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I. INTRODUCTION 

Wavelet expansions have been the focus of many 

research papers.  One of the reasons for their popularity  

in that they provide a more efficient representation of 

functions than  other orthogonal  expansions.  Y. Meyer  

studied  the convergence of orthogonal  wavelet 

expansions.  He showed that if the mother  wavelet is 

r−regular, the orthogonal  wavelet expansion of a 

function will converge to it in the sense of L
p 

(R), 1 ≤ 

p < ∞, and in the sense of some Sobolov spaces. 

A function g (x), x ∈ R
d 

, d ≥ 1, is said to be r−regular 

(in the sense of Meyer) if 

 𝐷𝛼𝑔(𝑥)  ≤
𝐾𝛼 ,𝑚

(1 +  𝑥 )𝑚
 

for all α with |α| ≤ r and m = 0, 1, 2, . . . , where 𝐾𝛼 ,𝑚  are 

constants.  Here α = (α1 , . .  , αd ) 

is a multi-index  with αi (i = 1, . . . , d) being a non-

negative  integer and  𝛼 =  𝛼𝑖
𝑑
𝑖=1 , and  

 

𝐷𝛼 =
𝜕 𝛼 

𝜕𝑥1
𝛼1 … . . 𝜕𝑥𝑑

𝛼𝑑
 

S. Kelly, M. Kon and L. Raphael ([1],[2]) extended 

Walter’s results by proving point wise convergence of 

orthogonal  wavelet  expansions in n dimensions. The 

key of their proofs is the following definition. 

Definition 1.1 A bounded  function w : [0, ∞)  → R
+  

is a radial  decreasing  L
1 

− ma- jorant of a given 

function h defined on R if |h(x)| ≤ w(|x|) and w  

satisfying the following conditions: (i) w ∈ L
1 

([0,∞)),        

(ii) w is decreasing,       (iii)  w(0) < ∞. 

The boundedness  of w follows from (i) and (ii). 

In all above work on point wise convergence it is 

essential that the summation kernel of the wavelet 

series given by 

𝑃𝑚  𝑥, 𝑦 =  υ
𝑚 ,𝑘

 𝑥 

𝑘

υ 
𝑚 ,𝑘

 𝑦   

= 2𝑚  υ 2𝑚𝑥 − 𝑘 

𝑘∈𝑍

υ 2𝑚𝑦 − 𝑘                 

= 2𝑚𝐾υ 2𝑚𝑥, 2𝑚𝑦 , 

where  υm,k (x)  = 2m/2υ(2m x − k)  and  Kυ (x, 

y) =  υ(x − k)
𝑘∈𝑍 υ(y − k)           , be absolutely 

bounded by redial decreasing L1 – majorant dilation kernel 

i.e.  

 𝑤𝑘∈𝑍   𝑥 − 𝑘  𝑤  𝑦 − 𝑘  ≤ cw  
 x−y 

2
  𝑥, 𝑦 ∈ ℝ, C is 

some constant depends on w. There are, however, some 

mother wavelets that does not satisfy these conditions. The 

summation kernel associated to scaling function 𝜑 𝑡 =
sin 𝜋𝑡

𝜋𝑡
 is seen to be 

sin 𝜋(𝑡 − 𝑦)

𝜋(𝑡 − 𝑦)
=  

sin 𝜋(𝑡 − 𝑘) sin 𝜋(𝑦 − 𝑘)

𝜋 𝑡 − 𝑘 𝜋(𝑦 − 𝑘)

∞

𝑘=−∞

 

It is clear that this kernel not belongs to L
1 

(R).  Hence 

this can not be absolutely bounded by radial decreasing 

L
1

−majorant function. 

The point wise convergence of the Shannon wavelet 

series can be studied  directly but  it is very special case 

and of less interest.   In this paper we shall study  the 

point wise conver- gence of prolate spheroidal wavelet 

expansions in L
p 

(R), 1 ≤ p < ∞.  Here the sinc function 
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is replaced  by one based on prolate  spheroidal  wave 

functions  (PSWF’s)  which have much better  time 

localization than  the sinc  function.  The new wavelets 

preserve the high energy concentration in both the 

time and frequency domain inherited  from PSWF’s. 

The connection between PSWF’s and the Shannon 

sampling theorem (Shannon [4]) given the formula   

 𝑓(𝑛)
sin 𝜋(𝑡−𝑛)

𝜋(𝑡−𝑛)

∞
𝑛=−∞ . 

It holds for π−band  limited  signals with finite energy, 

that is, for continuous  functions in L
2

(R)  whose 

Fourier transform has support  in [−π, π]. This theorem 

has become a well- known part  of both the 

mathematical and engineering literature. 

The sinc function is closely related to the PSWF’s 

ϕn,σ,τ (τ ). They constitute an orthonor- mal basis of 

the space of σ−band limited functions on the real line. 

They are concentrated on the interval  [−τ , τ ] and 

depend on the two parameters σ and τ . 

In order to construct  PSWF  wavelets, we begin with a 

scaling function υ whose integer translates are a Riesz 

basis of a space V0 .  This space is usually taken  to 

be a subspace of L
2

(R).  Here we shall take υ(x) = 

ϕ0,υ,τ (x), where τ is any positive number.  With this 

choice the space V0  will turn  out to be the Paley-

Wiener  space Bπ   of π−band limited functions no 

matter what the choice of τ . 

This  space  then  becomes  part of a  family  of nested  

subspace  usually  referred  as  a multi-resolution  

analysis (MRA).  The  other  spaces are obtained  by 

dilations  by factors  of two:f (t) ∈ Vm , if and only if, f 

(2
−m 

t) ∈ V0.  These have the usual properties of an 

MRA 

(i) .. · · ·  ⊆ Vm−1  ⊆ Vm  ⊆ · · ·  ⊆ L
2
(R), 

(ii) 𝑉𝑚
       = 𝐿2(𝑅), 

(iii)  𝑉𝑚 = {0}.The MRA consisting of the Paley-

Wiener  spaces (Vm  = B2m π ) has been widely 

studied and has its standard scaling function the sinc 

function S(t) = 
sin 𝜋𝑡

𝜋𝑡
. This function has very good 

frequency localization, but not very good time 

localization.  This has limited its use as a wavelet basis 

in comparison  to the Daubechies  wavelets which have 

compact  support  in the time domain.  Because of the 

properties of entire functions, no band limited function 

has compact support in the time domain.  However, the 

PSWF’s are as close to it as one can get and in fact, 

for τ sufficiently large, can be made arbitrarily small 

outside  of the interval  of concentration.  Hence they  

should be similar to the Daubichies wavelets for 

practical  computation and superior to the sinc 

functions.  Our basis will differ from the standard 

wavelet basis for V0  consisting of translates of the sinc 

function. 

The PSWF  ϕ0,π,τ  is a candidate  for a scaling 

function  with V0  = Bπ .  There are several ways of 

constructing  bases of the  other  subspaces  Vm  = 

B2m π   from those  of V0.  One uses the  standard 

wavelet approach  in which dilations  of ϕ0,π,τ  i.e., 

ϕ0,π,τ (2
m 

t) are used to get the basis {ϕ0,π,τ (2
m 

t 

− n)} of Vm . In this case we get 

It is also possible to find a dual Riesz basis for {υ
0,π,τ (t − 

n)}. 

We can get it by defining the Fourier transform of 

the dual function 𝜑 0,π,τ(t) as 

 

𝜑  0,π,τ(w) = 
𝜑0,𝜋 ,𝜏(𝑤)

 |𝜑 0,𝜋 ,𝜏(𝑤−2𝜋𝑘 )|2
𝑘

 

 

 𝜑  0,𝜋 ,𝜏(𝑤 − 2𝜋𝑘)𝜑 0,𝜋 ,𝜏(𝑤 − 2𝜋𝑘)                        
𝑘

= 1 

 

 

It follows that {𝜑 0,π,τ(t – n)} is bi-orthogonal to {φ
0,π,τ (t 

− n)}. Again, because 𝜑  0,π,τ(w) is 

Positive on [-π,π], it follows that {𝜑 0,π,τ(t – n)} is a 

Riesz  basis of Bπ. 

 

The approximation of a function  in L
2 

(R)  by 

function  in Vm  is given by a series of the 
 

Form  

𝑓 𝑥 =  < 𝑓, 𝜑 𝑚 ,𝑛 >

𝑛

𝜑𝑚 ,𝑛(𝑥) 

 

 

The kernel of this projection is given 

𝑞𝑚  𝑥, 𝑡 

=  ∅𝑚 ,𝑛

𝑛

(2
m

 
x –  2

_ 
m

n)∅ 𝑚 ,𝑛(2
m

 
t – 2−m n) 

 

= 2𝑚  𝜑0,𝜋 ,𝜏

𝑛

(2
m

 
x –  2

_ 
m

n)𝜑 0,𝜋 ,𝜏(2
m

 
t – 2−m n) 

= 2𝑚𝑞0(2𝑚𝑥, 2𝑚 𝑡) 

= 𝜆𝑞0 𝜆𝑥, 𝜆𝑡 ,          𝜆 = 2𝑚 . 
Let us consider the class S(R)  of rapidly  decreasing C 

∞
− functions on R such that 
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𝑆 𝑅 =  𝑓: 𝑅 → 𝑅, sup
𝑥𝜖𝑅

 𝑥𝑛
𝑑𝑚

𝑑𝑥𝑚
𝑓 (𝑥) < ∞ , 𝑛, 𝑚

∈ 𝑁 ∪ {0} 

Then for f ∈ S(R), the Fourier transform of f is 

given by 

f  ξ =
1

 2π
 e−iξx

R
f(x) dx. 

It can be easily seen that of  

𝑓 𝜖 𝑆 𝑅 𝑎𝑛𝑑𝑓  𝜉 𝜖 𝑆 𝑅 𝑎𝑛𝑑 𝑆(𝑅) is dense in Lp (R), 1 ≤ 

p < ∞.  Also Fourier  transform  is isometric in S(R).  

The inverse Fourier  transform  is given by 

𝑓 𝑥 =
1

 2π
 f 

R
(ξ)eiξx dξ. 

Let [−2m π, +2m π] denote the support  of 𝜙 , is of the 

form 

[−2
m 

π, 2
m 

π] =  𝑎𝑖 , 𝑏𝑖  
𝑛
𝑖=1 ∪ 𝑂, 

Where O is a set of measure zero. Then for f ∈ V0 

𝑓 𝑥 =
1

 2π
 f 

E
(ξ)eiξx dξ. 

 

=
1

2𝜋
  𝑓(𝑥)𝑒−𝑖𝑡𝜉 𝑑𝑡𝑒𝑖𝜉𝑥

𝑅

𝑑𝜉
2𝑚 𝜋

−2𝑚 𝜋

 

=  𝑓(𝑡)
𝑅

 
1

2𝜋
 𝑒𝑖𝜉 (𝑥−𝑡) 𝑑𝜉

2𝑚 𝜋

−2𝑚 𝜋

 𝑑𝑡 

=  𝑓 𝑡 
𝑅

𝑘(𝑡, 𝑥)𝑑𝑡 

Where 

𝑘 𝑡, 𝑥 =
1

2𝜋
 𝑒𝑖𝜉 (𝑥−𝑡) 𝑑𝜉

2𝑚 𝜋

−2𝑚 𝜋
= 𝑘(𝑥 − 𝑡). 

The integral in (6.1.1) is absolutely convergent by 

the Cauchy-Schwarz inequality because 
 

both f and k are in L
2

(R). 

Definition 1.2. If 𝜑𝜖𝐿1 𝑅  𝑤𝑖𝑡 𝜑  0 = 1 and we define 

𝜑𝑛 𝑥 = 𝑛𝜑 𝑛𝑥 𝑤𝑒𝑟𝑒 𝑛 → ∞. 

Then the sequences of functions  𝜑𝑛 𝑛=1
∞  is an approximate 

identity if: 

(1)  𝜑𝑛 𝑥 𝑑𝑥 = 1
𝑅

 for all n. 

(2) Supn   𝜑𝑛 𝑥  𝑑𝑥 < ∞,
𝑅

 

(3) lim𝑛→∞   𝜑𝑛 (𝑥) 
 𝑥 >𝛿

𝑑𝑥 = 0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝛿 > 0. 

Remark 1.1. If 00 ≤ 𝜑 𝑥 𝜖 𝑆 𝑅 . Then 𝜑𝑛 𝑥 = 𝑛𝜑(𝑛𝑥) 

is an approximate identity. 

By the hypothesis  the reproducing  kernel series 

 ∅𝑚 ,𝑛

𝑛

(2
m

 
x –  2

_ 
m

n)∅ 𝑚 ,𝑛 (2
m

 
t – 2−m n) 

Converges absolutely and uniformly for all x and t to a 

function q0(t, x). Thus, we have 

𝑘 𝑡, 𝑥 =  𝜑0,𝜋 ,𝜏 𝑥 − 𝑛 𝑛 𝜑 0,𝜋 ,𝜏 𝑡 − 𝑛 = 𝑞0(𝑡, 𝑥) almost 

everywhere. Now we shall prove 

Lemma 1.1 If q0 t, x ∈ L1 R with  q0 t, x dt = 1.
R

 

Then 𝑞𝑚 (𝑡, 𝑥) is an approximate identity if  

(1)  𝑞𝑚  𝑡, 𝑥 𝑑𝑡 = 1
𝑅

 for all m. 

(2) Supm   𝑞𝑚  𝑡, 𝑥  𝑑𝑡 < ∞,
𝑅

 

(3) lim𝑚→∞   𝑞𝑚 (𝑡, 𝑥) 
 𝑥−𝑡 >𝛿

𝑑𝑡 = 0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝛿 > 0. 

Proof 1. We see that  𝑞𝑚  𝑡, 𝑥 𝑑𝑡 =  𝜆𝑞0(𝜆(𝑥 −
𝑅𝑅

𝑡)) 𝑑𝑡 =  𝑞0(𝜆( 𝑥 − 𝑡 ))𝑑(𝜆 𝑥 − 𝑡 )
𝑅

= 1. 

Proof 2. We have 𝑞0 𝜉 =
1

2𝜋 𝜉 
≥

1

 2𝜋
 
𝑒−𝑖𝜉𝑏 −𝑒−𝑖𝜉𝑎

(−𝑖𝜉 )
 =

 
1

 2𝜋
 𝑒−𝑖𝜉𝑥𝑏

𝑎
𝑑𝑥 , 

𝜆𝑞0 𝜆 𝜉  ≥  𝛾𝑖  
𝑒−𝑖𝜉𝑏 − 𝑒−𝑖𝜉𝑎

 2𝜋 −𝑖𝜉 
 

𝑚

𝑖=1

=  𝛾𝑖  𝜒Δ𝑖(𝑥)
𝜆𝑏𝑖

𝜆𝑎𝑖

𝑚

𝑖=1

. 

If 𝑓𝜖𝐿1(𝑅) then log𝑚→∞  𝛾𝑖𝜒Δ𝑖(𝑥)𝑚
𝑖=1  is in 𝐿1(𝑅). Given 

𝜖 > 0, find  𝛾𝑖𝜒Δ𝑖(𝑥)𝑚
𝑖=1  such that 

  𝑓 𝑥 −  𝛾𝑖𝜒Δ𝑖(𝑥)
𝑚

𝑖=1
 𝑑𝑥 <

∈

2
𝑅

. 

So we have 

 𝑓  𝜉  ≤  
1

 2𝜋
 𝑒−𝑖𝜉𝑥

𝑅

𝑓 𝑥 𝑑𝑥  

≤
1

 2𝜋
   𝑓 𝑥 −  𝛾𝑖𝜒Δ𝑖(𝑥)

𝑚

𝑖=1
 𝑑𝑥

𝑅

+   𝛾𝑖𝜒Δ𝑖(𝑥)
𝑚

𝑖=1
  𝑒−𝑖𝜉𝑥 𝑑𝑥 

≤
∈

2 2𝜋
+

 𝛾𝑖𝑖

 𝜉 
<

∈

2 2𝜋
 

Hence 𝜆𝑞0 𝜆 𝜉   is bounded for all 𝜉 𝑎𝑛𝑑 𝜆. This proves 

(2). 

 

Proof 3.  We have  

 

 𝑞𝑚  𝑡, 𝑥 𝑑𝑡 =  𝜆𝑞0𝜆  𝑥 − 𝑡  
 𝑥−𝑡 >𝛿

𝑑𝑡
 𝑥−𝑡 >𝛿

 

=  𝜆𝑞0 𝜆  𝑥 − 𝑡   𝑑𝑡 +  𝜆
−𝛿

−∞

𝑞0(𝜆 𝑥 − 𝑡 )
∞

𝛿

𝑑𝑡 

Substituting 𝑥 − 𝑦 = 𝜆(𝑥 − 𝑡) 

lim
𝑚→∞

 𝑞0 𝑥 − 𝑦 𝑑𝑦 +
∞

𝑚𝛿

 𝑞0 𝑥 − 𝑦 𝑑𝑦 = 0.
−𝑚𝛿

−∞

 

 

Remark 1.2.  Let 0 ≤ q0 (t, x) ∈ S(R). Then qm (t, x) 

= λ q0 (λ|x − t|) is an approximate identity. 

Lemma 1.2.  If f ∈ L
1

(R) and qm (t, x) ∈ S(R)  then  
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qm (t, x) ∗ f ∈ S(R). 

Proof. We have 

 qm  t, x f  =  𝑞𝑚  𝑥 − 𝑡 − 𝑦 𝑓(𝑦)𝑑𝑦
R

 

=  𝑞𝑚  𝑦 − 𝑡 𝑓(𝑥 − 𝑦)𝑑𝑦
R

 

Or  

𝑑𝑛

𝑑𝑥𝑛
 𝑞𝑚  𝑡, 𝑥 𝑓 =  𝑞𝑚  𝑦 − 𝑡 

𝑑𝑛

𝑑𝑥𝑛
𝑓(𝑥 − 𝑦)𝑑𝑦

R

 

 𝑥 𝑛
𝑑𝑛

𝑑𝑥𝑛
 𝑞𝑚  𝑡, 𝑥 𝑓 

=  𝑥 𝑛  𝑓(𝑥 − 𝑦)
𝑑𝑛

𝑑𝑥𝑛
𝑞𝑚  𝑦 − 𝑡 𝑑𝑦

R

, 

Substituting 𝑥 − 𝑦 = 𝑧, it gives that 

 

=  𝑓(𝑦) 𝑥 𝑛
𝑑𝑛

𝑑𝑥𝑛
𝑞𝑚  𝑥 − 𝑦 − 𝑡 𝑑𝑦

R

 

Since  𝑥 − 𝑦 − 𝑡 ≤  𝑥 − 𝑡 +  𝑦 ≤
3 𝑥−𝑡 

2
 , so from above 

we obtain 

 𝑓 𝑦  𝑥 𝑛
𝑑𝑛

𝑑𝑥𝑛
𝑞𝑚  𝑥 − 𝑦 − 𝑡 𝑑𝑦

 y >
 x−t 

2

+  𝑓 𝑦  𝑥 𝑛
𝑑𝑛

𝑑𝑥𝑛
𝑞𝑚  𝑥 − 𝑦

 y <
 x−t 

2

− 𝑡 𝑑𝑦 → 0. 

Hence the proof is completed. 

 

II. MAIN RESULTS  

 

In this section we shall prove our main theorems. 

 

Theorem 2.1  If  𝑞𝑚 (𝑡, 𝑥) 𝑚=1
∞  is an approximate identity 

then 

lim𝑚→∞ 𝑓 ∗ 𝑞𝑚  𝑡, 𝑥 − 𝑓 2 = 0 for every 𝑓 ∈ 𝐿2 𝑅  

 

Proof. Let us consider 

    𝑞𝑚  𝑡, 𝑥 𝑓  𝑥 − 𝑓(𝑥) 𝑝𝑑𝑥

𝑅

 

1
2 

 

=   𝑑𝑥   𝑞𝑚

𝑅

 𝑥 − 𝑡 − 𝑦 𝑓(𝑦)𝑑𝑦 − 𝑓(𝑥) 

2

𝑅

 

1
2 

 

=   𝑑𝑥   𝑞𝑚

𝑅

 𝑦 − 𝑡 𝑓(𝑥 − 𝑦)𝑑𝑦 − 𝑓(𝑥) 

2

𝑅

 

1
2 

. 

Since 𝑓 𝑥 =  𝑓 𝑥 𝑞𝑚  𝑦 − 𝑡 𝑑𝑦;
𝑅

 so we get 

  𝑑𝑥   𝑞𝑚

𝑅

 𝑦 − 𝑡  𝑓 𝑥 − 𝑦 − 𝑓 𝑥  𝑑𝑦 

2

𝑅

 

1
2 

 

 

≤   𝑑𝑥   𝑞𝑚  𝑦 − 𝑡  𝑝

 𝑦−𝑡 >𝛿

 𝑓 𝑥 − 𝑦 − 𝑓 𝑥  2𝑑𝑦

𝑅

 

1
2 

 

+   𝑑𝑥   𝑞𝑚  𝑦 − 𝑡  𝑝

 𝑦−𝑡 ≤𝛿

 𝑓 𝑥 − 𝑦 − 𝑓 𝑥  2𝑑𝑦

𝑅

 

1
2 

 

≤  𝑑𝑦  𝑞𝑚  𝑦 − 𝑡    𝑑𝑥 𝑓 𝑥 − 𝑦 − 𝑓 𝑥  2𝑑𝑦

𝑅

 

1
2 

 𝑦−𝑡 >𝛿

 

+  𝑑𝑦 𝑞𝑚  𝑦 − 𝑡    𝑑𝑥 𝑓 𝑥 − 𝑦 − 𝑓 𝑥  2𝑑𝑦

𝑅

 

1
2 

 𝑦−𝑡 ≤𝛿

 

≤  𝑑𝑦  𝑞𝑚  𝑦 − 𝑡  (2 𝑓 2)

 𝑦−𝑡 >𝛿

 

+  𝑑𝑦  𝑞𝑚  𝑦 − 𝑡  sup
 𝑦 <𝛿

   𝑓 𝑥 − 𝑦 − 𝑓(𝑥) 

𝑅

 

 𝑦−𝑡 ≤𝛿

→ 0 𝑎𝑠 𝑚 → ∞. 
Hence the proof is completed. 

 

Theorem 2.2. If qm (t, x) is an approximate identity 

and f ∈ L
2 

(R) then the wavelet series 

𝑓𝑚 𝑥 =   𝑓, 𝜙 𝑚 ,𝑛  

𝑘

𝜙𝑚 ,𝑛 (𝑥) 

converges to f(x) as m → ∞ at every point of continuity of 

f(x). 

Proof. The projection of 𝑓 ∈ 𝐿2(𝑅) on the space 𝑉𝑚  is 

given by 

𝑓𝑚 𝑥 =  𝑓 𝑡 𝑞𝑚 (𝑡, 𝑥)𝑑𝑡
𝑅

 

=  𝑓 𝑡 𝑞𝑚 (𝑥 − 𝑡)𝑑𝑡
𝑅

 

=  𝑓 ∗ 𝑞𝑚   𝑥 
→ 𝑓 𝑥 ,  𝑞𝑚  𝑖𝑠 𝑎𝑛 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 . 

Also we have 
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𝑓𝑚 𝑥 =  𝑓 𝑡 𝑞𝑚 (𝑥 − 𝑡)𝑑𝑡
𝑅

 

=   𝑓 𝑡 𝜙 𝑚 ,𝑛 (𝑡)𝜙𝑚 ,𝑛(𝑥)𝑑𝑡
𝑅𝑛

 

=   𝑓, 𝜙 𝑚 ,𝑛 

𝑛

𝜙𝑚 ,𝑛 (𝑥) 

Thus if f ∈ L
2 

(R), 𝑞𝑚 (𝑥) ∈ 𝑆(𝑅) then 𝑞𝑚 ∗ 𝑓 ∈ 𝑆(𝑅) and 

S(R) is dense in 𝐿2 𝑅  

Then 

 𝑓𝑚 𝑥 − 𝑓(𝑥) 𝐿𝑝 (𝑅) → 0 𝑎𝑠 𝑚 → ∞. 

This proves the theorem. 

If the coefficients are given by the sampled values of 

the functions, then the convergence may not be so 

rapid, but has other nice properties. The approximation 

in Vm is now given by the hybrid series 

𝑓𝑚
𝑠 𝑡 =  f(2−m k)

ϕ
m

(t − 2−m k)

2m ϕ 
m

(0)
k

 

Or we can write 

 

𝑓𝑚
𝑠 𝑡 =  f t km (x, t)dt 

Where 

km x, t =  
ϕ

m
(x − 2−m k)

2m ϕ 
m

(0)
k

δ t − 2−m k . 
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