
 Muhammad Talal al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue

1, March 2015, pp. 88-94

© 2014 IJRRA All Rights Reserved page - 88-

Survey on Task Scheduling For Multi-

core Systems

Muhammad Talal1, M. Daud Abdullah2
1Student, Comsats institute of information technology, Wah Campus, Pakistan

2Assistant Professor, Comsats institute of information technology, Wah Campus, Pakistan

Abstract: - In this paper, we review the literature on efficient task scheduling on multi-core system. The number of cores

on one chip are increasing very rapidly. For achieving high performance without more power consumption and without

heating up the system, multi-core processing technology is used. In addition for fully utilization of system resources in

more efficient way task scheduler are developed, multi-core task scheduling is one of the most challenging problem.

Such task scheduler which increase the performance of system and also provide task parallelism between different tasks

on multi-core. The main goal of task scheduler is to optimize the performance so that it can minimize the task executing

time and maximize resource utilization. In this survey paper we are going to discuss different types of task schedulers

which work on different techniques.

Keywords: Multicore, Threads, Task scheduler, Multiple nodes

I. INTRODUCTION

With the development in IC (integrated circuit) technology
and multi-core system architecture is well known because of

their high performance, low cost and less power consumption

characteristics due to which they are being widely used. The

number of processing units are increased with in the single

chip as shown in Figure 1. A multi-core processor can perform

more than one operation at a time as per core. Hardware

technology is moving with rapid speed as ClearSpeed has

developed a 96-core processor and Intel recently put 80 cores,

on the other side software and programming models are facing

failure to keep such speed. As in multi-core there are more

processing units this means it can execute more than one
instruction at a time which increases performance and

throughput of the system. Theoretically adding more core in

the same chip will twice the efficiency , but in reality the speed

of single core is more , and more heat is produced by more

cores as the consume more power for execution of program so

the cooling cost also increase.

In this survey paper, we are concerned with the efficient

utilization of all the cores and resources between them. For this

purpose we need efficient task scheduling techniques for

multiprocessor systems. The task scheduling has achieved

wide attention.

Fig: 1.

A lot of task schedulers are developed and researchers are

developing more interest in task scheduler for multicore
platform. In this paper we are going to discuss different task

scheduler which work on different techniques for different

types of system like Task scheduler for Real time systems and

recovery in multi-core architectures and many more.

II. SURVEY OF DIFFERENT TECHNIQUES OF TASK

SCHEDULING

A. Spread –cognizant scheduling - [1]

The Problem we are going to address is the issue on real time
systems, that the parallel scheduling of tasks are discouraged,

while we solve this problem by encouraging the co-scheduling

,ensuring the constraints of real time. Also concerned with the

effective and efficient usage of common caches.

Discouraging the task execution together is not much harder

or difficult than executing them together. Spread is the factor

we want to minimize.

Spread: if grouping tasks has spread of K and ith quantum of

computation of each task must be scheduled with in interval of

[t, t +k] and t is the time unit. All the tasks in the group is to

be scheduled when one task of group is scheduled, to get
perfect parallelism.

In Pfair task scheduling task by scheduling their sub-tasks on

earliest-deadline basis. In case of deadline between two or

more scheduling tie-breaking rules are used. In Early-release

the sub-tasks able to execute before their window, the time

requirement of other tasks are ensured. Executing a sub-task

earlier or not to release earlier this decision in arbitrary. Here

we are trying to reduce the spread and meet real time

constraints. Global scheduling in which there is single running

queue is more suitable for reducing the Spread than other

approaches like partitioning. Tasks of same wait, submitted at
same time get consecutive slots in the scheduler queue, so that

task will scheduled in close proximity of time, until disturbed

by high priority with late arrival task. Deadline scheduling

 Muhammad Talal al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue

1, March 2015, pp. 88-94

© 2014 IJRRA All Rights Reserved page - 89-

method is capable to meet the time constraints if sub tasks or

jobs are early released or allow to early execution

Fig: 2(A)

In Figure 2(A), in set (a) all the tasks are schedule without

early release. Inset (b) the results are the same as in (a) after

early releasing by 1 quantum in same scheduling. Dash lines

shows how much early a task is released. In set (c) we reduce

the spread by 1 quantum if selective tasks are allowed to early
release. Instead of early release as we did in (b) and (C), we

allow the task to miss their deadline by one quantum, it also

reduce the spread by 1 quantum. How much quantum early

release (X) execution of a task is performed is calculated

according to the equation shown in Figure: 2(B).The

performance of L2 cache is also improved by using this

technique.

Fig: 2(B)

B. Task scheduling for Multicore processor system to

minimizing recovery time in case of single node fault – [2]

Many processors recently developed have multicores in single

chip. If multicore processor failed, all the jobs that are

executing, have to be re-executed. The algorithm which we are

proposed is on the base of check point, assuming that the state

of task is saved when send the results to other node or
processing unit. If the computation is based on the results of

series previous task, and fault occur at a single node unit then

all the computation are made again i.e. double job have to be

done and time to recover is also include in it . The method we

are going to proposed can reduced up to 50% execution time

including recovery time in case of single node failure. The

only drawback of this method is if no failure is occur there is

overhead in normal scenarios.

Satellite launching require performing thousands of tasks with

much concern about time. An embedded system also requires

multitasking within integrated circuit. Today’s applications

based on either soft real-time system or hard real-time system
involving multiplicity of tasks within time constraint. So we

have to migrate from dual-core to multi-core system along

with heterogeneity of co-processors which improves the

performance of the system. Each core is capable for executing

the tasks independently, if a failure of shared resource or core

itself then all the processor stop task execution and all of

processors need to recover. If the communication in the

processors is done by network technologies for connecting

computers then it takes much longer time to recover from

failure as it consumes a lot of time. In many scheduling

algorithms there is no consideration of networks. The
algorithm we proposed to recover from saved state is based on

Sinnen algorithm of scheduling. In case of failure of

processing node check pointing is the recovery method. When

data results are transfer after complete execution the state of

node is saved. If processor or node fails, it find the closest

ancestor processor which is not affected by this failure and

recover for the saved state from that node or processor.

Proposed Method

DAG is a graph which represent the dependence between

groups of tasks like shown in figure: 3(A). The task 3 is depend

on task 1 and task 2 means that it only runs or executes when

1 and 2 task complete their executions, while task 1 and task 2
are in parallel execution , they delivered the their results to task

3.

Fig: 3(A)

What happened if the die A is fail on which tasks 1, 2 and 3

are running? The execution results are lost and need to re-

computation and recovery time is also included, it means more

than double of the jobs have to be done again, and the tasks

have to shift on other die B.

Task Scheduling and recovery in existing systems

 Muhammad Talal al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue

1, March 2015, pp. 88-94

© 2014 IJRRA All Rights Reserved page - 90-

Fig: 3(B)

Fig: 3(C)

In figure: 3(B & C) task scheduling in existing system and

recovery from failure in existing system is show respectively.

According to proposed system if fault occurs at the same time
when task 3 is executing, we only need to re-execute the task

3, as the states of task 1 and task2 are saved or stored. The

saved results are re -used by the task 3 and recovery time in

also reduced. As shown in Figure 4.But there is over head in

the proposed method if no failure occur and executing is in

normal scenarios. As shown in figure: 3(D & E) task

scheduling and recovery from failure in proposed system.

Fig: 3(D)

Fig: 3(E)

Algorithms for this proposed system is given in [2] by details.

 Muhammad Talal al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue

1, March 2015, pp. 88-94

© 2014 IJRRA All Rights Reserved page - 91-

C. Task scheduling on Adaptive Multi-core - [3]

The number of the processors in a chip are increasing very

rapidly and the complexity is reduce due to the thermal and

power constraints. More the number of cores in a single chip

enable parallelism in applications in thread level Parallelism

(TLP) but the sequential suffer for poor in the instruction level

parallelism (ILP). In this research paper we proposed the

adaptive multicore architectures that is able to make

coalescing simple physical cores to make more complex

virtual cores to make sequential code faster. This type of

adaptive architecture can seamlessly exploit the both
Instruction level parallelism and Thread level Parallelism.

Previous work is only focus on the adaptive multicore for

sequential work load. But we focus on the more real scenario

where both sequential and parallel applications exist on

adaptive multi-core platform. Both offline and online

schedulers are developed which intelligently assign or re

configure the cores to applications to make maximum

utilizations of all the cores. Experiment results prove that the

efficiency of symmetric and asymmetric is increased by

adaptive muti-core scheduling.

The transitions towards multiple cores architectures are
irreversible in computer systems. There are still a lot of

applications which are of sequential workload, this type of

applications suffer from limited instruction level parallelism

(IPL). The asymmetric multicore has lack of flexibility to

adjust in dynamic work load, as during the design mixture of

complex and simple cores are freeze. Such a design of multi-

core, which can changed or tailor itself according to the

applications to manage the workload at run-time. This type of

adaptive architecture is consist of set of simple cores, which

can coalesced together to make virtually more complex core at

run-time and the single core of virtually complex core can dis

joined at any time. Such adaptive multicores perform well in
diverse workload which is a mixture of both TLP and ILP. An

adaptive Multi-core is shown in figure: 4(A)

Fig: 4(A)

The performance evaluation of adaptive multicore is shown in

Figure: 4(B) that how well this virtual complex core which

consist of physically simple cores in performed when ILP or

TLP applications run parallel. Both types of applications are

supported concurrently in adaptive architectures. In reality it

is difficult for perform limit the study of adaptive architectures

with real workload. So an intelligent scheduler is employ to

reconfigure and assign the cores to the applications to

minimize the make span.

Fig: 4(B)

The sequential applications are restricted to use one core in

symmetric multi-core, while multiple cores are used by

parallel application and can get benefits. On the other hand in

adaptive multi-core architecture the number of allocated or

assigned cores for an application is carefully done, TLP

applications use multiple simple cores and ILP can use one

core, in this way adaptive multi-core manage dynamic and

diverse work load. For adaptive multi-core we developed an

scheduler that is given mixture of ILP and TLP tasks , namely

Bahurupi , another online scheduler like Bahurupi is also
developed that is easily integrated in any contemporary OS .

Bahurupi is simple yet elegant approach toward the core

coalition on base of software-hardware cooperative solution.

The architecture is cluster based on which realistic constraints

on the scheduler. In Bahurupi the coalition is built with in the

cluster. In Figure: 4(C) there are two coalitions of two (C0,

C1) and four of (C4-C7 cores). In the Figure: 4(C) one parallel

application can run its threads on C2 and C3 core. One

sequential application of medium level is run on or scheduled

on coalition (C0 , C1) and one high level ILP is on other

coalition (C4 – C7).

Fig: 4(C)

 Muhammad Talal al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue

1, March 2015, pp. 88-94

© 2014 IJRRA All Rights Reserved page - 92-

A new instruction is added to instruction set architecture called

Sentinel, it is the first instruction of each block of code. Blocks

are constructed at compile time along with the information

about live-out or live-in register. Physically global pc, global

register file and synchronization logic are shared by all the

cores. The cores communicate through the live-out or live-in

value of register. L1 cache is commonly shared by the cores in

the coalition while L2 cache is shared or used by all the cores

irrespective of the cores are in or out the coalition. The

overhead of reconfiguration of L1 cache or resources of adding

or removing core from coalition, Bahurupi only takes 100
cycles to reconfigure. This overhead is very small as compared

to the execution time of application. For High level

architecture of Bahurupi reader may read [3]. Performance of

Bahurupi is shown in figure: 4(D)

Fig: 4(D)

D. Multi-Socket Multicore System –[4]

OpenMP API shared memory that allows programmer to show

concurrency at a high level and place the burden of parallel

execution scheduling on the openMP run time system. This

allows to develop the scientific computer fatter with many core

processors. But effective task scheduling on multi socket

multi-core with shared memory increase the complexity. Task

scheduling we proposed is based on strategy of hierarchical

scheduling. A thread on single chip is allowed to steal work on

the behalf of other threads that shared a cache. Qthread is

threading library which is open-source is extended for the

implementation of our scheduler, which accept the openMP
program through ROSE compiler.

Parallel task programming allows programmer to specify the

parallel task with the size of problem, leave the responsibility

on the processor to perform them at run-time. It is realized that

the in future multicore processors are improving the

performance than increasing the performance of single core.

Meet the challenges, time conflicts, load management and

minimize the time overhead are the properties of efficient

scheduler. When tasks are not distributed among the

processing units the load imblancement arise due to which

idleness is shown. If load is distributed equally, maximum

utilization of processors, while it include some overhead cost

and if load balancing is between the sockets it take more

overhead. Our approach is combination of work stealing and

shared queues for low overhead load distribution. We have

developed a

method using ROSE compiler which runs openMP program

with Qthread library. ROSE compiler is capable for source to

source translator. In Qthread there is a variety of

synchronization methods which are non-blocking and

potentially blocking. The concept of lightweight threads is
intended match with future hardware threads. Cooperative

multitasking is used in Qthreads runtime.

With minimum overhead cost the optimal solution for

multithreaded scheduling of DAG’s is stealing as proved by

Blumofe et Al. This solution is implemented on run time

scheduler. Idle shepherd is obtained more work by stealing the

task from task queue of old busy shepherd. The burden of load

work is on idle shepherd, interruption for busy shepherd are

minimized in work stealing scheduler. The new tasks whose

data is fresh in processor cache is first to schedule and the last

to be stolen. To reduce the limits of work stealing and shared
queues, create a hierarchical approach Multi-thread shepherds.

Developed one shepherd for all the cores which are on the

same chip, these cores have shared socket and memory. Shared

queue can reduce performance or act as bottleneck, the number

of processing units per chip are bounded and intra –chip

locking operation is fast with in the chip. Qthread MTS 32 core

is faster or have much better performance than ICC and GCC.

In execution time MTS is faster than ICC for 5 of 7

benchmarks and 4 of 6 benchmarks faster than GCC, just

slower for 2 benchmarks. If interested about the benchmarks

or want to learn more about its performance reader may refer

to [4].

E. A User space Library for Multicore Real-Time

Scheduling –[5]

A computer hardware having many cores is present or founded

everywhere, theory for scheduling task on multi-core is

increasing rapidly. Real time operation system are not suitable

for this type of repaid change. It is proposed that software

application run outside the real time operation system’s kernel

and run in user space. We first describe the user space

scheduler which supports the preemptive and dynamic

priority, migration of real tasks on multi-cores. Complex

scheduling algorithms and locking protocols are developed by
the researchers of real time systems in recent years. Most of

them focus on the resource allocation techniques in multi-core

systems. The research for implementation is focus to modify

the kernel of real time operating system which supports the

techniques of resource allocations. Example is CEDF

(Clustered Earliest deadline first) algorithm.

The approach “user space” may be much more useful. A user

space library which can support preemptive and dynamic

priority scheduling on multi-core system for real time tasks. In

library real time tasks are taken as user-level thread that share

a single address space. The overhead measurements of this

library generally ranges from 1 to 10 of microseconds,

 Muhammad Talal al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue

1, March 2015, pp. 88-94

© 2014 IJRRA All Rights Reserved page - 93-

overhead in worst case when task migrates between the cores

take very few hundred of microsecond. We choose user-level

thread solution because of two reasons, first one is that it takes

less overhead time than kernel-level and secondly single

address space is standard practice for parallel threads in single

application. The library allows application to use innovative

scheduling techniques in multi-core system. The application

can incorporate real-world knowledge in making schedule

decision. For example real world deadlines are used to set the

dynamically deadlines of real time tasks while the other typical

applications are scheduled safely under real time operating
system on other cores. Only static-priority scheduling is

supported by the open-source real time operating systems,

while our library support dynamic priority scheduling.

A function named schedule() is defined in library which is

responsible of context switching between the user-level

threads. The clustered earliest deadline first scheduler switch

the execution of tasks in ready queue, if any task has early

deadline than currently running task. When library is

initialized it creates an idle task which can be run when there

is no real time task is in ready queue, it has lowest possible

priority. There is another function named fast_swapcontext()
in library which is called by schedule() function for context

switching . There are many other function in library like

make_context(), get_context and many more , if interested you

may concern [5].

F. Task scheduling in multicore with dispatcher schema –

[6,7]

In this technique processor is responsible for handling signal

of control and co-processor is responsible for data

computation. This is because dispatcher is needed to select

which sub-task is assigned or dispatched to which co-

processor. The migration polices are also implemented with

these polices allocation of resources, efficiency and
performance is also improved. In large systems or in

embedded systems in which system is make more dedicated

for the application, there is one general purpose processor and

others are co-processors to increase the performance, some

applications have dynamic work load like network. So to full

fill the customer requirement such systems may use. In

multicore for task scheduling researches are made for better

synchronization protocols. In heterogeneous multi- core

systems there are number of co-processors which are

executing the task at very high speed and one general purpose

processor. Different types of dispatcher schemas are used in
dispatcher mechanism like partition schema, global schema

and hybrid schema. This technique give better performance, as

it use dispatcher mechanism of different sub-tasks. The policy

of task migration increase the utilization of resources.

The processor execute the program instruction which tells the

processor what to do like read/write data. The improvement in

performance is gain by using heterogeneous multicore system

which work on software algorithm. The proposed system,

tasks are executed in preemptive in processor while in co-

processor task execution is non-preemptive, but tasks may

migrate or jump from one co-processor to other, like in

partition schema each server is firstly allocate with a co-

processor and then all the tasks are done by that co-processor

[6].

III. CONCLUSION

After this survey, the scheduling technique which we find

more better efficient are Adaptive Multi-core Task scheduling

is the best technique for design big system or it may use in

mega processing centers, in addition to adaptive multi-core

task scheduling in such big systems single point failure

recovery is must be implements so that in case of failure

system can easily recover and executed part is not require to

re-executes, but the limitation is that it only support single
point failure. Such algorithms must be developed which

support recovery form maximum failure points.

Currently researchers are working of Self-adaptive Task

Scheduling for Dedicated Heterogeneous systems. Developing

new scheduler for mobile platforms and for scheduler for hard

real time system gain much attention. With the fast

advancement in hardware technology task schedulers are also

developed with more many support of maximum utilization of

the hardware in effective way.

REFERENCES

[1]. James H. Anderson and John M. Calandrino,
“Parallel task scheduling on multicore platforms”,

ACM SIGBED Review - Special issue: The work-in-

progress (WIP) session of the RTSS 2005 Homepage

archive Volume 3 Issue 1, January 2006 Pages 1-6

[2]. Gotoda, S. and Ito, M. and Shibata, N, “Task

Scheduling Algorithm for Multicore Processor

System for Minimizing Recovery Time in Case of

Single Node Fault”, Cluster, Cloud and Grid

Computing (CCGrid), 2012 12th IEEE/ACM

International Symposium on Publication Year: 2012,

Page(s): 260- 267

[3]. Pricopi, M. and Mitra, T., “Task Scheduling on
Adaptive Multi-Core”, Computers, IEEE

Transactions on Volume:63 , Issue: 10, Publication

Year: 2014 , Page(s): 2590- 2603

[4]. Stephen L. Olivier and Allan K. Porterfield and Kyle

B. Wheeler and Jan F. Prins, “Scheduling task

parallelism on multi-socket multicore systems”,

Published in: Proceeding ROSS '11 Proceedings of

the 1st International Workshop on Runtime and

Operating Systems for Supercomputers, Pages 49-56,

year 2011

[5]. Malcolm S. Mollison and James H. Anderson,
“Bringing Theory Into Practice: A Userspace Library

for Multicore Real-Time Scheduling”, Published in:

Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2013 IEEE 19th

Conference, on 9-11 April 2013, Page(s):283 – 292

[6]. Poonam Karande and S.S.Dhotre and Suhas Patil,

“Task Management for Heterogeneous Multi-

coreScheduling”, International Journal of Computer

Science and Information Technologies, Vol. 5 (1) ,

2014, 636-639

 Muhammad Talal al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue

1, March 2015, pp. 88-94

© 2014 IJRRA All Rights Reserved page - 94-

[7]. Binotto, A.P.D and Pedras, B.M.V and Götz, M and

Kuijper, A and Pereira, C.E and Stork, A and Fellner,

D.W, “Effective Dynamic Scheduling on

Heterogeneous Multi/Manycore Desktop Platforms”,

Published in:Computer Architecture and High

Performance Computing Workshops (SBAC-

PADW), 2010 22nd International Symposium

on,Date of Conference:27-30 Oct. 2010, Page(s):37 -

42.

