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Abstract— This paper discuss the shortest path algorithm in the case retrieval phase of the case-based reasoning approach. 

The case-based reasoning approach is mainly used in the problem solving phenomena with utilization of past problem 

solving experiences. The case retrieval phase is concerned with finding the similar cases in the case base. this phase makes 

the impact on the performance of the case-based reasoning system. There exists multiple case retrieval phases, 

Shortest paths, or close to shortest paths, are commonly used in everyday situations. The paper reviews the various 

algorithms available for the problem. One of the famous technique Dijkstra’s algorithm solves the single-source shortest 

path problem on any directed graph in O(m+nlogn) worst-case time when a Fibonacci heap is used as the frontier set 

data structure. 

 Keywords— Case-based reasoning, case retrieval, Shortest path algorithm.  

I. INTRODUCTION  

Case-based reasoning is a problem solving paradigm that in 

many respects is fundamentally different from other major AI 

approaches. Instead of relying solely on general knowledge of 

a problem domain, or making associations along generalized 

relationships between problem descriptors and conclusions, 

CBR is able to utilize the specific knowledge of previously 

experienced, concrete problem situations (cases). A new 

problem is solved by finding a similar past case, and reusing it 

in the new problem situation. A second important difference is 

that CBR also is an approach to incremental, sustained learning, 

since a new experience is retained each time a problem has been 

solved, making it immediately available for future problems. 

The CBR field has grown rapidly over the last few years, as 

seen by its increased share of papers at major conferences, 

available commercial tools, and successful applications in daily 

use. 

The description of CBR principles, methods, and systems is 

made within a general analytic scheme. Other authors have 

recently given overviews of case-based reasoning. To solve a 

new problem, the CBR remembers previous similar situation 

and reuses information and knowledge of that situation. The 

CBR paradigm covers a range of different methods for 

organizing, retrieving, utilizing and indexing the knowledge 

retained in past cases. Cases may be kept as concrete 

experiences, or a set of similar cases may form a generalized 

case. Cases may be stored as separate knowledge units, or 

splitted up into subunits and distributed within the knowledge 

structure. Cases may be indexed by a prefixed or open 

vocabulary, and within a flat or hierarchical index structure. 

The solution from a previous case may be directly applied to 

the present problem, or modified according to differences 

between the two cases. The matching of cases, adaptation of 

solutions, and learning from an experience may be guided and 

supported by a deep model of general domain knowledge, by 

more shallow and compiled knowledge, or be based on an 

apparent, syntactic similarity only.  

CBR methods may be purely self-contained and automatic, or 

they may interact heavily with the user for support and guidance 

of its choices. Some CBR method assume a rather large amount 

of widely distributed cases in its case base, while others are 

based on a more limited set of typical ones. Past cases may be 

retrieved and evaluated sequentially or in parallel. Actually, 

"case-based reasoning" is just one of a set of terms used to refer 

to systems of this kind.  

II. CASE RETRIEVAL PHASE 

A CBR tool should support the four main processes of CBR: 

retrieval, reuse, revision and retention. A good tool should 

support a variety of retrieval mechanisms and allow them to be 

mixed when necessary. In addition, the tool should be able to 

handle large case libraries with retrieval time increasing 

linearly (at worst) with the number of cases 

Case retrieval is a process that a retrieval algorithm retrieves the 

most similar cases to the current problem. Case retrieval 

requires a combination of search and matching. In general, two 

retrieval techniques are used by the major CBR applications: 

nearest neighbor retrieval algorithm and inductive retrieval 

algorithm. 

Nearest-Neighbor Retrieval 

Nearest-neighbor retrieval is a simple approach that computes 

the similarity between stored cases and new input case based on 

weight features. A typical evaluation function is used to 

compute nearest-neighbor matching [Kolodner, 1993] as shown 

in Figure 1: 

Figure 1 Nearest-neighbor evaluation function 

Where wi is the importance weight of a feature, sim is the 

similarity function of features, and fi
I and fi

R are the values 

for feature i in the input and retrieved cases respectively.   












n

i

i

R

i

I

i

n

i

i

RI

w

ffsimw

CaseCasesimilarity

1

1

),(

),(



Dr. Gundeep Tanwar al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,  
Issue 3, December 2014, pp. 74-79 

   © 2014 IJRRA All Rights Reserved                                                                                        page   - 76- 

 

 

 

 

 

 

 

Figure 3.2 Finding the nearest neighbor of the new case 

NC. 

Figure 2 displays a simple scheme for nearest-neighbor 

matching. In this 2-dimensional space, case3 is selected as the 

nearest neighbor because similarity(NC, case3)> similarity(NC, 

case1) and similarity(NC, case3)> similarity(NC, case2). 

III. REVIEW OF LITERATURE 

Pan et al. (2007) presented a novel algorithm for automatically 

mining a high-quality case base from a raw case set that could 

preserve and sometimes even improve the competence of case-

based reasoning. In this paper, they analyzed two major 

problems in previous case-mining algorithms. The first problem 

was caused by noisy cases such that the nearest neighbor cases 

of a problem may not provide correct solutions. The second 

problem was caused by uneven case distribution, such that 

similar problems may have dissimilar solutions. To solve these 

problems, they developed a theoretical framework for the error 

bound in case-based reasoning, and proposed a novel case-base 

mining algorithm guided by the theoretical results that returned 

a high-quality case base from raw data efficiently. They 

supported their theory and algorithm with extensive empirical 

evaluation using different benchmark data sets. 

Wang et al. (2007) presented a new cost estimation concept 

based on the case-based reasoning (CBR) approach instead of a 

traditionally intuitive estimation method. In CBR model, two 

retrieval techniques, ‘Inductive Indexing’ and ‘Nearest 

Neighbor’, were then applied to retrieve relevant cases from the 

knowledge-based database. Two of the most common types of 

Taiwan historical buildings were tested to explore the 

restoration cost implications. The result revealed that the CBR 

solution could effectively predict the actual restoration cost, 

solve order change problems, and reduce the budget review 

time. These applications were also useful for many other 

countries, especially for those seismic belt regions, that were 

facing similar problems regarding historical building 

restoration. 

Gomes et al. (2004) developed a system capable of providing 

these requirements. It had a central knowledge base that could 

be used through Case-Based Reasoning. The knowledge base 

integrated a common ontology called WordNet, providing 

classification for software objects. This paper focuses on the 

retrieval of design models using the combination of WordNet 

and Case-Based Reasoning. They also presented a retrieval 

example, and experimental work showing the performance of 

the retrieval and ranking mechanisms. 

Velandia et al. (2008) developed proposed most CBR retrieval 

algorithms which employed a modified version of the nearest 

neighbour rule that used a distance function as similarity 

measure, which in turn depends upon the attribute type. The 

application of moment-based retrieval used in image 

recognition for CBR retrieval is studied in this paper. 

Comparison with the classical retrieval algorithms that used 

standard distance measures showed that low-order geometric, 

central, and Legendre moments retrieve the same cases as the 

Euclidean distance does, whereas high-order geometric, central, 

and Legendre moments retrieved different cases. It was 

suggested that there was not a single distinguished approach to 

similarity in CBR, rather CBR systems should allow the 

integration of different approaches to similarity and the 

selection of different concepts. 

The use of shorter paths occurs naturally when traveling 

between two locations, whether this is travel from one room to 

another, from one street address to another, or from one city to 

another. Taking a long path typically makes no sense, since 

doing so results in time being wasted. Thus, shorter paths are 

preferred for reasons of efficiency. To achieve the greatest 

efficiency when traveling between two points, it is necessary to 

take a path that is shortest among all possible paths; that is, the 

shortest path. Generally speaking, a shortest path is one of 

minimal cost.  

The problem of computing shortest paths commonly arises 

when the most cost-efficient route through a transportation or 

communication network needs to be found. In the case of 

transportation, cost may be represented by a combination of 

factors, including distance traveled, time spent, fuel used, tolls 

paid, or many other factors.  

Basic Terminology:- 
The exact definition being used for cost depends on the specific 

problem being solved. While shorter paths tend to be used 

naturally, determining truly shortest paths allows more efficient 

use of networks. Solving shortest paths by plain intuition is not 

always guaranteed to obtain the correct result. The truly shortest 

path, or that of minimum cost, is not always the most obvious 

choice. 

For example, consider finding the shortest path in order to 

minimize the time spent traveling between two locations in a 

city. Here cost is measured in terms of the time spent traveling. 

The shortest path may require taking a detour in order to avoid 

traffic congestion. Such a path can be completely different from 

the path that is shortest in terms of distance traveled. Even with 

cost defined as distance traveled the correct choice of shortest 

path may be counter-intuitive. Furthermore, large shortest path 

problems are typically too complex to solve accurately by hand.  

By computing shortest paths, rather than using intuition, a 

correct result can always be obtained. Shortest path problems in 

general are described using the concept of a graph may be either 

directed or undirected. The edges in an undirected graph have 

no direction associated with them, and can be thought of as 

allowing travel in both directions.  

In contrast, the edges in a directed graph have an associated 

direction, which can be thought of as specifying the direction of 

travel. Think of edges in a directed graph as being one-way, and 

edges in an undirected graph as two-way. The edges of a graph 

can be weighted, in which case each edge has an associated 

cost. In the case of a transportation network, this cost may be 

the distance along a road between two vertices.  

Shortest path problems are represented using directed graphs, 

since the cost from one vertex to another may be different in the 

case1
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opposite direction. The edges in a graph form paths connecting 

vertices. Any such path similarly has an associated cost (or 

distance), which corresponds to the sum of costs of edges along 

the path. The existence of alternative paths between a pair of 

vertices in a graph 

IV. SEARCH ALGORITHMS 

One possible approach to solving shortest path problems would 

be to pre-calculate and store the shortest path from every node 

to every possible other node, which would allow us to answer a 

shortest path query in constant time. Unfortunately the required 

storage size and computation time grows with the square of the 

number of nodes. With realistic road networks in mind this 

processing would take years if not decades and be virtually 

impossible to store. Hence to overcome this problem we require 

real time search techniques. From previous studies we know 

that the implementation of labelling algorithms is the fastest for 

one-to-one searches. Two aspects are particularly important to 

the shortest path algorithms discussed in this project:  

1. the strategies used to select the next node to be visited during 

a search, and  

2. the data structures utilized to maintain the set of previously 

visited nodes.  

A number of data structures can be used to manipulate the set 

of nodes in order to support search strategies. These data 

structures include arrays, singly and doubly linked lists, stacks, 

heaps, buckets and queues. Detailed definitions and operations 

related to these data structures are standard knowledge and are 

well documented. Past research has concentrated mainly on the 

issue of data structures, which can be manipulated and bounded 

to form clever techniques in creating priority queues for 

selecting nodes to be scanned. A good example of this is the 

Dijkstra implementation with double buckets. In a labeling 

algorithm, the number of visited nodes during a search is a good 

indication of the size of the search space. This means that a 

search strategy which visits fewer nodes during a search is 

generally more efficient in terms of processing speed. The 

number of nodes visited depends on the depth d (i.e. the number 

of arcs on the optimal path) of the destination from the origin, 

and the branching factor b. For a ‘best first search’ the number 

of nodes explored during a search is of the order O(bd). This  

exponential growth in the number of explored nodes is known 

as “combinatorial explosion” and is the main obstacle in 

computing shortest paths in large networks. (Note that even 

though Dijkstra’s algorithm is polynomial in the number of 

nodes n in  

the graph, this bound is no restriction on how the number of 

nodes visited varies with d). For general search this exponential 

growth with depth makes many problems unsolvable on current 

hardware, as memory is soon exhausted and a solution may take 

an unreasonable time to compute. These effects can be lessened 

by using artificial intelligence (heuristic type) techniques which 

will be discussed later. However let us first define and 

implement Dijkstra’s labeling algorithm.  

Dijkstra’s Naive Implementation: 

Dijkstra’s labeling method is a central procedure in shortest 

path algorithms. The output of the labeling method is an out-

tree from a source node s, to a set of nodes L. An out-tree is a 

tree originating from the source node to other nodes to which 

the shortest distance from the source node is known. This out-

tree is constructed iteratively, and the shortest path from s to 

any destination node t in the tree is obtained upon termination 

of the method. Three pieces of information are required for each 

node i in the labeling method while constructing the shortest 

path tree:  

• the distance label, d(i),  

• the parent-node/predecessor p(i),  

• the set of permanently labeled nodes L.  

The distance label d(i) stores an upper bound on the shortest 

path distance from s to i, while p(i) records the node that 

immediately precedes node i in the out-tree. If a node has not 

yet been added to the out-tree, it is considered ‘unreached’. 

Normally the distance label of an unreached node is set to 

infinity. When we know that the shortest path from node s to 

node i is also the absolute shortest path, then node i is called 

permanently labeled. When further improvement is expected to 

be made on the distance from the origin to node i, then node i 

is considered only temporarily labeled. It follows that d(i) is an 

upper bound on the shortest path distance to node i if node i is 

temporarily labeled, and d(i) represents the final optimal 

shortest path distance to node i if the node is permanently 

labeled . By iteratively adding a temporarily labeled node with 

the smallest distance label d(i) to the set of permanently labeled 

nodes L, Dijkstra’s algorithm guarantees optimality.  

One advantage with Dijkstra’s labeling algorithm is that the 

algorithm can be terminated when the destination node is 

permanently labeled. Most other algorithms guarantee optimal 

shortest paths only upon termination when the entire shortest 

path tree has been explored.  

Symmetrical Dijkstra Algorithm:-  

Pohl adapted Dijkstra’s shortest path algorithm to decrease the 

size of the search     space. Pohl’s algorithm was the first to use 

a bi-directional search method. This algorithm consists of a 

forward search from an origin node to the destination node and 

a backwards search from the destination node to the origin 

node. This was done in an attempt to reduce the search 

complexity to O(bd/2) compared to O(bd) as with Dijkstra’s 

algorithm. This search method assumes that the two searches 

grow symmetrically and will meet in some middle area. 

Sometimes this might not be the case, and as a worst-case 

scenario this might instead become two O(bd) searches.  

The Symmetrical or Bi-directional Dijkstra’s algorithm by Pohl 

grows two search trees, one from the origin, giving a tree 

spanning a set of nodes LF for which the minimum 

distance/time from the origin is known, and a second from the 

destination that gives a tree spanning a set of nodes LB for 

which the minimum distance/time to the destination is known. 

We iteratively add one node to either LF or LB until there exists 

an arc crossing from LF to LB.  

Like Dijkstra’s algorithm Pohl’s bi-directional search chooses 

the node with the smallest cost label to label permanently. By 

selecting the new permanently labeled node from either the 

forward or backward phases we maintain the Dijkstra criterion 

required for optimality. 

A* Search:- 

So far we have examined search techniques that can be 

generalized for any network (as long as it does not contain 

negative length cycles). However the physical nature of real 

road networks motivates investigation into the possible use of 

heuristic solutions that exploit the near-Euclidean network 



Dr. Gundeep Tanwar al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 1,  
Issue 3, December 2014, pp. 74-79 

   © 2014 IJRRA All Rights Reserved                                                                                        page   - 78- 

structure to reduce solution times while hopefully obtaining 

near optimal paths. For most of these heuristics the goal is to 

bias a more focused search towards the destination. As we shall 

see, incorporating heuristic knowledge into a search can 

dramatically reduce solution times. When the underlying 

network is Euclidean or approximately Euclidean as is the case 

of road networks, then it is possible to improve the average case 

run time of the Dijkstra and Symmetrical Dijkstra algorithms. 

This is usually at the expense of optimality; solutions are now 

not guaranteed to be the best. Typically when solving problems 

on such networks the inherent geometric information is ignored 

by algorithms that are directly based or variations on Dijkstra’s 

labeling algorithm. The A* algorithm by Hart and Nilsson 

formalized the concept of integrating a heuristic into a search 

procedure. Instead of choosing the next node to label 

permanently as that with the least cost (as measured from the 

start node), the choice of node is based on the cost from the start 

node plus an estimate of proximity to the destination (a heuristic 

estimate). To build a shortest path from the origin s to the 

destination t, we  

use the original distance from s accumulated along the edges 

(as in Dijkstra’s algorithm) plus an estimate of the distance to t. 

Thus we use global information about our network to guide the 

search for the shortest path from s to t. This algorithm places 

more importance on paths leading towards t than paths moving 

away from t. In essence the A* algorithm combines two pieces 

of information:  

1. the current knowledge available about the upper bounds 

(given by the distance labels d(i)), and   

2. an estimate of the distance from a leaf node of the search tree 

to the destination.   

There are several ways to estimate the lower bound from a leaf 

node in the search tree to the destination node. These 

estimations are carried out by so called “evaluation” functions. 

The closer this estimate is to a tight lower bound on the distance 

to the destination, the better the quality of the A* Search. Hence 

the merits of an A* search depends highly on the evaluation 

function h(i,j). There are two main evaluation functions used in 

the A* search. A true lower bound between two points is the 

length of a straight line between those two points (i.e. the 

Euclidean distance):  

  

    hₑ(i,t) = √((x(i)-x(t))² + (y(i)-y(t))²) 

 

where x(i), y(i) and x(t), y(t) are the coordinates for node i and 

the destination node t respectively. The other commonly used 

evaluation function is the Manhattan distance h. In this case the 

estimated lower bound distance is the sum of distance in the x 

and y coordinates.  

   hm(i,t) = ǀ x(i)-x(t) ǀ +ǀ y(i)-y(t) ǀ 

The Manhattan distance is not the true lower bound between 

two points and hence will typically yield non-optimal results. 

By using time as a measure of cost, the network becomes near-

Euclidean. This is because of the varying speeds of roads in the 

network. Roads of similar lengths might have different times 

associated with using those roads. If the network is not strictly 

Euclidean but near-Euclidean then our selection criteria for the 

next node to label permanently will not yield optimal results. 

By using the A* search, the shortest path tree should now grow 

towards t (unlike Dijkstra’s algorithm where the tree grows 

approximately radially). As before, the search for the shortest 

path is terminated as soon as t is added to the shortest path tree. 

Earlier we discussed the problem of combinatorial explosion 

with a blind search time complexity in the order of O(bd). With 

A* search this is reduced to O(bed) where be is the effective 

branching factor. The A* search reduces the search space by 

reducing the number of node expansions. Although A* is still 

susceptible to the problem of combinatorial explosion, it 

decreases the effect by reducing the size of the base in the 

complexity term.  

 

Weighted A* Search:-  

By choosing an appropriate multiplicative factor we can 

increase the contribution of the estimated component in 

calculating the label of a vertex (i.e. increase the contribution 

of the evaluation function). From an intuitive standpoint this 

corresponds to further biasing the forward search towards the 

destination and the backward search towards the origin. The 

heuristic is parameterized by the multiplicative factor termed 

the “overdo” parameter used to weight the evaluation function. 

This modification will generally not yield optimal paths, but we 

would expect it to further reduce the search space. The aim is 

to find an “optimal” multiplicative or overdo factor for which 

the running time is significantly improved while the solution 

quality is still acceptable. Thus there will be an empirical 

time/performance trade-off as a function of the overdo 

parameter.  

Radius Search  

To eliminate or minimize the effects of combinatorial explosion 

we need to adopt a search technique similar to the way humans 

approach navigation problems. So far we have not implemented 

any intelligence within a search which can filter out roads that 

are less likely to be traveled on. This type of intelligence 

requires some form of historical knowledge about the network. 

Since the road network does not change very often it is possible 

to calculate auxiliary information in a pre-processing step. 

Perhaps the most obvious way to classify the roads in the 

network is to identify the class of each road (i.e. motorways, 

highways, local roads etc), and then to exploit these classes in 

the search. This is similar to the way humans approach routing 

problems and is known as Hierarchical Search. Hierarchical 

methods offer the prospect of greatly reducing the size of any 

search by simplifying the search through a series of simplified 

levels, where each of these levels is an abstraction of the 

previous level. These abstractions reduce the overall size of the 

search space that an algorithm addresses and thus the 

complexity of any search is reduced. For route finding, 

hierarchical levels are constructed in which higher speed roads 

are placed higher up in the hierarchy. However by introducing 

these arbitrary hierarchies the path optimality is often lost. The 

hierarchical algorithm uses a discrete number of hierarchy 

levels. A Radius search is a hierarchical search with a 

continuous range of hierarchy levels. A Radius search takes 

advantage of the fact that the fastest path between two junctions 

is more likely to use a highway than a local road, especially if 

the two junctions are far apart. In this method each node i has 

an associated radius r(i). Before we consider how r(i) is 

calculated, we first examine how radii can be used to restrict a 

search. When looking for a shortest path from s to t, a node i is 

considered as a possible node to include in the search only if s 
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or t lies inside a circle of radius r(i) centered at node i. If both 

distances are greater than the node radius, the node is simply 

ignored. For any given origin and destination node, we can 

immediately simplify the network by removing all the nodes 

(and associated arcs) whose radii do not encircle the origin or 

destination nodes. The radius search is not a search algorithm 

by itself, but an independent mechanism of reducing search 

complexity. Hence the radius concept can be used in 

conjunction with any search algorithm. The effectiveness of the 

Radius search depends on the way we calculate. 

V. CONCLUSIONS 

Case-based reasoning systems are an alternative, in many 

situations, to rule-based systems. In many domains and 

processes, referring to cases as a means of reasoning can be an 

advantage due to the nature of this type of problem solving. 

Mostly the case-based reasoning system uses the k-NN 

algorithm. By exploiting the physical structure of road 

networks, the A* algorithm is able to bias its search towards a 

goal and reduce the search space. By using the concept of radii 

as a measure of importance of nodes, we are able to incorporate 

pre-processing within our shortest path algorithm to further 

restrict the search space. This dramatically reduces the search 

complexity in terms of the run time performance while still 

maintaining an acceptable level of inaccuracy. 
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