
Shweta et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue 
4, December 2015, pp.130-134 

   © 2014 IJRRA All Rights Reserved                                                                           page   - 130-  

Study of Requirement of Automated 

Testing 

Shweta1, Nikita Nain2 

 1M. Tech student, IIET (Jind) 
2H.O.D., IIET (Jind) 

Abstract: With the ever-increasing complexity of embedded software applications, and the emergence of more 

and more safety critical applications, thorough validation and verification of the code is needed. To address 

this need, many embedded software development groups are using models and doing upfront engineering 

before testing on the final product. Using the old style of testing late in the development cycle resulted in very 

long and expensive release cycles. Ford estimated that 60% of work tasks were to correct requirements or 

design defects that had been released to downstream developers. With today’s increasing need to get to 

market quickly with a safe product, this old style of testing is not adequate. Ford also used randomly 

generated unit test vectors, due to the lack of a commercially available tool, which only had approximately 

75% coverage. Because of the need for safe systems, this level of testing is insufficient. 

This paper presents requirements for model checking and unit test generation tools so that the tools are 

practical in a large production environment that is typical in the automotive industry. 

Keywords: Software Testing 

I.  INTRODUCTION 

The ever increasing complexity of embedded control 

algorithms, the need for shorter development cycles, and 

the need for high quality and safety critical systems have 

helped move the embedded software development 

community towards using graphical modeling and 

program specifications. This modeling allows for a well-

defined algorithm from which verification and validation 

are practical as well as provides a mechanism for a high 

degree of automation.  

Today’s tools allow for a broad spectrum of uses for the 

models being developed. Some of these uses include: 

requirements capture, algorithm specification, algorithm 

validation and verification, documentation, automatic 

code generation, automatic unit test vector generation, 

hardware-in-the-loop testing, rapid prototype testing, and 

architecture specification. 

One of the biggest remaining problems is making these 

tools practical for the “typical” engineer working in a 

production environment. Most of today’s tools have been 

used very successfully by “high end” users, such as 

researchers and advance groups. These high end users 

are typically very motivated individuals with extensive 

training and ample time to learn the tools and experiment 

with them until they work. Unfortunately, the production 

engineers often have neither the training nor the time to 

experiment with the new modeling tools. These 

engineers need tools that are easy to learn, intuitive, and 

nearly push-button to use. Also, due to their overbooked 

workload, these engineers need analysis tools that can 

work on a single model file. They do not have the time 

to implement and double check the same algorithm in 

multiple tools. 

Model checking is an emerging technology for analysis 

of model based software designs. Model checking can 

also be used to automatically generate test vectors. 

While unit test vectors can be generated using 

specialized algorithms, many of the emerging automated 

test vector generation tools use model checking 

technology. These tools negate the property of interest 

and present it to the model checker. The counter example 

returned is the desired test vector, which exactly 

exercises the property. 

Currently, the standard practice in the automotive 

industry is to do a significant amount of in-vehicle 

testing but very little upfront testing. This is a very 

costly manner of conducting business, and the industry is 

trying to move towards a virtual environment in which 

most testing is done early in the development process. 

From the software testing point of view, the implication 

is that any testing is better than no testing. Thus, a tool 

that can help with any piece of automating the model 

checking or unit test vector generating would be useful. 

However, any testing that is done needs to be nearly 

push-button due to  schedule constraints in the 

production environment. In other words, a highly 

automated tool which does part of the testing could 

potentially gain widespread use, whereas a partly 

automated tool that does everything many not get used at 

all. 

The rest of this paper will describe the types of model 

checking and unit test vectors that are of interest to the 

automotive industry, provide a brief overview of some of 

the available tools for modeling, model checking, and 



Shweta et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue 
4, December 2015, pp.130-134 

   © 2014 IJRRA All Rights Reserved                                                                           page   - 131-  

generation of unit test vectors, and describe an effort to 

make model checking and automated unit test vector 

generation practical for the automotive industry.  We 

believe this also applies to related embedded industries 

such as aerospace, robotics, and medical devices. 

II. TYPES OF DESIRED MODEL CHECKING 

AND UNIT TEST VECTORS 

This section presents some model checks and types of 

unit test vectors that would be useful. 

One particular challenge for the research community is 

that many of the models being made, especially for 

automotive power train applications, contain a mixture 

of control and data. The data consists of mathematical 

equations, which often have floating point variables. 

Most model checking tools cannot handle such data, 

since the state space is too large. Some of the emerging 

model checking tools are finding innovative techniques 

to deal with this large state space and produce results 

both in a timely manner and within the memory 

available on a standard PC. One alternative to 

completely exploring the entire state space is to use a 

form of depth-first search. A second alternative is to 

abstract floating point variables into a few boolean 

conditions, for instance, replacing x > 4.2 with a boolean 

xTooLarge. 

Another challenge is that the models can be quite large. 

At Ford, a typical powertrain application may have 

5,000-10,000 diagrams.Each diagram consists of a 

number of “basic” blocks such as gain and sum blocks. 

Depending on the item under test, the test tool may only 

need to deal with a small piece of the total application. 

Some of these pieces can be quite big as well. The test 

tools, while utilizing a minimum of time and computer 

memory, will need to analyze large models. 

III. “PASSIVE” MODEL CHECKS 

The goal of model checking is to check that the 

specification is sound. One set of checks that are 

important can be termed “passive” checks, that is, the 

tester does not need to specify anything beyond the 

original model. They are predefined and commonly 

agreed upon.  Some of these checks include: all states 

reachable, no unnecessary states, no graphical 

dependencies, all outcomes accounted are for, no writes 

before a definition, no algebraic loops, and array indexes 

are all within bounds.  In addition to helping validate the 

specification, passive checks may help the practical 

economics, too. 

Automotive applications are extremely cost sensitive.  

As a result adding off-chip memory is only done in 

exceptional cases, usually requiring the approval of 

someone high in the management chain. The preference 

is for the entire program to reside on-chip. Even though 

current microprocessors have more memory than their 

predecessors, wasting code is very undesirable. In can 

force the use of more chips.  Consequently, identifying 

and removing unreachable or unnecessary states 

increases the efficiency of the code implementation, 

especially when an automatic code generation tool is 

used. 

Some tools, such as Matlab’s®
1
 Stateflow™, allow for 

the graphical position of model elements to determine 

how the model executes. This is inherently dangerous 

when the models are also used for documentation since 

apparently cosmetic changes in the layout may lead to 

subtle behavioral changes. This type of check should be 

optional as it may be acceptable and even needed by 

certain groups. 

For consistency, all outcomes of an expression should be 

accounted for. For example, if a function can return three 

values, but the specification only checks for two or has 

an extra check for a fourth return value, an error should 

be flagged.  Using the traditional data flow concepts, a 

write to a variable should not occur before that variable 

is defined. Also, two writes before a use may be flagged 

as a warning of possible suspicious behavior. 

Most tools, especially those that provide an executable 

specification, will flag algebraic loops before running a 

simulation. For those tools that do not have this built in, 

the model checker should perform this check.  Another 

safety check is to ensure that array indexes are within the 

bounds for the given variable. 

IV. “ACTIVE” MODEL CHECKS 

The next category of model checks can be termed 

“active” tests in that user input is required. For this case, 

an easy-to-use GUI is needed so the tester can input the 

checks in an intuitive, or at least easily learned, 

language. Most model checking tools, such as Z or 

SMV, require a very specialized input format, which is 

unfamiliar to the typical production engineer. Model 

checking is more traditionally used for these kind of 

active tests.  For example, can states NorthSouthGreen 

and EastWestGreen ever be active at the same time, or 

can variable X ever increase more than five mi/hr in one 

step? 

For practicality, a GUI should allow the tester to create 

the desired checks. These tests should be able to be 

saved to a file for future use. 

V. NIT TEST VECTORS 

One way to break down the problem of testing into 

manageable pieces is use different coverage levels for 

the test vectors. The most common coverage levels are 

statement coverage, decision coverage, MC/DC 

coverage, and some form of all paths. Another coverage 

                                                 
1
 Reference to specific products, brands, or firms is for 

information purposes only; no endorsement or 

recommendation by the National Institute of Standards 

and Technology, explicit or implicit, is intended.s 



Shweta et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue 
4, December 2015, pp.130-134 

   © 2014 IJRRA All Rights Reserved                                                                           page   - 132-  

type is boundary values; see definition below. A tool is 

needed in which the tester can select the desired 

coverage level and for which a minimal set of tests 

should be generated to accomplish the selected coverage 

criteria. The different coverage levels and a minimal set 

of test vectors have the same end purpose: identify errors 

in a minimal fashion. Due to time constraints, if the test 

engineers get multiple tests that fail for the same reason, 

they will probably get frustrated and stop using the tool. 

Coverage levels allow the tester to progressively 

increase the thoroughness of the testing. Hopefully the 

less stringent coverage levels identify major bugs.  Once 

those are fixed, the more thorough coverage levels will 

find the more subtle bugs. The more thorough coverage 

levels typically take longer for the tools to generate the 

test vectors. Therefore, by starting with the lower 

coverage levels, the more time consuming tests can be 

run fewer times, saving overall testing time. Also, 

producing a minimal set of test vectors for a given 

coverage reduces time to execute tests and analyze the 

results of each test. 

For state machines, the standard coverage measures need 

some redefinition. For example, statement coverage can 

be redefined as touching every state or using every 

transition between the states. The mixing of data and 

control flow is particularly important for state machines, 

as many of the transitions depend on variables which are 

potentially calculated outside of the state machine. 

VI. MODELING TOOLS 

This section outlines some of the major modeling tools 

that are used in production environments. The goal is to 

provide a feel for the modeling tools with which analysis 

tools need to be compatible to be successful. As stated 

above, analysis tools that require a new model are less 

likely to be successful because replacing an existing 

modeling tool, especially in a big organization, is 

unlikely due to the large amounts of learning time, 

training costs, tool costs, process changes, and 

“customized” glue code support that was needed to get 

the original modeling tool used.  In addition production 

engineers are typically overworked and do not want to 

take the time to learn a new tool, and new tools are not 

trusted until they have undergone a lengthy prove-out 

period. These constraints apply mostly to a large 

production organization. Typically, the smaller the 

organization and the more research focused the group is, 

the more open they are to new modeling tools. 

Matlab® is becoming the de-facto standard for modeling 

control algorithms, especially within the automotive 

powertrain area. Many major automotive companies 

such as Ford, GM, and Toyota appear to be using 

Matlab® or moving towards using it. As a result, a 

number of automotive suppliers are also using Matlab®, 

and it also appears to have significant use within the 

aerospace industry. 

MATRIXx had some pockets of use, but with the recent 

acquisition by The Mathworks™ of distribution rights to 

MATRIXx (posting on The Mathworks™ web page 

dated 2/20/2001), it appears that MATRIXx may be 

getting phased out and no longer used. 

ETAS’s ASCET-SD appears to have a following with 

the German automotive companies and some following 

in the U.S. as well. 

Within automotive body electronics, anything that is not 

powertrain, I-Logix’s Statemate  appears to have some 

use. 

Rational’s Rose appears to be the most popular UML 

tool at this time. Although popular in the pure software 

development community, it does not appear to be 

mainstream in automotive, although they seem to be 

starting to use UML. 

There are many other tools in use, but the above tools 

appear to be the more popular tools with Matlab® 

Simulink® and Stateflow™ being the most popular. 

VII. MODEL CHECKING & AUTOMATED UNIT 

TEST VECTOR GENERATION TOOLS 

This section presents some model checking and unit test 

generation tools. We provide a brief description of the 

tools along with any of the above modeling tools to 

which they connect. The purpose of this is to provide a 

brief overview of what exists today, to show how the 

tool companies are trying to make their tools applicable 

to wider audiences, and to give a feel for the vast 

panorama of tools that designers already have to deal 

with. 

ADI, Applied Dynamics International, has a tool called 

AUTT that will produce test vectors from a BEACON 

specification. The literature states: that the tool will 

report coverage achieved, not achieved, possibly 

achieved but not easily proven, overflow and underflow 

information, and identify dead code; coverage measures 

include MC/DC (and this statement and decision 

coverage), boundary value, table, stub, mathematical 

stressing, inputs and output stressing. ADI also has a tool 

to convert from Matlab® Simulink® and Stateflow™ to 

BEACON. BEACON can also generate code. 

T-VEC Technologies Incorporated has a tool called T-

VEC that will produce test vectors from a T-VEC 

specification. The literature states that T-VEC: performs 

automated model analysis, test vector generation 

(satisfies MCDC), test coverage analysis, and test driver 

generation to eliminate many manual and error-prone 

activities involved in verification and testing. T-VEC 

Technologies also has a tool to convert from MATRIXx 

to T-VEC. 

Siemens has a tool called VALID that will analyze a 

model for consistency and also produce test vectors. 

VALID is intended to model the coordination between 

components. Their claim is that while UML allows for 

this type of modeling with message passing between 



Shweta et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue 
4, December 2015, pp.130-134 

   © 2014 IJRRA All Rights Reserved                                                                           page   - 133-  

state machines, VALID makes this type of modeling 

much easier. The tool claims to: check for deadlock, 

livelock, reachability, and controllability; produce test 

vectors for event and state coverage; generate production 

code; generate documentation; and generate a test 

harness and execute the tests. The tool also allows the 

user to specify properties to be checked in the model. An 

add-on has been developed so that VALID diagrams can 

be imported into Rational Rose. 

IAR has a tool called visualSTATE® that will analyze a 

visualSTATE® model. The literature claims that the tool 

can: check that all transitions are reachable, what states 

can never be exited, conflicting behavior, only explicitly 

defined state transitions can take place; user supplied 

questions of the model; simulate the model; create a 

prototype for testing; generate code; measure the test 

coverage and profile the application; perform regression 

testing; and create documentation. 

EDAptive Computing has a tool called VectorGen™ that 

will produce test vectors from a Rosetta specification. 

They have an add-on to the Mentor Graphics Renoir 

product that allows for a graphical way to simplify the 

creation of a Rosetta specification. EDAptive is also 

developing their own graphical interface to allow the 

creation of a Rosetta specification. 

Reactive Systems has a tool called Reactis that will 

analyze the model and also produce test vectors. The 

literature claims that the tool can: check the model for 

undefined variables, type errors, missing cases, non 

determinism, dead code, and deadlock; check for user 

supplied questions of the model; generate test vectors for 

decision coverage, statement coverage, and MC/DC 

coverage; simulate the model; generate code; and 

generate custom run-time monitors from the model. The 

models can be developed with Reactive System’s 

proprietary notation. Their literature also states that 

models (or sub-components of a model) can be 

developed in The Mathworks® Simulink® and 

Stateflow™, I-Logix StateMate, Teleogics SDL, and 

Rational’s UML state machine notation. 

ATTOL has some test tools and are developing a tool 

that will generate test vectors from both Simulink® and 

MATRIXx. According to the literature, the existing 

tools: measure and display the code coverage; 

automatically generates a test harness and provides an 

execution environment and reporting mechanism; and an 

integration and validation test platform for any message-

based distributed systems, including OSEK. 

I-Logix has a couple of tools called Statemate and 

Rhapsody. I-Logix has partnered with OFFIS Systems 

and Consulting GmbH, a spin-off company to OFFIS, to 

add model checking and automatic test generation 

capabilities to Statemate and Rhapsody. 

NIST, the U.S. National Institute of Standards and 

Technology, has developed some test tools that produce 

test vectors from an SMV specification. NIST is also 

working with the below Simulink®/Stateflow™ 

Intermediate Representation project to allow their tools 

to work with a Matlab® specification. 

Bruce Krogh, of Carnegie Mellon University, is applying 

model checking and generation of test vectors to 

Matlab® models. One tool, SF2SMV, converts 

Stateflow™ models to SMV so model checking can be 

applied. Another tool works directly with a Simulink® 

and Stateflow™ model to generate test vectors. Krogh is 

also working with the Simulink®/ Stateflow™ 

Intermediate Representation project. 

Simulink®/Stateflow™ Intermediate Representation 

Many analysis tool companies and researchers would 

like to have connectivity to Matlab® Simulink® and 

Stateflow™. In addition, designers cannot take the time 

to rewrite and revalidate specifications for every tool and 

keep the different specifications in agreement when they 

change.  While The Mathworks™ has kept the tool very 

open, deciphering some of the semantic meaning of the 

models is not an easy task. Moreover some semantics, 

such as the order of evaluation dictated by the graphical 

layout, are implicit and hard to reconstruct.  Thus, 

creating a translator from Matlab® to another tool is a 

very time and labor-intensive activity. A group of 

researchers and tool users realized this issue and have 

formed an informal consortium to address this.  

The goal of this consortium is to define an intermediate 

representation (IR), create a working demonstration of 

converting from Matlab® to the IR, and to create an API 

that will easily allow a tool company to develop a 

trnslator from the IR to their tool. 

The IR will have an additional feature that should 

expand the capability of Matlab®. Matlab® is a very 

good tool for doing controls work. However, it is not as 

good for tasks like software design and timing analysis. 

Matlab® has placeholders for user defined annotations, 

and the IR will use these annotations to add extra 

information that analysis tools need. The model creator 

can either enter these annotations directly, or one of the 

analysis tools can add the annotations to the model. An 

example of this is as follows: 1) a controls engineer 

creates a control algorithm, 2) a programmer adds 

software implementation information, such as variable 

names, types, scope, and file names, as annotations 3) an 

automatic code generation tool produces the production 

level code 4) a test vector tool produces test vectors to 

stress the code from a chronometrics point of view 5) a 

timing accurate simulator uses the code and the test 

vectors to produce timing values that get placed back 

into the model as annotations 6) a timing analysis tool 

uses the timing annotations to determine if the model is 

schedulable or not. 

VIII. CONCLUSIONS 

There is a significant need for more upfront engineering 

in today’s embedded software design process. Within the 



Shweta et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 2, Issue 
4, December 2015, pp.130-134 

   © 2014 IJRRA All Rights Reserved                                                                           page   - 134-  

automotive area, very little upfront testing has been 

done. With the introduction of executable modeling tools 

such as MLUnit this upfront testing is more feasible. It is 

the job of the tool vendors to make this testing 

technology available and practical to the end user. 

Due to the constraints placed on the production 

engineers, principally limited time, the test tools need to 

be: nearly push-button to use, intuitive to learn, and 

connect to the tools that they are already using. Some 

additional characteristics that will make the test tools 

practical include: identify any error just once, allow the 

user to select the coverage level of interest, minimize the 

time to check the model or generate the test vectors, use 

the language of the production engineer, run on a 

standard desktop PC, generate a sequence of test vectors 

for testing state machines, and handle large models and 

models that consist of both data and control flow with a 

large state space. 

These challenges may seem daunting for the tool 

vendors, but providing a partial solution is better than no 

testing at all. And many tools are on the verge of being 

practical in today’s production environment. 

REFERENCES 

1) Butts, K., et. al., “Automotive Powertrain Control 

Development Using CACSD”, Perspectives in Control: 

New Concepts and Applications, Tariq Samad (ed.), 

IEEE Press, 1999. 

2) Butts, K., Toeppe, S., Ranville, S., “Specification and 

Testing of Automotive Powertrain Control System 

Software using CACSD tools”, 1998, Proceedings of the 

17
th

 AIAA/IEEE/SAE Digital Avionics System 

Conference 

3) Toeppe, S., Ranville, S., “Model Driven Automatic 

Unit Testing Technology: Tool Architecture Introduction 

and Overview”, 1999, Proceedings of the 18
th

 

AIAA/IEEE/SAE Digital Avionics System Conference 

4) Toeppe, S., Ranville, S., “An Automated Inspection 

Tool For a Graphical Specification and Programming 

Language”, 1999, Quality Week Conference 

5) Toeppe, S., Ranville, S., Bostic, D., Rzeimen, K., 

“Automatic Code Generation Requirements For 

Production Automotive Powertrain Applications”, 1999, 

IEEE International Symposium on Computer Aided 

Control System Design 

6) Toeppe, S., Ranville, S., Bostic, D., Wang, C., 

“Practical Validation of Model Based Code Generation 

for Automotive Applications”, 1999, Proceedings of the 

18
th

 AIAA/IEEE/SAE Digital Avionics System Conf. 

7) Patel, S., Smith, P., Sun, W., Ramanan, R., Donald, 

H., Toeppe, S., Ranville, S., Bostic, D., Butts, K., 

“CACSD in Production Development: An Engine 

Control Case Study”, 2000, Global Powertrain 

Conference 

8) Toeppe, S., Ranville, S., Bostic, D., "Automating 

Software Specification, Design and Synthesis for 

Computer Aided Control System Design Tools", 2000, 

Proceedings of the 19
th

 AIAA/IEEE/SAE Digital 

Avionics System Conf.  

 


