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Abstract: This project highlights the problems that are encountered in a typical Traffic Sign Recognition 

System like incorrect interpretation of a particular traffic sign which is observed by a driver while driving a 

vehicle causing misunderstanding thereby resulting in road accidents. The visibility is affected by many 

environmental factors such as smoke, rain, fog, humid weather, dust etc. and it is very difficult to understand 

the traffic signs in this situations, causing misinterpretations of the particular traffic sign and resulting in 

road accidents. In order to avoid this condition, a novel method of recognizing traffic signs is developed 

which take into consideration the color and shape of the traffic sign. Hough algorithm is used for 

classification of different groups of traffic signs which are predefined by a particular set of features after the 

process of Image Segmentation. Finally, the simulations of traffic sign images are prepared by using the 

software tool called as MATLAB. 

Key world: Mat lab tool, traffic sign 

I. INTRODUTION  

Autonomous driving researches are focused either on 

off-road driving [1] or driving in urban traffic [2]. 

Thanks to the DARPA Grand Challenge and the DARPA 

Urban Challenge [3], significant progress have been 

made in both domains. Autonomous vehicles equipped 

with several cameras, sensors, and processors prove to 

move successfully from a starting point to a predefined 

destination. 

There is a remarkable amount of work regarding 

autonomous driving and its sub-tasks. Most of these 

studies target the task of moving the vehicle from one 

point to other, just by avoiding collisions and following 

the most efficient path. This requires optimal path 

planning and obstacle avoidance algorithms, but not 

necessarily the recognition of traffic signs or pedestrians. 

DARPA Urban Challenge has mandated some specific 

rules, most importantly "lane following", but has not 

covered the traffic rules as a whole. Recognition of 

traffic lights and signs, and recognition of pedestrians 

are officially left out of scope. 

Following the progress in this field, car manufacturers 

have recently started deploying more intelligence in their 

latest models. Parking assistance, adaptive cruise 

control, emergency brake assist, lane departure warning 

and speed limit monitoring are among the new features 

appearing in the car market [4, 5]. All of these systems 

are at the very early stages of their evolution. Much 

more progress is on the horizon.  For example, in the 

near future, lane, speed limit and traffic light violations 

are going to be immediately detected by cars and 

reported to a central traffic regulation system with 

wireless media. 

With these expectations in mind, Automatic Driver 

Evaluation System (ADES) aims to take a key role in 

this hot topic of the intelligent car technology. The final 

product of the ADES Project will be a framework for 

evaluating the drivers against the traffic rules as they 

drive. It can be used for; 

• Assisting drivers to drive more safely, 

• Informing traffic central about the violations 

(lane, speed, light, other rules),  

• Automation of driver license examinations, 

• Highway maintenance: to check the presence and 

condition of the signs, 

• Supervising the development of autonomous 

urban driving. 

This study is a part of the ADES Project and is focused 

on the road lane and traffic sign detection and tracking 

systems. Two different concepts of autonomous driving 

challenge are studied and have yielded promising results.  

II.  METHODOLOGY 

Hough Transform Overview 

Hough Transform (HT) [7] is a technique to detect 

arbitrary shapes in images, given a parametrized 

description of the shape in question. Hough transform 

can detect imperfect instances of the searched shapes. 

Besides, HT is tolerant of gaps, and image noise has 

minor effect on the output.  

The simplest form of the HT is the line transform, where 

lines are the target elements sought by the transform. 

Representing a line in polar form (Equation 3.1) 

specifies its normal passing through (x, y) drawn from 
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the origin to (r, θ) in polar space. These are represented 

by the dashed lines in Figure 3.1. 

xCosθ + ySinθ = r                                                  (3.1) 

 

For each point in the (X, Y) plane and on the line, the 

values of r and θ are constant. Therefore, for a given 

point in the (X, Y) plane we can calculate the lines 

passing through the point in terms of r and θ. Passing a 

range of lines at varying angles [0, 2π] and varying θ 

accordingly it is then possible to calculate the value for r. 

By taking a set of lines through a point and calculating 

the r and θ values for the lines at that point a Hough 

space can be created (Figure 3.1). Distributing the results 

of these calculations to “bins” and incrementing their 

value or “vote” for every result that is placed in them, an 

accumulation array can be built. The greater the vote 

value of the bin, the higher the probability that it is a 

point on the line. 

 
Figure 3.1. Liner Hough transform. 

Detection: Multiresolution Hough Transform (MHT) 

The classical HT approach processes the entire vision 

data in order to detect the lines. This scenario has two 

main drawbacks. First, the occluded lines (i.e. another 

car passing through the line) become noisy since the 

transformed relative intensity of the line decreases. 

Second, the relative intensity of the lines also decreases 

at the curves in the road. 

The proposed solution divides the road image into 

partitions, where the sizes of the partitions are inversely 

proportional to the distance of the partition to the 

vehicle. After the image is partitioned, several 

preprocessing steps are required before applying the 

Hough transform. These preprocessing steps should be 

fast because the Hough transform is already 

computationally expensive for real time applications. 

Since edge detection techniques are also usually 

computationally expensive for real time applications [51, 

52], each partition is converted to binary images via 

applying a threshold filter after a color remapping 

process. 

After the image is partitioned, a separate Hough 

transform is applied to each single partition. The most 

intense line in each partition, which is the candidate line 

segment, is taken into consideration in order to find the 

global lanes in the image. Since the Hough lines are 

represented in polar coordinates (r, θ) instead of 

rectangular coordinates (x, y), the candidate lines are 

grouped according to their slopes and distances to the 

center of the image as well as their intensities. The 

center of the frame is chosen as the reference point. 

 
Figure 3.2. Block Diagram for Multiresolution HT. 

The transformation of the lines basically changes the 

center point of the polar coordinates for each 

transformed line which is achieved by the following 

translation 

 

r
’
 = r + (x – x

’
) cos(θ) + (y – y

’
) sin(θ) θ

’
 = θ                              

(3.2) 

 

where (r’, θ’) are the global polar coordinates (with 

respect to the reference point) of the Hough line (r, θ). 

Note that the translation of the center of the Hough 

transform is from (x, y) to (x’, y’). 

 
Figure 3.3. (a) Partitioned image, (b) Binary image. 
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Figure 3.4. (a) Candidate lines, (b) Transformed line, (c) Detected lines. 

After the lines are grouped, the most intense three 

clusters are assigned as the lanes. However, there may be 

less than three lanes if the sum of the intensities of the 

candidate lines is less than a threshold value. 

 Tracking: HMM 
HMM [53] is an alternative to Kalman filter and particle 

filtering. It is a statistical model in which the system 

being modeled is assumed to be a Markov process with 

unobserved states. As shown in Figure 3.5, the system 

consists of predefined sets of states and observations. A 

state transition probability matrix defines the 

probabilities of transition between states. An emission 

probability matrix defines the probability of 

encountering each observation for each state. System 

also defines the start probabilities of each state. The 

ultimate aim of an HMM is to estimate the next 

observation relying on the current observation, without 

access to the state information. 

 
Figure 3.5. Hidden Markov Model. (x: states, y: possible 

observations, a: state transition probabilities, b: emission 

probabilities) 

For lane tracking, HMM is used to represent the relation 

between the current frame and its successor. Each lane in 

a specific frame is represented by an individual (r, θ) 

pair. In the succeeding frame, the process will most 

probably observe the same lane at (r’, θ’) which is not 

very far from the position of the lane in the previous 

frame. The probability of observing (r’, θ’) pair in the 

next frame is modeled as an HMM problem. In addition, 

θ and r values are modeled by two different HMMs. The 

θ value is discretized as (0, 1, 2, 3. . . 178, 179) where 

the r value is discretized at the pixel level. This 

discretization schema is used in both transmission and 

emission matrices. The emission probability matrix 

shows the probability of observing θ’ (or r’) in the next 

frame, having observed θ (or r) in the current frame. In 

our implementation, the observation and state transition 

matrix values are derived from two Gaussian 

distributions with different deviations. The deviation of 

the transition matrix is assigned to a smaller value than 

the observation matrix, which means, the state transition 

matrix aims to preserve the current state where the 

observation matrix promotes the exploration behavior. 

III. EXPERIMENTS  

The approach proposed in this study is implemented and 

tested on a relatively short video sequence of an urban 

drive. In addition, the proposed approach is compared 

with the classical Hough transform where the entire 

image is processed and the most intense lines are 

accepted as candidate lines. The properties of the video 

are as follows. 

Table 3.1. Properties of the video sequence. 

Camera Position Front Console of 

the Car 

Resolution 512x288 

Frame Rate 29.97 

Length 34 Seconds 
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IV. SETUP 

As the first step of the experiment, the image is 

converted to a binary image using a color remapping 

function. The mapping for each pixel from 24bit RGB 

value to binary value is given in Table 3.2. 

Table 3.2. Color remapping. 

Pixel Value Red Green  Blue 

0-175 0 0 0 

176-195 1 1 0 

196-255 1 1 1 

This binarization favors the white and yellow parts of the 

images. The values are manually crafted for the sample 

video. More discussions about improving the color 

remapping can be found in the next section. 

The next step is to determine the partitions of the image 

on which the Hough transforms will be applied. 

Although the image is 288 pixels high, only the 

bottommost 116 pixels are used since the road remains 

in this lower part of the image. The accuracy of this 

assumption may slightly differ depending on the slope of 

the lane. 

 
Figure 3.6. Image partitions. 

The widths of the partitions are 32, 64, and 128 pixels 

from top to bottom. And the heights are 32, 42, and 42 

pixels respectively as shown in Figure 3.6. These values 

are assigned according to the position of the camera. 

Exact dimensions of the partitions are not very crucial. 

The only idea is to put more attention on the far regions 

of the camera view. After the partitions are calculated, 

Hough transform is applied to each partition as described 

in the previous section. The most promising three lines 

are assigned as the candidate lane markings. But there 

may be less than three lines if the intensity of the 

calculated lines are less than an empirically assigned 

threshold. The experiment shows that the proposed 

approach usually detects only two lines most of the time. 

After finding the lane markings, the HMM method is 

used to track the lanes. The values of the emission and 

state transition matrices are derived using Gaussian 

distribution. The deviation of the transition matrix is 

assigned as 1 and the deviation of the emission matrix is 

taken as 2. Two separate models are prepared for the θ 

and r values of the candidate lane markings. The 

transition and emission matrices are given in Tables 

3.2.1 and 3.2.1. Since the θ values 0 and 179 are actually 

very close, the emission and transmission values are the 

same for 1 and 179 in θ matrices. In addition, the range 

of the r matrices is (0, 282) because the maximum 

possible distance for any detected line is 282 pixels 

where the height of the processed part of the image is 

116 and width of the image is 512 

V. RESULTS 

The proposed approach managed to detect and track at 

least one lane in most of the sequence. In addition, false 

positives are reduced to an acceptable level. In order to 

validate the results, the proposed approach is compared 

with the classical Hough Transform approach. In this 

method, the same part of the image is processed using 

the Hough transform routine. The most intensive 10 lines 

are merged according to their r and θ values. Finally 

three or less candidate lines are selected as the lane 

markings. 

The major differences between the classical and the 

multi-resolution HT are shown in Figure 3.7. The images 

on the left hand side are the detected or missed lines by 

the classical approach. The right hand side images are 

the outputs of the new approach for the same frames 

which show that the new approach is more robust and 

accurate. The computational cost of the proposed 

approach can be compared as follows. The average 

processing time is 21.25 milliseconds for a laptop PC 

with Intel T5450 processor at 1.66 GHz whereas the 

average time of the classical approach is 15.29 

milliseconds. 

 

Table 3.4. (a) Emission matrix for r, (b) Emission matrix 

for θ. 
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Figure 5.1 Differences between classical Hough transform and proposed approach 

VI. SIGN EXTRACTION 

The aim of the sign extraction step is to extract the 

meaningful part of the sign from the circular of 

triangular frame surrounding it. We first perform a flood 

fill operation to convert the black regions around the 

64x64 frame. As shown in Figure 4.16, the filling 

operation starts from the upper left corner of the frame. 

Next, a sanity check is performed to verify that the flood 

fill has only removed the surrounding black pixels, not 

the center of the frame. This may happen when all the 

black pixels are accidentally connected in the image. 

Especially, when the lighting conditions are poor, the 

detection step may yield frames with excessive amount 

of black pixels. After the flood fill operation we apply a 

second step of cleaning depending on whether the sign is 

circular or triangular. 
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Figure 6.1 Generic HSL color labeling algorithm. 

 

 
 

Figure6.2 Color labeling examples (black / white). 

For the circular sigs, a circle of radius 24 is assumed to 

contain the interior part of the sign, and anything outside 

it is cleaned out. For the triangular case, a triangle as 

depicted in Figure 4.16 is assumed to surround the 

meaningful part of the sign. All pixels outside this virtual 

triangle are cleaned out.                     
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