
K. Sivakami al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2,Issue 2, June 2015,
pp. 198-203

© 2014 IJRRA All Rights Reserved page - 198-

 Comparative Study on Software Testing

Models

K.Sivakami1, Dr. K.Mohan Kumar2
1Research scholar, CS Department, Rajah Serfoji Govt. College, Thanjavur, India

2Asst.Professor and Head, CS Department, Rajah Serfoji Govt. College, Thanjavur, India

ABSTRACT: There are many products and services such as bank services, health care services, retail business and

other electro-items like theft alarm, micro ovens, and mobile phones in our daily use. Software is major commodity of

these products and services. The demand of software quality is increasing as the software is becoming more and more

important to us. This leads to considerable challenges for Information Technology industry in testing practice. The

practical challenges may include human resources, hardware availability, software/application readiness, inadequate

testing timeline and tight software development schedule. Software testing strategies are very important to test the

functionality of the software without compromising on its quality. Any strategy adopted for the software development

and deployment are expected to test functional behavior, logical data dependencies and integral behavior of the

Software. The role of defining strategy is to detect possible defects in system and can help in successful completion of the

system according to functionality.

KEYWORDS: Waterfall, Risk Based Test Model, Iterative Test Model, Desktop Integration Test Model, JAWS, Test

Effort Estimation, Function Point.

I. INTRODUCTION:

With the passage of time, software products are growing larger

and becoming more and more complex. It leads to more

opportunities for defects to sneak in software development and

its maintenance. Software takes lots of resources of software

development organization and they are interested to provide

software in functional form as long time as possible. Due to

changes in the environment and in the user requirements, it is
very important that the software is easy to adapt and

maintainable. This leads to challenges in the testing practice

now a day. Waterfall test model is the traditional strategy that

is being adopted for the testing in the software development.[1]

II. TESTING OVERVIEW:

Definition:The formal definition of testing was introduced in

1979 by Myers as “the process of executing a program with the

intent of finding errors”. According to this definition, fault

detection is primary goal. Myer’s goal was to show that

program has no faults; one might select the test data which has

low probability of finding errors. If the goal is to find errors,

one will select test data which have high probability of
detecting errors and our testing succeeded successfully.[2]

Testing Techniques: The guideline published in the Institute

for Computer Sciences and Technology of the National Bureau

of Standards in 1983, introduced a methodology which

integrates analysis, review and test activities to provide product

evaluation during the software life-cycle. The two key testing

techniques recommended widely are Black-Box testing and

White-Box testing which is detailed further below in this

section.

Black-Box testing - is testing software based on output

requirements and without any knowledge of the internal

structure or coding in the software.

White box testing - is highly effective in detecting and

resolving problems, because bugs can often be found before

they cause trouble.[3]

III. TRADITIONAL TEST MODEL - WATERFALL:

The activities that comprise the creation of software are
commonly modeled as a software development lifecycle

(SDLC). The software development lifecycle begins with the

identification of requirements for software and ends with the

formal verification of the developed software against those

requirements. The software development lifecycle does not

exist by itself; it is in fact part of an overall product lifecycle.

Within the product lifecycle, software will undergo

maintenance to correct errors and to comply with changes to

requirements. One of the more commonly accepted lifecycle

models is the waterfall model, also known as the linear

sequential model. The waterfall model, while still popular, is

not conducive to the rapid development cycles that the Internet
atmosphere demands, today's strict economics, and increased

expectations of quality. Specifically, following are the

particular concerns:

 Typically, more time than was initially scheduled is

needed to integrate subsystems into a complete, working

application. This squeezes the time allocated to testing,

always the first item to be cut. The quality of software is

poor.

 Design flaws that require significant changes to the

product are discovered late in the software cycle. Rarely is

tangible design validation performed in the project’s early
stages. And the releases are long enough where the

K. Sivakami al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2,Issue 2, June 2015,
pp. 198-203

© 2014 IJRRA All Rights Reserved page - 199-

customer/users have to wait for considerable amount of

time. Customer satisfaction is negatively impacted in the

waterfall test strategy.

 Today, customers use various types of hardware, operating

systems and other utilities/application with which the

software has to function in order to be business as usual.
Waterfall method does not conduct such test and hence,

the software fails after production release due to the

hardware/software conflicts.

 Waterfall model do not support certification of software

for visually impaired users.

IV. RECOMMENDED TEST MODELS:

The aim of this analysis is to propose an appropriate test model

for projects that fall into the categories of the following testing

challenges:

1. Timeline/Resource limitation.

2. Customers satisfaction/Less wait time for project releases

3. High volume of production failures due to
hardware/software compatibilities.

4. Software does not comply for visually impaired users.

The objectives which are formed in this analysis to solution the

above mentioned challenges are:

 Identify a robust test model for a successful software

development without compromising the business need of

the software.

 Identify an effective test model for multiple releases of

software to meet the customer satisfaction of availing new

business functions to their clients.

 Identify a robust test model in order to certify the software
is compatible with major varieties of hardware and

software.

 Identify a best automated tool to certify the software is

complying for the visually impaired users.

V. RISK BASED TEST MODEL (RBTM):

Since it’s impossible to effectively test every part of the every

application, organizations struggle to decide how much testing

to do on which application modules, and in the proper

sequence, to meet customer needs at the lowest possible cost.

Failing to prioritize these efforts properly results in the

following outcomes:

 Not finding critical defects until late in the development
cycle, which significantly increases the time, and cost,

required to fix them.

 Wasting time and money testing less important parts of

the application that contain fewer likely defects.

 Higher software testing and remediation costs, by testing a

large number of test cases than are necessary.

 Delays in delivering software to internal or external

customers.

A far more effective approach is Risk Based Test Model,

which examines at the level of the business scenarios the

likelihood of a given defect and business impact of such
defect. This helps assure the companies spend the most time

and money on the most critical areas, and find the largest

number of defects (and the most important defects) in the

shortest time and at the lowest possible cost.

RBTM is an approach recommended for the projects with

schedule limitation. This model is carried out with manual

effort of testing and focuses on the functional attribute of the

software.[4]
Approach: RBTM uses the approach of prioritizing what

software to test based on:

 Risk of the failure of a given software module or that

is not tested.

 The impact on the business of such failure.

Based on this analysis, project managers can focus testing on

the most important scenarios or cases, selecting the amount of

testing to do based on their project constraints and the amount

of risk the company can afford to take.

RBTM based testing is a strategy of software testing in which

the features and functions to be tested are categorized by

priority, importance and potential impact of failures. Using
risk, Risk based testing prioritize and emphasize the suitable

tests at the time of test execution. In other word, Risk is the

chance of event of an unwanted outcome. This unwanted

outcome is also related with an impact. Some time it is difficult

to test all functionality of the application or it might not be

possible. Use Risk based testing in that case; it tests the

functionality which has the highest impact and probability of

failure.[5]

A properly implemented RBTM methodology helps assure that

high-risk areas are tested first, then medium-risk and, finally,

low-risk areas. This is an improvement over non-prioritized
testing, in which low-risk areas might be tested before higher-

risk modules.

Risk-based testingis the process to understand testing efforts in

a way that reduces the remaining level of product risk when the

system is developed. [6]

VI. ITERATIVE TEST MODEL (ITM):

One recent approach that appears to have sound engineering

principles, good economics, and consensus in the community is

the iterative software lifecycle. The iterative lifecycle has the

benefit of application of lessons learned in the waterfall model.

K. Sivakami al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2,Issue 2, June 2015,
pp. 198-203

© 2014 IJRRA All Rights Reserved page - 200-

For each cycle of the model, a decision has to be made as to

whether the software produced by the cycle will be discarded,

or kept as a starting point for the next cycle. This approach has

been referred to as incremental development. Iterative Test

Model is the only appropriate test model for the software

validation that is been developed using agile method.
It is apparent that testing activities are committed throughout

the lifecycle. It is very likely that other lifecycle models could

support similar techniques, as any limitations are more

psychological than technical. However, the deep-rooted culture

of design, build, and then hand-off over the wall for testing is

entrenched in the minds of a great majority of project

stakeholders, managers, and developers. The iterative model

attempts to implement total quality engineering horizontally

across the project, with everyone involved.[7]

VII. DESKTOP COMPATIBILITY TEST MODEL

(DCTM)

Compatibility is nothing but capability of existing or living
together. In normal life, oil is not compatible with water,

but milk can be easily combined with water.

In computer world, compatibility is to validate whether

particular software is capable of running on different

hardware, operating systems, applications, network

environments or mobile devices. Compatibility testing is a

type of the non-functional testing that includes the

following test types:

 Hardware – It validates the software to be compatible

with different hardware configurations. The hardware

configuration varies from:
o Type of computer – Desktop, Laptop,

Palmtops, Table PC, etc.,

o Make & Model of computers – Dell-X45, HP,

IBM-Lenovo, etc.,

o Configurations – processor speed, RAM, etc.,

 Operating Systems – It validates the software to be

compatible with different operating systems line

Windows – XP, Vista, Unix, Mac OS, etc.,

 Software – It validates your developed software to be

compatible with other software. Examples

o MS Word, Excel, Outlook, VBA, Java

Runtime, JVM, etc.,
 Network – It evaluates the software’s performance in

network with varying parameters such as Bandwidth,

Operating speed, Capacity. It also checks application in

different networks with all parameters mentioned

earlier.

 Browser – It validates the software to be compatibility

of the web application with different browsers like

Firefox, Google Chrome, Internet Explorer, etc.,

 Devices – It validates the software to be compatibility

of the software with different devices like USB port

devices, Printers, Keyboards, Mouse and Scanners,
other media devices and Bluetooth.

 Mobile – It validates the software to be compatible

with mobile platforms line Android, Windows, iOS,

etc.,

 Versions – It validates the software to be compatible

with other system utilities like service pack SP1, SP2,

SP3, etc.,
Following are two types of version validation:

Backward Compatibility Testing is to verify the behavior
of the developed software with the older version of the

software.

Forward Compatibility Testing is to verify the behavior

of the developed software with the newer version of the

software.

 Installation – Installation testing is performed

once the application functional testing is complete.

As part of the installation test, installation of the

application executable on the previously installed

application while the application is in open and

closed status. Validate that the application
continues to work without any negative impact to

the previous version along with the newly modified

changes.

 User Experience – Finally, the executable is

wrapped with the packaging skin. The text,

informative messages, logo and other details are

validated for better user experience.

Approach of Desktop Compatibility Testing is as follows:

Version Compatibility

Testing

Version Compatibility

Testing

Version Compatibility

Testing

K. Sivakami al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2,Issue 2, June 2015,
pp. 198-203

© 2014 IJRRA All Rights Reserved page - 201-

Assessment – Evaluate the software that is planned to

undergo changes/updates for technical dependencies,

example; Let us assume that a software called “Retirement

Planner” is dependent on the PDF application. Identifying

all such dependencies takes place in this phase and a

complete list is prepared.
A matrix is constructed containing the information about

the upstream, downstream and prerequisites of the software

that is planned to undergo a change.

Considering the above two evaluation, the impact analysis

report has to be prepared that will list all the software and

its impact on itself and other applications.

The impact report becomes the requirements and that are

communicated to the testing team and any other cross

commit teams.

Remediation – Solution is identified considering the direct

and indirect dependencies of the other software or utilities

and the impact analysis report generated in the Assessment
phase.

Once the solution is accepted by the steak holders of the

project and other business heads, the required code changes

are made and detailed unit testing is done on any one or

two specified hardware configuration.

Once the unit testing is complete, the developer has to

communicate to kick-off the testing effort.

During all these effort of development team, the testing

team has to prepare matrix on the hardware, devices,

networks that are considered for testing and the same has to

be aligned with the business team in order to broadcast the
risks of for any configuration not be considered for testing.

Note: It is testing team’s responsibility to identify the

entire possible configuration for testing based on the usage

of the configurations in the client field.

Testing –Testing should kick-off the testing once the test

software is deployed on the business aligned test machine

configurations. Testing team has to conduct the following

types of testing:

 Functional/system test – testing the modules in the

software that under goes changes for its functionality.

 Regression test – testing the entire software for all of

its key functionalities for any negative impact of the
new changes made in the software. This could be

performed either by the technical testing team or the

business testing team.

In order for a quality regression test, the tester should have

a very good knowledge about the software from the

business perspective and hence, the business team

performing this test is advisable.

If the technical team has to perform the regression test then

the screen comparison from the previous releases is the

recommended approach.

 Compatibility test – testing the other software in
concurrent usage of the software that is being modified.

Issues/defects due to concurrent usage of the software,

utilities and application have to be identified as part the

integration testing.

 Testing can be done by manually/automatically

comparing the screenshots or the actual test results of

previous test runs.

 On unsuccessful completion of the testing, the issues

has to be raised as defects in the defect management

tool and testing team has to arrange for defect triage
meetings inviting the development team, business

team, project sponsors and others if any.

 Depending upon the timeline and criticality of the

project, the defect triage may be conducted once or

twice a day. Testing is responsible to host the triage

and the all other communication, defect tracking and

etc.,

 On successful completion of the testing, the sign-off

from technical end has to be communicated to all the

stake holders.

Implementation – Once the testing is complete, the
software will be rolled out to the clients through the

software deployment tools like Altiris.

Environment for performing the desktop compatibility

testing is the labs where the physical computers, devices,

printers, scanners, keyboards, mouse are available. Also,

the other software and the software to be verified are

accessible from that lab through CD format or from share

points or through deployment tools like “Altiris”.

A lab administrator is necessary to maintain and secure the

lab. In addition, the following services have to be provided

to conduct the compatibility test:
 Building the machines with all the required software,

utilities, network connections, printer configurations,

etc.

 Technical support in fixing the issues that may occur in

hardware, network, etc while testing

 Coordinating with cross commit teams that may be

required for test.

TESTING TOOL TO CERTIFY SOFTWARE FOR

VISUALLYIMPAIREDUSERS:

Freedom Scientific is an organization that develops the highest

quality video magnifiers, Braille displays, screen magnification

software, and the #1 screen reader, JAWS® for Windows. For
over 20 years, our products have provided access to print and

computers for people with blindness, low vision, or learning

disabilities.

It is important to evaluate the accessibility of web content with

a screen reader, but screen readers can be very complicated

programs for the occasional user, so many people avoid them.

This doesn't need to be the case. While screen readers are

complicated, it is possible to test web content for accessibility

without being a "power user." It is a powerful software

program designed to work with a speech synthesizer to

improve the productivity level of visually impaired employees,
students and the casual user. By streamlining keyboard

functions, automating commands, and eliminating repetition,

JAWS allows the operator to learn faster and easier than ever

before. JAWS is based upon a whole new approach to talking

K. Sivakami al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2,Issue 2, June 2015,
pp. 198-203

© 2014 IJRRA All Rights Reserved page - 202-

computers - that of designing software with the priorities of the

blind user in mind. Yet, the sighted trainer or supervisor has

not been forgotten, since JAWS offers both audible and visual

flexibility.[8]

COMPARISON OF TESTING EFFORT ESTIMATION

BETWEEN WATAERFALL, RBTM AND ITM:
The objective of this analysis is to describe the effective test

models to help meet the challenges of testing practice.

Importantly, the traditional approach needs to be revisited, and

all parts of an approach that do not help or not applicable need

to be thrown overboard. The approaches discussed in the

analysis are not standardized models but has to be customized

as required to the context of the software development and its

business objective. The recommended test models are

compared with one another and with the waterfall method by

the parameter “Test Execution Effort”. Similarly, JAWS is

compared with other screen reading tools available in the

market by the parameter “Utilization”. This utilization numbers

are taken from the reference mentioned in “References”
section.

The table below is a sample data of 11 test cases with risk

selection made whether or not the test case has to be tested for

the current software release. The risk is purely identified by the

subject matter expert, the business analyst who can judge on

the functions criticality and severity in order to identify the test

cases for testing.

System:My Bank Accounts

System

Feature

Test

Case #

#. Of

steps

TC

Categor

y

TC

Weight

age

TC

Points

FP

Weightage Priority

Risk

Selection

FP

Weigh

tage

Security

Module

Test

Case 1 10 Medium 3 5 15 High √ 15

Security

Module

Test

Case 2 5 Simple 1 3 3 High √ 3

Authentication
Module

Test
Case 3 3 Simple 1 2 2 Medium √ 2

Authentication

Module

Test

Case 4 3 Simple 1 2 2 Low × -

My Accounts

Page

Test

Case 5 15 Complex 5 10 50 High √ 50

Accounts -

Nickname

Test

Case 6 5 Simple 1 2 2 Low × -

Accounts -

Address Update

Test

Case 7 5 Simple 1 3 3 Low × -

Accounts - Pin

Update

Test

Case 8 3 Simple 1 1 1 Medium × -

Accounts -

Linking

Test

Case 9 10 Medium 3 7 21 Medium × -

Money Transfer

– Internal

Test

Case 10 10 Medium 3 4 12 Medium × -

Money Transfer

– External

Test

Case 11 10 Medium 3 8 24 High √ 24

Let us calculate the effort using the Function Point effort

estimation technique. In this FP technique, each functional

point should be given weightage and the test cases have to
be categorized into three categories as “Simple”, “Medium”

and “Complex”. So, the total effort estimate is calculated by

the multiplication of Total Function Points and Estimate

defined per Functional Point.

Total Effort Estimate = Total Function Points * Estimate

defined per Functional Point

Effort is calculated for all FPs in waterfall methods and it is

as follows.

Total Effort Estimate = 135 x 5 = 675

Effort is calculated for the test cases under risk in the

RBTM and it is as follows:

Total Effort Estimate = 94 x 5 = 470

Note: The defined effort per FP is assumed to be 5 minutes

The test effort difference between waterfall, risk based and
iterative test methods is shown in the below table and chart.

Test Case

Waterfall

Risk

Based Iterative

TC1 75 75 64

TC2 15 15 13

TC3 10 10 9

TC4 10 - 9

TC5 250 250 213

K. Sivakami al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2,Issue 2, June 2015,
pp. 198-203

© 2014 IJRRA All Rights Reserved page - 203-

The below table shows the comparison of the execution
time and cost between Waterfall, Risk Based and Iterative

testing methods:

Time/Cost Execution Time Testing Cost

Waterfall 675 608

Risk Based 470 423

Iterative 574 516

Cost is calculated as Execution Time x 450 and the
comparison of cost between the methods is represented in

terms of 500 in the below chart.

JAWS is still most popular screen reader tool, it has seen a

significant decline in the primary usage – down to 49%

from 66.4% in the previous years 2009 to 2012. Other

screen reader tools like Window-Eyes and Zoom saw small

increases in primary screen reader usage while Voice Over

saw small decrease in usage. NVDA saw continued

increase in usage, up to 13% from 29% in 2009 and 8.6% in
2010 (nearly 500% increase in just 2.5 years). JAWS is

much more popular in Asia (68% of respondents), Australia

(58%), north America (50%) than in Europe/UK (37%).

CONCLUSION:

This analysis has recommended four test strategies which

effectively address the schedule, budget constraints and

interim releases. Among the four test models discussed two

test models DCTM and JAWS are horizontal testing
conducted across any test model adopted for functional test

of the software. The same is depicted in the picture below:

REFERENCES
[1]. Laurie Williams, testing Overview and black Box

testing Techniques, 2006.

[2]. Karl Reed, Software Reliability, Testing and Security

Class Lecture Notes, computer Science department, La

Trobe University, Australia, 2012.

[3]. Sahil Batra and Dr. Rahul, “IMPROVING QUALITY

USING TESTING STRATEGIES” Journal of Global

Research in Computer Science, Volume 2,No.6,June

2011.

[4]. Isha Int. Journal of Engineering Research and

Applications, April 2014.
[5]. Www.intensetesting.wordpress.com

[6]. http://www.softwaretestingclass.com/what-is-risk-

based-testing-in-software-

testing/#sthash.muWzpLKW.dpuf

[7]. http://home.c2i.net/schaefer/testing.html

[8]. http://www.freedomscientific.com/Products/Blindness/

JAWS

75

15 10 10

250

75 15 10 0

250
64

13 9 9

213

0

50

100

150

200

250

300

TC1 TC2 TC3 TC4 TC5E
x
e
c
u

ti
o
n

 T
im

e
 (

in
 h

o
u
rs

)

Test Cases

Waterfall vs Risk Based Vs Iterative

Waterfall Risk Based

675
470

574

608

423
516

0
200
400
600
800

1000
1200
1400

Waterfall vs Risk Based Vs Iterative

Testing Cost

Execution
Time

Waterfall
Method

Risk Based
Testing

Iterative
Testing

