
Vivek Jaglan et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3,
Issue 1, March 2016, pp. 20-26

© 2014 IJRRA All Rights Reserved page- 20-

Apply Fuzzy Optimization in

Proficient Managing COCOMO Model

Cost Drivers

Vivek Jaglan
Department of CSE, Amity School of Eng. & Tech, Amity University. Manesar, Haryana

ABSTRACT: - The COCOMO II model was developed in 1995. It could overcome the limitations of

calculating the costs for non-sequential, rapid development, reengineering and reuse models of software. It

has 3 modules: Application composition, early design & Post architecture. In COCOMO II, the constant

value b is replaced by 5 scale factors. Basic COCMO Model is good for quick, early, rough order of

magnitude estimate of software cost. It does not account for differences in hardware constraints, personal

Quality and experience, use of modern tools and techniques, and other project attribute known to have a

significant influence on software cost, which limits its accuracy. For this purpose, in this paper fuzzy

optimization is being applied to reduce the level of MRE error in the cost estimation process

Key words: COCOMO Model, Software estimation, Fuzzy optimization.

I. INTRODUCTION

The COCOMO (Constructive Cost Estimation Model) is

proposed by DR. Berry Boehm in 1981 and that's why it is

also known as COCOMO'81. It is a method for evaluating

the cost of a software package. According to him software

cost estimation should be done through three stages:

1. Basic COCOMO Model

2. Intermediate COCOMO Model

3. Complete/Detailed COCOMO Model

Figure 1 Type of Cocomo Model

COCOMO'81 models depend upon the two main

equations:
1. Development Effort : MM = a * KDSI b

Which is based on MM - man-month / person month

/ staff-month is one month of effort by one

person. In COCOMO'81, there are 152 hours per

Person month. According to organization this values

may differ from the standard by 10% to 20%.

2. Efforts and Development Time (TDEV) : TDEV

= 2.5 * MM c

The coefficients a, b and c depend on the mode of

the development [1].

DEVELOPMENT MODES:

There are three modes of development:

1. Organic Mode:
o Relatively Small, Simple Software

projects.

o Small teams with good application

experience work to a set of less than rigid

requirements.

o Similar to previously developed projects.

o Relatively small and require little

innovation.

2. Semidetached Mode:
o Intermediate (in size and complexity)

software projects in which teams with

mixed experience levels must meet a mix

of rigid and less than rigid requirements.

3. Embedded Mode:
o Software projects that must be developed

within set of tight hardware, software and

operational Constraints [2].

Table 1 Development Mode with Project Characteristics:

 Size Innovation Deadline Dev.

Environ

ment

ORGANIC Small Little Not Tight Stable

SEMI-

DITACHE

D

Medium Medium Medium Medium

EMBEDDE

D

Large Greater Tight Complex

Hardware

The values of a1, a2, b1, b2 for different categories of

products (i.e. organic, semidetached, and embedded) as given

by Boehm [1981] are summarized below. He derived the

Vivek Jaglan et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 1,
March 2016, pp. 20-26

© 2014 IJRRA All Rights Reserved page- 21-

above expressions by examining historical data collected

from a large number of actual projects.

BASIC COCOMO MODEL: . It gives an approximate

estimate of the project parameters. The basic COCOMO

estimation model is given by the following expressions:

Effort = a1 x (KLOC)
a

2PM

Tdev = b1 x (Effort)
b

2 Months

Where,

 KLOC is the estimated size of the software product

expressed in Kilo Lines of Code,

 a1, a2, b1, b2 are constants for each category of

software products,

 Tdev is the estimated time to develop the software,

expressed in months,

 Effort is the total effort required to develop the

software product, expressed in person months (PMs)

[3].

Estimation of development effort:

For the three classes of software products, the formulas for

estimating the effort based on the code size are shown

below:

Organic: Effort = 2.4(KLOC)
1.05

 PM

Semi-Detached: Effort = 3.0(KLOC)
1.12

 PM

Embedded: Effort = 3.6(KLOC)
1.20

 PM

PM: Person Months

Estimation of development time:

For the three classes of software products, the formulas for

estimating the development time based on the effort are given

below:

Organic: Tdev = 2.5(Effort)
0.38

 Months

Semi-detached: Tdev = 2.5(Effort)
0.35

 Months

Embedded: Tdev = 2.5(Effort)
0.32

 Months

The effort estimation is expressed in units of person-months

(PM). It is the area under the person-month plot as shown in

figure below. It should be carefully noted that an effort of

100 PM does not imply that 100 persons should work for 1

month nor does it imply that 1 person should be employed for

100 months, but it denotes the area under the person-mont

curve.

From the following figure which shows a plot of estimated

effort versus product size. We can observe that the effort is

somewhat superlinear in the size of the software product.

Thus, the effort required to develop a product increases very

rapidly with project size [5].

Now the following figure plots the development time versus

the product size in KLOC can be observed that the

development time is a sublinear function of the size of the

product, i.e. when the size of the product increases by two

times, the time to develop the product does not double but

rises moderately.

It is to be noted that the effort and the duration estimations

obtained using the COCOMO model are called as nominal

effort estimate and nominal duration estimate [6].

ADVANTAGES OF COCOMO MODEL:

 COCOMO is transparent, one can see how it works

unlike other models such as SLIM

 Drivers are particularly helpful to the estimator to

understand the impact of different factors that affect

project costs.

LIMITATIONS OF COCOMO

 COCOMO is used to estimate the cost and schedule

of the project, starting from the design phase and till

Vivek Jaglan et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 1,
March 2016, pp. 20-26

© 2014 IJRRA All Rights Reserved page- 22-

the end of integration phase. For the remaining

phases a separate estimation model should be used.

 COCOMO is not a perfect realistic model.

Assumptions made at the beginning may vary as

time progresses in developing the project.

 When need arises to revise the cost of the project. A

new estimate may show over budget or under

budget for the project. This may lead to a partial

development of the system, excluding certain

requirements.

 COCOMO assumes that the requirements are

constant throughout the development of the project;

any changes in the requirements are not

accommodated for calculation of cost of the project.

 There is not much difference between basic and

intermediate COCOMO, except during the

maintenance and development of the software

project [7].

 COCOMO is not suitable for non-sequential, rapid

development, reengineering, reuse cases models [8].

 It is hard to accurately estimate KDSI early on in the

project, when most effort estimates are required.

 KDSI, actually, is not a size measure it is a length

measure.

 Extremely vulnerable to mis-classification of the

development mode.

 Success depends largely on tuning the model to the

needs of the organization, using historical data

which is not always available

 COCOMO model ignores requirements and all

documentation.

 It ignores customer skills, cooperation, knowledge

and other parameters.

 It oversimplifies the impact of safety/security

aspects.

 It ignores hardware issues

 It ignores personnel turnover levels

 It is dependent on the amount of time spent in each

phase [9].

II. COST ESTIMATION ACCURACY

The cost estimation may vary due to changes in the

requirements, staff size, and environment in which the

software is being developed.

 The calculation for cost estimation accuracy is given as

follows

 Absolute error= (Epred- Eactual)

 Percentage error= (Epred- Eactual)/Eactual

Relative error= 1/n ∑ (Epred- Eactual)/Eactual

The above results give a more accurate estimation of costs

for future projects [10]. The cost estimation model now

becomes more realistic.

Effort (E) is calculated as follows

 E = a * (KDSI)
sf
* π (EM)

Where a is constant, sf is scaling factor, EM is Effort

Multiplier (7 for Early

design, 17 for Post architecture). It has following applications

as given below:

 Helps in making decisions based on business and

financial calculations of the project.

 Establishes the cost and schedule of the project

under development, this provides a plan for the

project.

 Provides a more reliable cost and schedule, hence

the risk mitigation is easy to accomplish.

 It overcomes the problem of reengineering and

reuse of software modules.

 Develops a process at each level. Hence takes care

of the capability maturity model.[14]

III. RELATED WORK

Helmet. al (1992) correlated actual data with COCOMO

estimated values and determinedif the COCOMO method

accurately reflected documentedprogram expenditures.

Because space bornemicroprocessing was a relatively new

arena, the primary constraint associated withdeveloping a

model was the limited available data base. It supported a

statistical analyses is presented alongwith a discussion on

calculated COCOMO results. In the analyses,the use of

nonparametric statistics for small samples wasaddressed.

Wilcoxon Signed-Rank and Kendall-Rank statisticssupported

distribution free analyses of the data [15].

Leunget. al (2002) provided a general overview of software

cost estimation methods including the recent advances in the

field.As a number of these models relied on a software size

estimate as input, they first provided anoverview of common

size metrics. They then highlighted the cost estimation

models that had beenproposed and used successfully. Models

might be classified into 2 major categories: algorithmicand

non-algorithmic. Each had its own strengths and weaknesses.

A key factor in selecting a costestimation model was the

accuracy of its estimates. Unfortunately, despite the large

body ofexperience with estimation models, the accuracy of

these models was not satisfactory. The paperincluded

comment on the performance of the estimation models and

description of several newerapproaches to cost estimation

[16].

Huanget. al (2003) proposed novel neuro-fuzzy Constructive

Cost Model(COCOMO) for software estimation. Themodel

carried some of the desirable features of the neuro-fuzzy

approach, such as learning ability and goodinterpretability,

while maintaining the merits of theCOCOMO model. Unlike

the standard neural networkapproach, this model was easily

validated by experts andcapable of generalization. In

addition, it allowed inputs to be continuous-rating values and

linguistic values, therefore avoiding the problem of similar

projects havingdifferent estimated costs. Also presented in

this paper was adetailed learning algorithm. The validation,

usingindustry project data, showed that the model

Vivek Jaglan et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 1,
March 2016, pp. 20-26

© 2014 IJRRA All Rights Reserved page- 23-

greatlyimproves the estimation accuracy in comparison with

thewell-known COCOMO model [17].

Mbarkiet. al (2004)studied the use of FRBSs to provide a

natural interpretationof cost estimation models based on a

Back-propagation three-layer feedforward Perception. What

they had proposed comprised essentially the use of the

Benitez‘s method to extract the if-thenfuzzy rules from this

network [I]. These fuzzy rules expressed the information

encoded in thearchitecture of the network, and the

interpretation of each fuzzy rule had been determined

byanalyzing its premise and its output. While their case study

had shown that they could explain themeaning of the output

and the propositions composing the premise of each fuzzy

rule, the entire fuzzy rule cannot be easily interpreted

because it used the ‗i-or‘ operator. In this paper,

theyexploredanother mapping method, that is, the Jang and

Sun method, to extract if-then fuzzy rules fromartificial

neural networks. The use of this method requires that the

architecture of the network be an RBFN [18].

Ismaeel et. al (2007)discussed the use of COCOMO II

(Constructive CostModel) to estimate the cost of software

engineering . The COCOMOII which allowed us estimate the

cost, effort and scheduling whenplanning new software

development. They used the effort equationguidance to find

the number of person / months which was needed tocomplete

the project and duration equation to specify the numbers

ofmonths which was needed to complete this project.This

paper presented how implemented COCOMO II

modelequation about the same data in different language they

chosen C andOOP(C++), they made the analysis of these two

program and theyconcluded that relation between effort and

duration was forwardrelation, they meant that when effort

increasing duration would increasingin the author side [19].

Rollo et. al (2009) proposed an alternative use of the

COCOMO model to assist in the task ofestimation. The

generally accepted method of estimation using a functional

sizing method was to base the estimate on previous project

data, where those projects for a homogeneousset with the

project under study. The chief difficulty was to find a

sufficiently homogeneousset of projects. Research previously

carried out can demonstrate that by increasing thedegree of

homogeneity amongst a set of projects leads to a useful

reduction in thevariation of the estimates. The proposal was

that they might sensibly use the COCOMO costdrivers to

allow us to determine a set of homogeneous projects by using

a techniquederived from estimation by analogy. In addition

the COCOMO cost drivers might be usedto allow the

estimator to adjust his estimates based on the differences

between the costdrivers exhibited by the available data and

the project under study. This paper was theresult of ongoing

research and it was offered as a position paper showing the

resultsobtainable under research conditions. The author

would be keen to establish links withpractitioners to

undertake field trials of the proposed approach [20].

Živadinović et. al (2011) presented the most relevant

methods and models for effort estimation used by software

engineers in the past four decades. Classification of the

methods had been alsosuggested as well as brief description

of the estimation methods presented.In the past four decades

a great number of different models and effort estimation

methods had beendeveloped. This clearly indicated the

awareness among the researchers of the need to improve

effortestimation in software engineering. Unfortunately, the

fact remains that even though, all the effortinvested by the

researchers yielded no result as they wished for and, even

today, effort estimation stillremained rather unreliable [21].

Al_Qmase et. al (2013) focused upon the COCOMO Model.

It was further consisted of its two sub models called

COCOMO I and COCOMO II. The primary objective of this

research was to use an appropriate case study to evaluate the

accuracy of the sub models COCOMO I and II and ascertain

the variation of the realistic resource effort, staff and time.

The findings to date showed that the Application

Composition Model of COCOMO II was more accurate in

determining time and cost for the successful conclusion of a

software project than the other two COCOMO I and II

Models for a similar application for example Task Manager

[23].

Manikavelan et. al (2014) discussed the software cost

estimation as an important factor for making estimation in

software Engineering. The general question that came to their

mind during cost estimation was how to make them accurate.

This was a common area for failing the estimationlike the

customers not sharing their requirements clearly andswift the

technologies with payable to open source, and efficiency

(memory and execution time) etcetera. No method was

necessarily better or worse than the other, in fact, their

strengths and weaknesses were often complimentary to each

other. Non-Algorithmatic cost estimation contained the

method named analogy. It helped to compare the proposed

project to similarprojects from the past. In this paper feed

forward neural algorithm was used in analogy to get accurate

software cost estimation [24].

Kushwaha et. al (2014) proposed the software cost estimation

model based on fuzzy logic. Software project costs included

the cost incurred in all the expenses, i.e. the cost of

projectfrom initiation, development to test, software

management, qualitymanagement and contingent rework, etc.

The imprecision inculcated from the inputs utilized in

algorithmic models likeconstructive cost model COCOMO

results in imprecise outputswhich leads to erroneous effort

estimation The fuzzy logic model fuzzified the two parts of

the COCOMO model i.e.nominal effort prediction and the

effort adjustment factor. Theanalysis shows that the

performance of the FIS enhanced byincreasing the number of

membership functions. Validationexperiment was carried out

on NASA 93 and COCOM08I public database [25].

Guptaet. al (2015) discussed a new calibrated Intermediate

COCOMO model (for all types ofsystem i.e. organic, semi-

detached and embedded) developed with Bat Algorithm and

generated new optimizedcoefficients. Bat Algorithm was

newest Algorithm amongst thecategory of Meta Heuristic and

Vivek Jaglan et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 1,
March 2016, pp. 20-26

© 2014 IJRRA All Rights Reserved page- 24-

population based Algorithms. For estimation they had

employed Bat Algorithm on NASA 63dataset and results

showed that optimized coefficients by Bat Algorithm gave

better results in terms of MMRE (MeanMagnitude of

Relative Error) for all types of projects ascompared to

coefficients in COCOMO Model which wereobtained by

Regression Analysis [26].

IV. COCOMO II COST DRIVER

The initial estimates made in the COCOMO II model are

adjusted using a set of attributes (project cost drivers) that

reflect:

1. Product characteristics such as the required system

reliability and product complexity.

2. Computer characteristics such as execution time or

memory constraints. These are constraints imposed

on the software by the hardware platform.

3. Personnel characteristics such as programming

language skills that take the experience and

capabilities of the people working on the project

into account.

4. Project characteristics of the software development

project such as the IDE that is available and the

development schedule.

The following table shows all 17 of the project cost drivers

that may be taken into consideration.

The selection of scale drivers is based on the rationale that

they are a significant source of exponential variation on a

project's effort or productivity variation. Each scale driver

has a range of rating levels, from Very Low to Extra High.

Each rating level has a weight, W, and the specific value of

the weight is called a scale factor. A project's scale

factors, Wi, are summed across all of the factors, and used to

determine a scale exponent, B, via the following formula:

V. FUZZY OPTIMIZATION BASED

FRAMEWORK OF HANDLING COCOMO II

COST DRIVER

For a COCOMO model to be accurate it must be calibrated

using historical data. COCOMO 81 was calibrated using 63

data points from past projects. The calibration process can be

done by using a company‘s own data, but for the most part it

requires more data then a single company would have. The

calibration involves doing a statistical analysis on your data

and then adjusting all cost driver values.

Because of the need of a proper calibration there are standard

calibrations released. COCOMO II has gone through two

calibrations, COCOMO II.1997 and COCOMO II 1998.

COCOMO II.1997 was based on 83 data points and was

found that it only could come within 20% of the actual values

46% of the time. The COCOMO II.1998 calibration was

found to come within 30% of the actual values 75% of the

time, this calibration was based on 161 data points (Bohem,

Chulani, Clark, 1997). Users can also submit data from their

own projects to be used in future calibrations. When using

the release calibrations or your own it is important to

continue collecting historical data so it can be use to further

increase the accuracy of your estimation results in the future.

Empirical software estimation models are mainly based on

cost drivers and scale factors. These models show the

problem of instability due to values of the cost drivers and

scale factors, thus affecting the sensitivity in terms of

accurate effort estimation. Also, most of the models depend

on the size of the project and a small change in the size leads

to the proportionate change in the effort. Miscalculations of

the cost drivers have even more noisy data as a result too. For

example, a misjudgment in personnel capability cost driver in

COCOMO between ―very high to very low‖ will result in

300% increase in effort. Similarly in SEER-SEM, changing

security requirements values from ―low‖ to ―high‖ will result

in 400% increase in effort. In PRICE-S, 20% change in effort

will occur due to small change in the value of the

productivity factor [14]. Above statements reveal that, all

models have one or more inputs for which small changes will

result in large changes in effort. The input data problem is

further compounded in that some inputs are difficult to

obtain, especially early stages in a program development.

The size must be estimated early in a project using one or

more sizing models. Some sensitive inputs, such as analyst

and programmer capability in cost drivers, are based on

individual and are often difficult to determine. Many studies

like the one performed by [15] show that personnel parameter

data are difficult to collect.

VI. MANAGING DRIVERS WITH FUZZY

OPTIMIZATION

In an attempt to reduce the complexity inherent to the

presence of severalobjectives, a fuzzy solution which is

richer from an informational point of viewmay be desirable.

Such a solution may be obtained via techniques of parametric

programming (Chanas [14]). Advantages of using a fuzzy

approach for finding a solution of a multipleobjective

programming problem are flexibility, easiness to be adapted

forinteractive use and the fact that such a methodology meets

the main demands foroperational models: simplicity,

robustness adaptively. The ideas outlined above have also

been extended to the case when relevantdata are fuzzy

parameters. Fuzzy set theory provides a host of attractive

aggregation connectives for integrating membershipvalues

representing uncertain information. These connectives can be

categorized into thefollowing three classes union, intersection

and compensation connectives.Union produces a high output

whenever any one of the input values representing degreesof

satisfaction of different features or criteria is high.

Intersection connectives produce a highoutput only when all

of the inputs have high values. Compensative connectives

have the propertythat a higher degree of satisfaction of one of

the criteria can compensate for a lowerdegree of satisfaction

of another criteria to a certain extent. In the sense, union

connectivesprovide full compensation and intersection

connectives provide no compensation. In a decisionprocess

the idea of trade-offs corresponds to viewing the global

Vivek Jaglan et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 1,
March 2016, pp. 20-26

© 2014 IJRRA All Rights Reserved page- 25-

evaluation of an action aslying between the worst and the

best local ratings. This occurs in the presence of

conflictinggoals, when a compensation between the

corresponding capabilities are allowed. Averagingoperators

realize trade-offs between objectives, by allowing a positive

compensation betweenratings.

VII. CONCLUSION

Work carried out in the paper explores the inter-relationship

among different dimensions of data driven software projects,

namely, project size and effort. The above-mentioned results

demonstrate that applying proposed method to the software

effort estimation is by far the most feasible approach for

addressing the problem of apprehension and ambiguity

existing in software effort drivers. Order of occurrence of

various cost drivers has a significant impact on overall efforts

in project estimation. Small adjustments to the COCOMO

cost drivers bring significant improvements to the quality

criteria applied to the proposed approach. Proposed method is

producing tuned values of the cost drivers, which are

effective enough to improve the productivity of the projects.

Prediction at different levels of MRE for each project reflects

the percentage of projects with desired accuracy.

Furthermore, this model is validated on two different datasets

which represents better estimation accuracy as compared to

the COCOMO 81 based NASA 63 and NASA 93 datasets.

The utilization of proposed algorithm for other applications

in the software engineering field can also be explored in the

future.

VIII. References

[1]. K. M. Furulund and K. Moløkken-Østvold,

―Increasing software effort estimation accuracy—

using experience data, estimation models and

checklists,‖ in Proceedings of the 7th International

Conference on Quality Software (QSIC '07), pp. 342–

347, Portland, OR, USA, October 2007.

[2]. Q. Alam, P. Bhatia, and S. Sarwar, Systematic Review

of Effort Estimation and Cost Estimation, Institute of

Management Studies, Roorkee, India, 2012.

[3]. J. J. Dolado, On the Problem of the Software Cost

Function, Facultad de Informatica, Universidad del

Pais Vasco-EuskalHerrikoUnibertsitatea, Gipuzkoa,

Spain, 2000.

[4]. K. Molokken and M. Jorgensen, ―A review of

software surveys on software effort estimation,‖ in

Proceedings of the International Symposium on

Empirical Software Engineering (ISESE '03), pp. 220–

230, 2003.

[5]. F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro,

―Genetic programming for effort estimation: an

analysis of the impact of different fitness functions,‖

in Proceedings of the 2nd International Symposium on

Search Based Software Engineering (SSBSE '10), pp.

89–98, IEEE Computer Society, DMI, University of

Salerno, Benevento, Italy, October 2010.

[6]. A. F. Sheta, ―Estimation of the COCOMO model

parameters using genetic algorithms for NASA

software projects,‖ Journal of Computer Science, vol.

2, no. 2, pp. 118–123, 2006.

[7]. B. W. Boehm, Software Engineering Economics,

Prentice Hall, IEEE, 1984.

[8]. J. Magne and M. Shepperd, ―A Systematic Review Of

Software Development Cost Estimation Studies,‖

IEEE Transactions on Software Engineering, vol. 33,

no. 1, pp. 33–53, 2007.

[9]. P. L. Braga, A. L. I. Oliveira, and S. R. L. Meira, ―A

GA-based feature selection and parameters

optimization for support vector regression applied to

software effort estimation,‖ in Proceedings of the 23rd

Annual ACM Symposium on Applied Computing

(SAC '08), pp. 1788–1792, Ceará, Brazil, March

2008.

[10]. M. Harman and B. F. Jones, ―Search-based software

engineering,‖ Information and Software Technology,

vol. 43, no. 14, pp. 833–839, 2001.

[11]. J. Clarke, J. J. Dolado, M. Harman et al.,

―Reformulating software engineering as a search

problem,‖ IEE Proceedings: Software, vol. 150, no. 3,

pp. 161–175, 2003.

[12]. M. Jørgensen and S. Grimstad, ―Avoiding irrelevant

and misleading information when estimating

development effort,‖ IEEE Software, vol. 25, no. 3,

pp. 78–83, 2008.

[13]. A. L. Lederer and J. Prasad, ―A causal model for

software cost estimating error,‖ IEEE Transactions on

Software Engineering, vol. 24, no. 2, pp. 137–148,

1998.

[14]. S. Basha and P. Dhavachelvan, ―Analysis of empirical

software effort estimation models,‖ International

Journal of Computer Science and Information

Security, vol. 7, no. 3, pp. 68–77, 2010.

[15]. Jim E. Helm, The Viability of Using Cocomo in the

Special Application Software Bidding and Estimating,

IEEE Transactions On Engineering Management, Vol.

39, No. 1, February 1992, pp. 42-58

[16]. Hareton Leung, Zhang Fan, Software Cost Estimation,

In: Handbook Of Software Engineering And

Knowledge Engineering, World Scientific Pub. Co,

River Edge, Nj

[17]. Xishi Huang, Luiz F. Capretz, Jing Ren, A Neuro-

Fuzzy Model for Software Cost Estimation,

Proceedings of the Third International Conference On

Quality Software (QSIC‘03), 2003 IEEE,

[18]. Idri, A.; Mbarki, S.; Abran, A., "Validating and

understanding software cost estimation models based

on neural networks," Information and Communication

Technologies: From Theory to Applications, 2004.

Proceedings. 2004 International Conference on , vol.,

no., pp.433,434, 19-23 April 2004

Vivek Jaglan et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 1,
March 2016, pp. 20-26

© 2014 IJRRA All Rights Reserved page- 26-

[19]. Hana Rashied Ismaeel, Software Engineering Cost

EstimationUsing COCOMO II Model, Al-Mansour

Journal, Year: 2007 Issue: 10 Pages: 86-111

[20]. Dr Anthony L Rollo, Functional Size measurement

and COCOMO – A synergistic approach, in

Proceedings of the IEEE International Conference on

Industrial Engineering and Engineering Management

(IEEM '07), pp. 1256–1260, Singapore, December

2009.

[21]. Jovan Živadinović, Methods Of Effort Estimation In

SoftwareEngineering, Proceeding International

Symposium Engineering Management And

Competitiveness 2011 (EMC2011)June 24-25, 2011,

Zrenjanin, Serbia

[22]. Mohammed MugahedAl_Qmase, M. RizwanJameel

Qureshi, Evaluation of the Cost Estimation Models:

Case Study of Task Manager Application,

International Journal of Modern Education and

Computer Science, 2013, 8, 1-7

[23]. D.Manikavelan, Software Cost Estimation By

Analogy Using Feed Forward Neural Network,

Proceeding of ICICES2014 - S.A. Engineering

College, Chennai, Tamil Nadu, India

[24]. Kushwaha, N.; Suryakant, "Software cost estimation

using the improved fuzzy logic framework," IT in

Business, Industry and Government (CSIBIG), 2014

Conference on , vol., no., pp.1,5, 8-9 March 2014,

[25]. Gupta, N.; Sharma, K., "Optimizing intermediate

COCOMO model using BAT algorithm," Computing

for Sustainable Global Development (INDIACom),

2015 2nd International Conference on , vol., no.,

pp.1649,1653, 11-13 March 2015

[26]. B. L. Barber, Investigative search of quality historical

software support cost data and software support cost-

related data [M.S. thesis], 1991.

[27]. N. H. Chiu and S. J. Huang, ―The adjusted analogy-

based software effort estimation based on similarity

distances,‖ Journal of Systems and Software, vol. 80,

no. 4, pp. 628–640, 2007.

[28]. G. Kadoda and M. Shepperd, ―Using simulation to

evaluate prediction techniques,‖ in Proceedings of the

7th International Software Metrics Symposium

(METRICS '01), pp. 349–359, IEEE Press, London,

UK, 2001.

[29]. M. J. Shepperd and G. F. Kadoda, ―Comparing

software prediction techniques using

simulation,‖ IEEE Transactions on Software

Engineering, vol. 27, no. 11, pp. 1014–1022, 2001.

[30]. M. J. Shepperd and C. Schofield, ―Estimating software

project effort using analogies,‖ IEEE Transactions on

Software Engineering, vol. 23, no. 11, pp. 736–743,

1997.

