
Mrs. Aarti Chugh al. al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2,
Issue 2, June 2015, pp. 42-44

 © 2014 IJRRA All Rights Reserved page - 42-

Review of Database Cracking Techniques

Mrs. Aarti Chugh

Assistant professors, Department of Computer Science, Amity University, Haryana.

Abstract- As there is a huge demand of dynamic and efficient data storage environments, numerous physical data

reorganization techniques are designed and tested every day. This paper focuses on database cracking which aims to

build the truly self-organizing database system that will continuously and automatically adapt to workload changes.

Cracking completely removes the need for human administration [1]. Different techniques are discussed which give an

insight into this area. A brief overview of stochastic database cracking is given which is the most efficient way for

managing changing database workload environments.

Keywords— Database cracking, Self-Organizing, Physical organization, Workload, Cracking

I. INTRODUCTION

Database cracking is a new query processing paradigm and

adaptation paradigm towards truly self-tuned systems. [12]
Cracking requires zero human input, no a priori workload

knowledge and no idle time to prepare. The ultimate goal of

database cracking is to build the first truly self-organizing

database system that will continuously and automatically

adapt to workload changes (random). Cracking completely

removes the need for human administration. Though cracking

is not an auto-tuning tool, i.e., it is not an external piece of

software/hardware to help with system administration. Instead

cracking represents a new internal kernel design by

introducing new ways of storing and accessing data. This way,

the very way data is stored and subsequently accessed by
queries is continuously changing to adapt to the workload and

to converge to the ultimate performance.[2]

Database cracking sets a new query processing and adaptation

paradigm. It follows both automatic index selection and partial

indexes for future queries, it refined until sequential searching

a partition is faster than binary searching into the AVL tree

guiding a search to apply partition.[4]

II. RELATED WORK

In original database cracking, cracking treats each query as a

hint on how to reorganize data in a blinkered manner; it takes

each query as a literal instruction on what data to index,

without looking at the bigger picture. [12] It is thanks to this
literalness that cracking can instantly adapt to a random

workload; yet, this literal character can also be a liability. With

a non-ideal workload, strictly adhering to the queries and

reorganizing the array so as to collect the query result, and only

that, in a contiguous area, amounts to an inefficient quick sort-

like operation; small successive portions of the array are

clustered, one after the other, while leaving the rest of the array

unaffected.

DB cracking is being used in Monet DB system [6][8] at the

“Centrum Wiskunde & Informatica (CWI) in Amsterdam

database architectures research group since 1993. Monet DB
is an open-source column-store DBMS with multiple

innovations in its core design. Till now many releases of

Monet DB has been introduced in market i.e. Monet DB 2009,

Monet DB/X Query [3][5][7].

It becomes a revolutionary DB as it stores each attribute

column wise instead of row wise in traditional databases and

then cracks it for the benefits of future query in terms of fast

response time and throughput.

Another technique named C-Store (Stonebraker et al., 2005),
is a column oriented database system and its main architecture

novelty is that each column/attribute is sorted and this order is

propagated to the rest of the columns [1]. Multiple projections

of the same relation can be maintained, up to one for each

attribute to prepare for the workload. It has shown best

compression capabilities.

Approaches such as soft indexes [1] try to exploit the scan of

relevant data (e.g., by a select operator) and send this data to a

full-index creation routine at the same time. This way, data to

be indexed is read only once. Still, the problem remains that

creating full indexes significantly penalizes individual queries.
Hence, various approaches are designed to enhance self-

organizing database system.

Several auto tuning tools are also designed to prepare database

to handle fluctuating workload. ((Chaudhuri and Narasayya,

1997). These tools help DBA by continuous monitoring and

analyzing the various alternatives in the system. They rely on

the what-if analysis paradigm and close interaction with the

system’s query optimizer [6, 8].

III. METHODOLOGY

Database cracking uses THREE PIECE CRACK and TWO

PIECE CRACK algorithm on “copy of a column” for very first

query and rest Queries respectively; maintaining the benefits
of (a) Original column remains intact (b) No overhead of

maintaining complete table.

Figure 1 showing basic Cracking method for range queries

[1] [3].

Mrs. Aarti Chugh al. al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2,
Issue 2, June 2015, pp. 42-44

 © 2014 IJRRA All Rights Reserved page - 43-

As figure shows that on copied column three piece crack

algorithm is used resulting in three pieces ranging

A<=10,10<A<14,14<=A and next range predicate. Two piece

crack algorithm has been applied resulting in 5 more pieces.

This type of data cracking is known as Selection Cracking. [1]

The main innovation is that the physical data store is
continuously changing with each incoming query q, using q as

a hint on how data should be stored. All crack actions happen

as part of the query operators, requiring no external

administration. Figure 1 shown above is an example of two

queries cracking a column using their selection predicates as

the partitioning bounds. Query Q1 cuts the column in three

pieces and then Q2 enhances this partitioning more by cutting

the first and the last piece even further, i.e., where its low and

high bound fall. Each query has collected its qualifying tuples

in a contiguous area.

This first ever made purely column oriented database gives an

extra ordinary performance when compared to traditional
FULL SORTING and SCAN in dynamic environment along

with benefits such as

• Performance in Random workload [3]

• Self-organizing Tuple Reconstruction in Column-stores

[6]

• Self tuning without DBA[3]

• Histogram for free[7]

• No need for idle time and prior knowledge regarding

workload [3][9-10]

• Deals with only required column/tables/range/queries

[5][9]

Figure 2: shows DB cracking performance against SCAN and

SORT for response time per query. [3].

IV. STOCHASTIC CRACKING

Stochastic cracking ventured to drop the strict requirement in

original cracking that each individual query be literally

interpreted as a re-organization suggestion. It forced

reorganization actions that are not strictly driven by what a

query requests, but are still beneficial for the workload at

large. Therefore partially driven action “by what queries want”

”partially arbitrary in character”.
Stochastic database cracking is a significantly more resilient

approach to adaptive indexing. Stochastic cracking also uses

each query as a hint on how to reorganize data, but not blindly

so; it gains resilience and avoids performance bottlenecks by

deliberately applying certain arbitrary choices in its decision

making. Thereby, this technique brings adaptive indexing

forward to a mature formulation that confers the workload-

robustness previous approaches lacked. It has verified that

stochastic cracking maintains the desired properties of original

database cracking while at the same time it performs well with
diverse realistic workloads. [1], while maintaining original

properties of database cracking.

Stochastic cracking adopted four different techniques that try

to strike a balance between

(a) Adding auxiliary reorganization steps with each query, and

(b) Remaining lightweight enough so as to significantly (if at

all) not penalize individual queries.

The algorithms used for stochastic cracking are Data driven

Center (DDC), Data driven Random (DDR), Variant of DDC

and DDR (DDC1 and DDR1), Materialization data driven

random1 (MDD1R) and Progressive Stochastic Cracking

(PMDD1R).

V. SUMMARY AND FUTURE WORK

This paper gives an overview of database cracking. It has been

shown that original cracking relies on the randomness of the

workloads to converge well. However, where the workload is

non-random, cracking needs to introduce randomness on its

own. Stochastic Cracking clearly improves over original

cracking by being robust in workload changes while

maintaining all original cracking features when it comes to

adaptation. Future work can provide more algorithms or

optimization of existing algorithms.

VI. REFERENCES

[1]. S. Idreos, “Database Cracking: Towards Auto-tuning

Database Kernels,” 2010 DBcrackingThesis.pdf

[2]. S. Idreos, S. Manegold, H. Kuno, and G. Graefe.”

Merging what’s cracked, cracking what’s

merged:Adaptive indexing in main-memory column-

stores”. PVLDB, 4(9):585–597, 2011.

[3]. By Stratos Idreos” Database Cracking:Towards

Auto-tuning Database Kernels”, 2010

[4]. G. Graefe and H. Kuno.” Adaptive indexing for

relational keys.” SMDB, pages 69–74, 2010

[5]. P. Boncz, A. Wilschut, and M. Kersten. Flattening an

Object Algebra to Provide Performance. In Proc. Of
the IEEE Int’l. Conf. on Data Engineering, 1998.

[6]. S. Idreos, M. L. Kersten, and S. Manegold. “Database

cracking. CIDR”, pages 68–78, 2007

[7]. Peter Boncz (CWI) Adapted from VLDB “Column-

Oriented Database Systems “2009

[8]. Tutorial Column-Oriented Database Systems with

Daniel Abadi (Yale) Stavros Harizopuolos (HP

Labs)

[9]. By Martin Kersten, Stefan Manegold, joerd

Mullender “The Database Architectures Research

Group at CWI “
[10]. S. Idreos, M. L. Kersten, and S. Manegold.”

Self-organizing tuple reconstruction in column

Stores”. In SIGMOD, pages 297–308, 2009

[11]. Stratos Idreos, Martin Kersten and Stefan

Manegold CWI Amsterdam, The Netherland

“database cracking ppts “ 2010

Mrs. Aarti Chugh al. al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2,
Issue 2, June 2015, pp. 42-44

 © 2014 IJRRA All Rights Reserved page - 44-

[12]. Felix Halim, Stratos Idreos, Panagiotis

Karras, Roland H. C. Yap “Stochastic Database

Cracking: Towards Robust Adaptive Indexing in

Main-Memory Column-Stores” ,2012

[13]. Meenash Bhardwaj, Aarti Chugh “
Optimization of Stochastic Database Cracking” in

Cornell University Library.

[14]. Goetz Graefe: Sorting and indexing with

partitioned B-trees. CIDR 2003.

[15]. M. Stonebraker, D. Abadi, A. Batkin, X.

Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S.

[16]. Madden, E.O’Neil, P. O’Neil, A. Rasin, N.

Tran, and S. Zdonik. C-store: A column oriented

[17]. dbms. In Proc. of the Int’l. Conf. on Very

Large Data Bases, 2005.

[18]. Stratos Idreos, Stefan Manegold and Goetz

Graefe Ppts on “adaptive indexing in modern
databases “

[19]. Goetz Graefe:” Sorting and indexing with

partitioned B-trees”. CIDR 2003

[20]. Goetz Graefe: Implementing sorting in

database systems. ACM Comput. Surv. 38(3):

(2006).

[21]. Milena Ivanova, Martin L. Kersten, Niels

Nes: Self-organizing strategies for a column-store

database.EDBT 2008: 157-168

