
Sonal Mittal et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 1,
March 2016,pp. 37-40

© 2014 IJRRA All Rights Reserved page- 37-

Detection and Prevention of SQL

Injection Using Auto Comparator

Sonal Mittal1 and Garima Garg2

1M.Tech Scholar, SGI, Samalkha, Kurukshetra University, India
2Assistant Professor, SGI, Samalkha, Kurukshetra University, India

Abstract-In today’s world, most of the web applications are associated with database technology with the database as

back-end to store the data. As a result, there are possibilities of SQL injection attacks on such applications. SQL

Injection Attacks (SQLIA) are mostly performed on the Internet. By doing the SQL Injection attack on the website, the

attacker is able to take control of the database and can manipulate the data from the database server of that website.

Hence, it becomes the big challenge to secure such website against these types of attacks via the Internet. SQLIA is one

of the top ten attacks according to Open Web Application Security Project (OWASP) but still there are no proper

solution to this problem till now. Numbers of solutions have been discovered to deal with this attack, but the major

concern is which solution is more convenient and provides faster access to the application without compromising the

security. There are some existing solutions that are good in security but they are not efficient to handle large user’s

requests. In this paper we have given a brief introduction about SQLIA and proposed a method by which we can detect

and prevent SQL Injection in the login phase using a single code.

Keywords—SQLIA, Database, Comparator, Web Application

I. INTRODUCTION

These days the organizations are becoming more and more

concerned about the employment of their website because of

the development of World Wide Web. The web has become

the essential need of our society. The wide spread use of

Internet has led some malicious users to work in negative

direction by attacking websites of organizations. These types

of users are known as website attackers.

The lack of proper knowledge of software and secure

engineering leads to vulnerabilities in web security, like

inappropriate programming, etc. Some of the security

solutions may prove to be effective, but the changes in

technology can lead to new risks and challenges.

A database-driven Web application mainly has three tiers

namely presentation tier, Business logic tier, data link tier.

1. Presentation tier: This layer is the front end of the web

application. This layer interacts with other layers based

on the inputs provided by the user. This layer validates

and verifies the input properly.

2. Business logic tier: This layer processes the user

requests. It involves server side programming logic.

This layer acts as the intermediate between the

presentation tier and the data link tier. The objective of

this layer is proper checking of input and input

neutralization.

3. Data tier: This layer contains the database server. It

store and retrieves the data to and from database. This

layer is used for input rectification.

SQLIA is one of the top ten attacks to the web application

security according to Open Web Application Security

Project (OWASP). SQLIA are easily understandable and

exploitable, therefore this type of attack is easily used by

attackers.

Figure 1 shows the basic database-driven Web application

architecture

Figure 1

The traditional and most popular security systems like

firewall, cryptography, encryption, Antivirus, intrusion

detection systems, etc. having different security layers are

not able to detect this type of attack. SQL injection attacks

are becoming more and more common and they are easy to

implement, so there exists a need to find an effective

solution for this problem.

There are two types of approaches for SQLIA Detection:

Static Approach: This is also known as pre-generating

approach. In this approach the programmers follows some

guidelines for the detection of SQLIA during web

application development. This approach also requires an

effective validity checking mechanism for the input variable

data.

Sonal Mittal et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 1,
March 2016,pp. 37-40

© 2014 IJRRA All Rights Reserved page- 38-

Dynamic Approach: This is also known as post-generated

approach. Dynamic approach is useful for the analysis of

runtime or dynamic SQL queries, that are generated with

user input data by the web application. In this post-generated

approach, the detection techniques are executed before

posting the query to the database server.

SQL Injection Attacks on the databases could be motivated

by three objectives:

1. To hack the data from the database from which the data

usually is not available.

2. To obtain the system configuration type data that would

allow an attacker to build the profile.

3. To gain access to the organization‘s host computers

through machine hosting the database.

II. SQL INJECTION

SQL injection is a technique where the attackers try to attack

data driven applications. The attacker takes the advantage of

poorly fitted escaped characters embedded in SQL

statements into parsing the variable data from user input.

The attacker injects arbitrary data in the form of a database

query into a string that is eventually executed by the

database through a web application, for eg. a login form.

SQL Injection Attacks are performed by submitting

maliciously crafted input in the form of data or queries to

database driven applications, such as interactive websites.

These inputs are then used by applications to build dynamic

SQL queries. Due to the lack of control on the data in SQL,

these inputs are capable to alter the semantic structure of the

query. There are numerous SQLIA techniques which are

used by attackers. These techniques are based on the

different statement structure combinations that are offered by

SQL. Sometimes these techniques also take the advantage of

DBMS implementations features like Microsoft‘s SQL

Server. Their main aim is to extract the data from the

database by allowing different SQLIA techniques. The

resulting threats ranges from system fingerprinting to

Denial-of-Service attacks and theft of confidential

information.

SQL Injections Attacks thus affects the integrity,

confidentiality, and availability of the data and structure in

the databases and as a result it effects all the applications

which are dependent on that database.

Let‘s see the example of basic SQL Injection:

Instead of submitting the inputs [user_login] and

[user_password] in a website login form, the attacker enters

[‗ OR 1=1 --] and []. As a result, the following SQL query:

SELECT * FROM users WHERE login='user_login'AND

pwd='user_password'

Becomes:

SELECT * FROM user WHERE login='' OR 1=1 –'AND

pwd=' '

Here the attacker enters a single quote in its input login field

followed by other characters. By doing this, the attacker

closes the SQL login field in the Where clause, causing the

SQL injection code right into the query. Since no login field

can be blank, the attacker inserts the code OR 1=1, which

will always evaluate to be true (also known as tautology).

Next, the -- (double dash) operator denotes the starting of the

comments, which tells the SQL parser to ignore the rest of

the query including the password field.

As a result, the meaning of the altered SQL query will

become equivalent to ―select all users‖. Therefore, the

application which is controlling the user authentication will

authorize the attacker. In the worst case scenario, there is a

possibility that the application returns an error message

containing the data or the database details returned by the

DBMS, i.e. the list of user credentials.

III. WAYS OF INJECTING CODE

The different ways used for injecting SQL statements in an

applications are:-

1. User Input: The attackers inject the SQL Commands by

providing properly crafted user input. Here, the attacker

targets those web applications in which the user

provides some information and then the request is

processed.

2. Order: The attacker enters a malicious code in the form

of string and enables the modified code to be executed

immediately (direct attack) or by some other related

activity (indirect attack). The attacker also manipulates

the implicit functions by changing the values.

3. Server Variables: There are many server variables such

as network headers, HTTP etc. which are used for

knowing the usage of logging in and identifying the

browser trends. The attacker can attack using these

types of server variables when these variables are

logged in the database.

4. Database: Here the attacker injects the attacks by

manipulating SQL statements. This type of attack can be

done through Basic Union Queries, Inference, and

Piggy-Backed Queries and Tautology.

5. Cookies: Cookies are used to store information on client

machine which is generated by web applications. If the

Web application uses the content of the cookies to build

the SQL queries, then an attacker can easily attack by

embedding his code in the cookie.

IV. PROPOSED METHOD

There are some related methods for preventing SQL

injection attacks which are used in the proposed method of

auto comparator.

SQL Parse tree validation

A parse tree is a data structure for the parsed representation

of a statement. We can parse a statement by using the

grammar of the language of statements. We can find out if

the two queries are equal by parsing the two statements and

comparing their parse trees. When the attacker performs

SQL injection into a database query, the parse tree of the

original SQL query and the resulting SQL query do not

match. Original SQL query means that when a programmer

writes some SQL code to query the database, the

programmer has got a formulation of the structure of the

query. The hard-coded portion of the parse tree is the

programmer supplied portion, and the empty leaf nodes in

the parse tree are represented as user supplied portion. These

Sonal Mittal et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 1,
March 2016,pp. 37-40

© 2014 IJRRA All Rights Reserved page- 39-

nodes represent the empty literals. The programmer intends

the users to assign some values to these leaf nodes. A leaf

node represents only one node in the resulting query. This

node must be the value of a literal and it must hold the

position where the holder was located.

Code Conversion Approach

1. Convert the User input to ASCII, binary,octal,

hexadecimal etc. like codes.

2. Search the availability of the converted input in the

data table and returns valid User_id and Password.

The proposed method consists of the Auto comparator using

parse tree validation and code conversion method. We first

accept the user input and compare it with the SQL query

using parse tree validation. If there is a mismatch, then there

is a possibility of an attack. If there is a possibility of an

attack, then the user input is encoded into some other code

and decode it afterwards.

The basic idea of this algorithm is as follows:

For checking the vulnerability and displaying the safe data:

 begin

 accept the user input

 compare the input with generalized SQL Query

 if

 length of the parse tree mismatch

 Possibility of an SQL injection attack

 Encode the user input

 Assign the encoded user input to any variable

 set flag as 1

 else

 the user input is safe

 assign the user input to the any variable

 set flag as 0

 display the value to be stored in database ―variable‖

 end

For decoding the coded input and displaying the data:

 begin

 if flag is 0

 display the safe variable

 else

 decode the encoded user input variable

 display the decoded variable

 End

 From the value of flag we can make out whether the user

input is converted or not.

V. CONCLUSION

SQL injection attacks technique is a common technique that

is used by the hackers to hack the important databases and

extract the confidential data from them. The presence of

these attacks have led to the development of some detection

and prevention methods so as to disable such types of attacks

so that the confidential information in the databases remains

safe and are not hacked and exploited by the attackers. In

this paper we have proposed a method to differentiate

between the valid queries and invalid queries. The query is

compared with the input and if they are not same, this leads

to possible SQL injection attack. In this case the input is

encoded and then decoded. This method can lead to

detection and prevention of attack in single code only, but it

has a drawback: The encoding and decoding of the user

input by code conversion can lead to more processing time

and more memory.

Since the available methods to detect and prevent SQL

injection attacks are not sufficient to stop SQL injection

attacks, therefore, in the present scenario many different

methods are used to ensure higher security level of the

databases and web applications.

REFERENCES

[1] Etienne Janot, PavolZavarsky, Preventing SQL

Injections in Online Applications: Study,

Recommendations and Java Solution Prototype

Based on the SQL DOM, Concordia University

College of Alberta, Department of Information

Systems Security, 7128 Ada Boulevard, Edmonton,

AB, T5B 4E4, Canada

[2] Ashish John, SQL Injection Prevention by Adaptive

Algorithm, IOSR Journal of Computer Engineering

(IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-

8727, Volume 17, Issue 1, Ver. III (Jan – Feb.

2015), PP 19-24

[3] Khaled Elshazly, Yasser Fouad, Mohamed Saleh,

Adel Sewisy, A Survey of SQL Injection Attack

Detection and Prevention, Journal of Computer and

Communications, 2014, 2, 1-9

[4] DrR.P.Mahapatra and MrsSubi Khan, A Survey Of

Sql Injection Countermeasures, International

Journal of Computer Science & Engineering Survey

(IJCSES) Vol.3, No.3, June 2012

[5] Priyanka, Vijay Kumar Bohat, Detection of SQL

Injection Attack and Various Prevention Strategies,

International Journal of Engineering and Advanced

Technology (IJEAT)

[6] Diallo AbdoulayeKindy and Al-Sakib Khan Pathan,

A Detailed Survey on Various Aspects of SQL

Injection in Web Applications: Vulnerabilities,

Innovative Attacks, and Remedies, International

Journal

[7] AtefehTajpour , Suhaimi Ibrahim, Mohammad

Sharifi, Web Application Security by SQL Injection

DetectionTools, IJCSI International Journal of

Computer Science Issues, Vol. 9, Issue 2, No 3,

March 2012

[8] Ogheneovo, E. E. and Asagba, P. O., A Parse Tree

Model for Analyzing And Detecting SQL Injection

Vulnerabilities, Department of Computer Science,

University of Port Harcourt, Nigeria.

[9] Gregory T. Buehrer, Bruce W. Weide, and Paolo A.

G. Sivilotti, Using Parse Tree Validation to Prevent

SQL Injection Attacks, Computer Science and

Engineering The Ohio State University Columbus,

OH 43210

[10] Navjot Verma, Amardeep Kaur, A Detailed Study

on Prevention of SQLI attacks for Web Security,

Sonal Mittal et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 1,
March 2016,pp. 37-40

© 2014 IJRRA All Rights Reserved page- 40-

International Journal of Computer Applications

Technology and Research Volume 4– Issue 4, 308 -

311, 2015, ISSN:- 2319–8656

[11] ParveenSadotra, Hashing Technique - SQL

Injection Attack Detection & Prevention,

International Journal of Innovative Research in

Computer and Communication Engineering, Vol. 3,

Issue 5, May 2015

[12] Manveen Kaur, SQL Injection Attacks - Its

Prevention using Flag Sequencing Approach,

Computer Engineering and Intelligent Systems

www.iiste.org ISSN 2222-1719 (Paper) ISSN 2222-

2863 (Online) Vol.6, No.2, 2015

http://www.iiste.org/

