to be used

naturally, determining truly shortest paths allows more efficient

use of networks. Solving shortest paths by plain intuition is not

always guaranteed to obtain the correct result. The truly shortest

path, or that of minimum cost, is not always the most obvious

choice.

For example, consider finding the shortest path in order to

minimize the time spent traveling between two locations in a

city. Here cost is measured in terms of the time spent traveling.

The shortest path may require taking a detour in order to avoid

traffic congestion. Such a path can be completely different from

the path that is shortest in terms of distance traveled. Even with

cost defined as distance traveled the correct choice of shortest

path may be counter-intuitive. Furthermore, large shortest path

problems are typically too complex to solve accurately by hand.

By computing shortest paths, rather than using intuition, a

correct result can always be obtained. Shortest path problems in

general are described using the concept of a graph may be either

directed or undirected. The edges in an undirected graph have

no direction associated with them, and can be thought of as

allowing travel in both directions.

In contrast, the edges in a directed graph have an associated

direction, which can be thought of as specifying the direction of

travel. Think of edges in a directed graph as being one-way, and

edges in an undirected graph as two-way. The edges of a graph

can be weighted, in which case each edge has an associated

cost. In the case of a transportation network, this cost may be

the distance along a road between two vertices.

Shortest path problems are represented using directed graphs,

since the cost from one vertex to another may be different in the

case1

case2

case3

NC

NC - New Case

feature2

feature1

similarity(NC, case3)

similarity(NC, case1)

similarity(NC, case2)

Dr. Gundeep Tanwar al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 3, December 2014, pp. 74-79

 © 2014 IJRRA All Rights Reserved page - 77-

opposite direction. The edges in a graph form paths connecting

vertices. Any such path similarly has an associated cost (or

distance), which corresponds to the sum of costs of edges along

the path. The existence of alternative paths between a pair of

vertices in a graph

IV. SEARCH ALGORITHMS

One possible approach to solving shortest path problems would

be to pre-calculate and store the shortest path from every node

to every possible other node, which would allow us to answer a

shortest path query in constant time. Unfortunately the required

storage size and computation time grows with the square of the

number of nodes. With realistic road networks in mind this

processing would take years if not decades and be virtually

impossible to store. Hence to overcome this problem we require

real time search techniques. From previous studies we know

that the implementation of labelling algorithms is the fastest for

one-to-one searches. Two aspects are particularly important to

the shortest path algorithms discussed in this project:

1. the strategies used to select the next node to be visited during

a search, and

2. the data structures utilized to maintain the set of previously

visited nodes.

A number of data structures can be used to manipulate the set

of nodes in order to support search strategies. These data

structures include arrays, singly and doubly linked lists, stacks,

heaps, buckets and queues. Detailed definitions and operations

related to these data structures are standard knowledge and are

well documented. Past research has concentrated mainly on the

issue of data structures, which can be manipulated and bounded

to form clever techniques in creating priority queues for

selecting nodes to be scanned. A good example of this is the

Dijkstra implementation with double buckets. In a labeling

algorithm, the number of visited nodes during a search is a good

indication of the size of the search space. This means that a

search strategy which visits fewer nodes during a search is

generally more efficient in terms of processing speed. The

number of nodes visited depends on the depth d (i.e. the number

of arcs on the optimal path) of the destination from the origin,

and the branching factor b. For a ‘best first search’ the number

of nodes explored during a search is of the order O(bd). This

exponential growth in the number of explored nodes is known

as “combinatorial explosion” and is the main obstacle in

computing shortest paths in large networks. (Note that even

though Dijkstra’s algorithm is polynomial in the number of

nodes n in

the graph, this bound is no restriction on how the number of

nodes visited varies with d). For general search this exponential

growth with depth makes many problems unsolvable on current

hardware, as memory is soon exhausted and a solution may take

an unreasonable time to compute. These effects can be lessened

by using artificial intelligence (heuristic type) techniques which

will be discussed later. However let us first define and

implement Dijkstra’s labeling algorithm.

Dijkstra’s Naive Implementation:

Dijkstra’s labeling method is a central procedure in shortest

path algorithms. The output of the labeling method is an out-

tree from a source node s, to a set of nodes L. An out-tree is a

tree originating from the source node to other nodes to which

the shortest distance from the source node is known. This out-

tree is constructed iteratively, and the shortest path from s to

any destination node t in the tree is obtained upon termination

of the method. Three pieces of information are required for each

node i in the labeling method while constructing the shortest

path tree:

• the distance label, d(i),

• the parent-node/predecessor p(i),

• the set of permanently labeled nodes L.

The distance label d(i) stores an upper bound on the shortest

path distance from s to i, while p(i) records the node that

immediately precedes node i in the out-tree. If a node has not

yet been added to the out-tree, it is considered ‘unreached’.

Normally the distance label of an unreached node is set to

infinity. When we know that the shortest path from node s to

node i is also the absolute shortest path, then node i is called

permanently labeled. When further improvement is expected to

be made on the distance from the origin to node i, then node i

is considered only temporarily labeled. It follows that d(i) is an

upper bound on the shortest path distance to node i if node i is

temporarily labeled, and d(i) represents the final optimal

shortest path distance to node i if the node is permanently

labeled . By iteratively adding a temporarily labeled node with

the smallest distance label d(i) to the set of permanently labeled

nodes L, Dijkstra’s algorithm guarantees optimality.

One advantage with Dijkstra’s labeling algorithm is that the

algorithm can be terminated when the destination node is

permanently labeled. Most other algorithms guarantee optimal

shortest paths only upon termination when the entire shortest

path tree has been explored.

Symmetrical Dijkstra Algorithm:-

Pohl adapted Dijkstra’s shortest path algorithm to decrease the

size of the search space. Pohl’s algorithm was the first to use

a bi-directional search method. This algorithm consists of a

forward search from an origin node to the destination node and

a backwards search from the destination node to the origin

node. This was done in an attempt to reduce the search

complexity to O(bd/2) compared to O(bd) as with Dijkstra’s

algorithm. This search method assumes that the two searches

grow symmetrically and will meet in some middle area.

Sometimes this might not be the case, and as a worst-case

scenario this might instead become two O(bd) searches.

The Symmetrical or Bi-directional Dijkstra’s algorithm by Pohl

grows two search trees, one from the origin, giving a tree

spanning a set of nodes LF for which the minimum

distance/time from the origin is known, and a second from the

destination that gives a tree spanning a set of nodes LB for

which the minimum distance/time to the destination is known.

We iteratively add one node to either LF or LB until there exists

an arc crossing from LF to LB.

Like Dijkstra’s algorithm Pohl’s bi-directional search chooses

the node with the smallest cost label to label permanently. By

selecting the new permanently labeled node from either the

forward or backward phases we maintain the Dijkstra criterion

required for optimality.

A* Search:-

So far we have examined search techniques that can be

generalized for any network (as long as it does not contain

negative length cycles). However the physical nature of real

road networks motivates investigation into the possible use of

heuristic solutions that exploit the near-Euclidean network

Dr. Gundeep Tanwar al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 3, December 2014, pp. 74-79

 © 2014 IJRRA All Rights Reserved page - 78-

structure to reduce solution times while hopefully obtaining

near optimal paths. For most of these heuristics the goal is to

bias a more focused search towards the destination. As we shall

see, incorporating heuristic knowledge into a search can

dramatically reduce solution times. When the underlying

network is Euclidean or approximately Euclidean as is the case

of road networks, then it is possible to improve the average case

run time of the Dijkstra and Symmetrical Dijkstra algorithms.

This is usually at the expense of optimality; solutions are now

not guaranteed to be the best. Typically when solving problems

on such networks the inherent geometric information is ignored

by algorithms that are directly based or variations on Dijkstra’s

labeling algorithm. The A* algorithm by Hart and Nilsson

formalized the concept of integrating a heuristic into a search

procedure. Instead of choosing the next node to label

permanently as that with the least cost (as measured from the

start node), the choice of node is based on the cost from the start

node plus an estimate of proximity to the destination (a heuristic

estimate). To build a shortest path from the origin s to the

destination t, we

use the original distance from s accumulated along the edges

(as in Dijkstra’s algorithm) plus an estimate of the distance to t.

Thus we use global information about our network to guide the

search for the shortest path from s to t. This algorithm places

more importance on paths leading towards t than paths moving

away from t. In essence the A* algorithm combines two pieces

of information:

1. the current knowledge available about the upper bounds

(given by the distance labels d(i)), and

2. an estimate of the distance from a leaf node of the search tree

to the destination.

There are several ways to estimate the lower bound from a leaf

node in the search tree to the destination node. These

estimations are carried out by so called “evaluation” functions.

The closer this estimate is to a tight lower bound on the distance

to the destination, the better the quality of the A* Search. Hence

the merits of an A* search depends highly on the evaluation

function h(i,j). There are two main evaluation functions used in

the A* search. A true lower bound between two points is the

length of a straight line between those two points (i.e. the

Euclidean distance):

 hₑ(i,t) = √((x(i)-x(t))² + (y(i)-y(t))²)

where x(i), y(i) and x(t), y(t) are the coordinates for node i and

the destination node t respectively. The other commonly used

evaluation function is the Manhattan distance h. In this case the

estimated lower bound distance is the sum of distance in the x

and y coordinates.

 hm(i,t) = ǀ x(i)-x(t) ǀ +ǀ y(i)-y(t) ǀ

The Manhattan distance is not the true lower bound between

two points and hence will typically yield non-optimal results.

By using time as a measure of cost, the network becomes near-

Euclidean. This is because of the varying speeds of roads in the

network. Roads of similar lengths might have different times

associated with using those roads. If the network is not strictly

Euclidean but near-Euclidean then our selection criteria for the

next node to label permanently will not yield optimal results.

By using the A* search, the shortest path tree should now grow

towards t (unlike Dijkstra’s algorithm where the tree grows

approximately radially). As before, the search for the shortest

path is terminated as soon as t is added to the shortest path tree.

Earlier we discussed the problem of combinatorial explosion

with a blind search time complexity in the order of O(bd). With

A* search this is reduced to O(bed) where be is the effective

branching factor. The A* search reduces the search space by

reducing the number of node expansions. Although A* is still

susceptible to the problem of combinatorial explosion, it

decreases the effect by reducing the size of the base in the

complexity term.

Weighted A* Search:-

By choosing an appropriate multiplicative factor we can

increase the contribution of the estimated component in

calculating the label of a vertex (i.e. increase the contribution

of the evaluation function). From an intuitive standpoint this

corresponds to further biasing the forward search towards the

destination and the backward search towards the origin. The

heuristic is parameterized by the multiplicative factor termed

the “overdo” parameter used to weight the evaluation function.

This modification will generally not yield optimal paths, but we

would expect it to further reduce the search space. The aim is

to find an “optimal” multiplicative or overdo factor for which

the running time is significantly improved while the solution

quality is still acceptable. Thus there will be an empirical

time/performance trade-off as a function of the overdo

parameter.

Radius Search

To eliminate or minimize the effects of combinatorial explosion

we need to adopt a search technique similar to the way humans

approach navigation problems. So far we have not implemented

any intelligence within a search which can filter out roads that

are less likely to be traveled on. This type of intelligence

requires some form of historical knowledge about the network.

Since the road network does not change very often it is possible

to calculate auxiliary information in a pre-processing step.

Perhaps the most obvious way to classify the roads in the

network is to identify the class of each road (i.e. motorways,

highways, local roads etc), and then to exploit these classes in

the search. This is similar to the way humans approach routing

problems and is known as Hierarchical Search. Hierarchical

methods offer the prospect of greatly reducing the size of any

search by simplifying the search through a series of simplified

levels, where each of these levels is an abstraction of the

previous level. These abstractions reduce the overall size of the

search space that an algorithm addresses and thus the

complexity of any search is reduced. For route finding,

hierarchical levels are constructed in which higher speed roads

are placed higher up in the hierarchy. However by introducing

these arbitrary hierarchies the path optimality is often lost. The

hierarchical algorithm uses a discrete number of hierarchy

levels. A Radius search is a hierarchical search with a

continuous range of hierarchy levels. A Radius search takes

advantage of the fact that the fastest path between two junctions

is more likely to use a highway than a local road, especially if

the two junctions are far apart. In this method each node i has

an associated radius r(i). Before we consider how r(i) is

calculated, we first examine how radii can be used to restrict a

search. When looking for a shortest path from s to t, a node i is

considered as a possible node to include in the search only if s

Dr. Gundeep Tanwar al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 3, December 2014, pp. 74-79

 © 2014 IJRRA All Rights Reserved page - 79-

or t lies inside a circle of radius r(i) centered at node i. If both

distances are greater than the node radius, the node is simply

ignored. For any given origin and destination node, we can

immediately simplify the network by removing all the nodes

(and associated arcs) whose radii do not encircle the origin or

destination nodes. The radius search is not a search algorithm

by itself, but an independent mechanism of reducing search

complexity. Hence the radius concept can be used in

conjunction with any search algorithm. The effectiveness of the

Radius search depends on the way we calculate.

V. CONCLUSIONS

Case-based reasoning systems are an alternative, in many

situations, to rule-based systems. In many domains and

processes, referring to cases as a means of reasoning can be an

advantage due to the nature of this type of problem solving.

Mostly the case-based reasoning system uses the k-NN

algorithm. By exploiting the physical structure of road

networks, the A* algorithm is able to bias its search towards a

goal and reduce the search space. By using the concept of radii

as a measure of importance of nodes, we are able to incorporate

pre-processing within our shortest path algorithm to further

restrict the search space. This dramatically reduces the search

complexity in terms of the run time performance while still

maintaining an acceptable level of inaccuracy.

REFERENCES

[1]. Aamodt, A. & Plaza, E.. Case-Based Reasoning:

Foundational Issues, Methodological Variations, and

System Approaches. 7(1), (pp. 39-59). AI

Communications, 1994

[2]. Ian Watson & Farhi Marir, ―Case-Based Reasoning:

A Review‖ The Knowledge Engineering Review,

Vol.9 No.4, pp. 1-34, 1994.

[3]. David B. Leake, Case-Based Reasoning: Experiences,

Lessons, and Future Directions. Chapter 1, Menlo

Park: AAAI Press/MIT Press, 1996.

[4]. Nick Cercone, ―Rule-Induction and Case-Based

Reasoning: Hybrid Architectures Appear

Advantageous‖, IEEE Transactions on Knowledge and

Data Engineering, Vol. 11, No. 1, January 1999.

[5]. Zhi-Ying Zhang, ―A Model for Retrieval base on

ANN and Nearest Neighbor Algorithm‖ Proceeding of

Seventh International Conference on Machine

Learning & Cybernetics, 142-147, 2008.

[6]. Jin Qi, Jie Hu, ―A new adaptation method based on

adaptability under k-nearest neighbors for case

adaptation in case-based design‖, Expert Systems with

Applications Volume 39, Issue 7, 1 June 2012, Pages

6485–6502

[7]. Reyes Pavón Rial and Rosalia Laza Fidalgo,,

―Improving the Revision Stage of a CBR System

with Belief Revision Techniques‖, Computing and

Information Systems, Vol. 8, p.40-45, 2001

[8]. Cherkassy B V, Goldberg A V and Radzik T. (1993)

Shortest Paths Algorithms:Theory and Experimental

Evaluation. Research project, Department of

Computer Science, Cornell and Stanford Universities

and Krasikova Institute for Economics and

Mathematics.

[9]. Saunders, S., and Takaoka, T. Improved shortest path

algorithmsfor nearly acyclic graphs. In Proc.

Computing: The Australasian TheorySymposium, vol.

42 of Electronic Notes in Theoretical Computer

Science. 2001.

[10]. V. Batz, D. Delling, P. Sanders, and C.

Vetter. Time-Dependent Contraction Hierarchies. In

Proceedings of the 11th Workshop on Algorithm

Engineering and Experiments (ALENEX’09). SIAM,

2009.

[11]. R. Bauer and D. Delling. SHARC: Fast and

Robust Unidirectional Routing. In I. Munro and D.

Wagner, editors, Proceedings of the 10th Workshop on

Algorithm Engineering and Experiments

(ALENEX’08), pages 13–26. SIAM, 2008.

[12]. R. Bauer, D. Delling, P. Sanders, D.

Schieferdecker, D. Schultes, and D. Wagner.

Combining Hierarchical and Goal-Directed Speed-Up

Techniques for Dijkstra’s Algorithm. In C. C.

McGeoch, editor, Proceedings of the 7th Workshop on

Experimental Algorithms (WEA’08), volume 5038 of

Lecture Notes in Computer Science, pages 303–318.

Springer, June 2008.

[13]. R. Bauer, D. Delling, and D. Wagner.

Experimental Study on Speed-Up Techniques for

Timetable Information Systems. In C. Liebchen, R. K.

Ahuja, and J. A. Mesa, editors, Proceedings of the 7th

Workshop on Algorithmic Approaches for

Transportation Modeling, Optimization, and Systems

(ATMOS’07), pages 209–225. Internationales

Begegnungs- und Forschungszentrum für Informatik

(IBFI), Schloss Dagstuhl, Germany,2007.

[14]. T. M. Chan, A. Efrat, and S. Har-Peled. Fly

Cheaply: On the Minimum Fuel Consumption

Problem. Journal of Algorithms, 41(2):330–337,

2001.

[15]. G. B. Dantzig. Linear Programming and

Extensions. Princeton University Press, 1962.

[16]. D M Segura Velandia and A West, “Image-

based retrieval in case-based reasoning systems for

polyurethane manufacture”, Proceedings of the

Institution of Mechanical Engineers, Part B: Journal of

Engineering Manufacture 2009 223: 89.

[17]. Edmund K. Burke, Bart L. MacCarthy, Sanja

Petrovic1, Rong Qu, “Multiple-Retrieval Case-Based

Reasoning for Course Timetabling Problems”, Journal

of Operations Research Society, Vol. 57 Issue 2, pp.

148-162, 2006.

[18]. Ya-jun Jiang, Jun Chen, Xue-yu Ruan,

“Fuzzy similarity-based rough set method for case-

based reasoning and its application in tool selection”,

International Journal of Machine Tools &

Manufacture 46 (2006) pp. 107–113.

[19]. Mingyang Gu, Agnar Aamodt and Xin Tong,

“Component Retrieval Using Conversational Case-

Based Reasoning”, Intelligent Processing II, 2004, pp.

189-196.

Dr. Gundeep Tanwar al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,
Issue 3, December 2014, pp. 74-79

 © 2014 IJRRA All Rights Reserved page - 80-

[20].

