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Abstract-During   the   last   years, semi-supervised   learning   has emerged as an exciting new direction in machine learning 

research. We propose a method to use decision tree Classifier for Semi- Supervised  learning,  we  label  the  unlabelled  

patterns  using  the labeled patterns and then compare these method with the traditionally Existing methods as graph mincut, 

spectral graph partisan, ID3,C4.5,CART, Nearest Neighbour Classifier and we are going to prove our Proposed method is 

more scalable than the Existing methods. 
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I.       INTRODUCTION 

Semi-supervised learning [1][2] deals with learning 

problems like those when the available data-set is having two 

parts, viz., a subset consisting of labeled data (training set) 

and the remaining part consisting of unlabeled data (test set). 

Transductive inference is limited to predicting labels for 

unlabeled data (test set) alone. This is in contrast to inductive 

methods of finding a classifier, by using the given training set, 

which is  applicable for  the entire feature space. Inductive 

learning is often an ill-posed problem [3][4]. Semi-

supervised learning can use the location of test points (which 

is additional information than using only the training set) 

along with the training set. It is shown that for high 

dimensional problems having small training sets (when 

compared to test sets), transductive inference works better 

than inductive methods like conventional classifiers [1]. 

 

We present a new method for transductive learning, which  

can be seen as a transductive version of the Decision tree 

.Unlike for many other transductive learning methods, the 

training problem has a meaningful relaxation that can be 

solved globally optimally using spectral methods. We 

propose an algorithm that robustly achieves good 

generalization performance and that can be trained efficiently. 

II. NOTATION AND DEFINITIONS 

1) Class labels: The set of class labels,      ]г ,     

_. For simplicity, a two class problem is assumed. 

2) Training set: L    ]   ,      , . . . ,     ,     _ is 

the training set, where xi is a d-dimensional 

feature-vector, and yi is its class 
label. This is also called the labeled set. l is the training 
set 

size.  Training  patterns  with  class-label         is  the  

subset 
 

, and that with class-label г   is            . 
 

3) Test set: U      ]    , . . . ,     _. This is also called the 

unlabeled set. u is the test set size. we have n    l    u. 

4) Distance function:  ^^            ^^  is the distance between 

two patterns    and . If feature-vectors are from a 

Euclidean space, then this is Euclidean distance. 

Otherwise, an appropriate distance is used (like matching 

coefficient) based on the feature space. 

5) Inductive learner:  This is a function            

.This function is learned using the training set L and can be 

used to predict a label for any . 

6)      Transductive      learner:       This      is      a      function 

Note, here the domain of  the function 

is limited  to  U.  This  function  can  use  labeled  as  well  

as unlabeled set in predicting class label for a test pattern. 

 

III SEMI-SUPERVISED CLASSIFICATION 

While semi-supervised classification is a relatively new 

field, the idea of using unlabeled samples to augment 

labeled examples for prediction was conceived several 

decades ago. The initial work in semi-supervised learning 

is attributed to Scudders for his work on “selflearning”. An 

earlier work by Robbins and Monro on sequential learning 

can also be viewed as related to semi-supervised learning. 

Vapnik’s Overall Risk Minimization (ORM) principle 

advocates minimizing the risk over the labeled training data 

as well as the unlabled data, as opposed to the Empirical 

Risk Minimization, and resulted in transductive Support 

Vector Machines. Fig.1 gives the basic idea of  how 

unlabeled data could be  useful in  learning a classifier. 

Given a set of labeled data, a decision boundary may be 

learned using any of the supervised learning methods (Fig. 

1(a)). When a large number of unlabeled data is provided in 

addition to the labeled data, the true structure of each class 

is revealed through the distribution of the unlabeled data 

(Fig. 

1(b)). The unlabeled data defines a “natural region” for 

each class, and the region is labeled by the labeled data. 

The task 
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now is no longer just limited to separating the labeled 

data, but to separate the regions to which the labeled data 

belong. The definition of this “region” constitutes some of 

the fundamental assumptions in semi-supervised learning. 

 
Existing semi-supervised classification algorithms may be 

classified into two categories based on their underlying 

assumptions. An  algorithm is  said  to  satisfy  the  manifold 

assumption if it utilizes the fact that the data lie on a low- 

dimensional manifold in the input space. Usually, the 

underlying geometry of the data is captured by representing 

the data as a graph, with samples as the vertices, and the 

pairwise similarities between the samples as  edge-

weights. Several graph based algorithms such as Label 

propagation [11], Markov random walks, Graph cut 

algorithms, Spectral graph transducer, and Low density 

separation proposed in the literature are based on this 

assumption. 

 
The second assumption is called the cluster  assumption. 

It states that the data 

 

 
 

Fig 1: Utility of the unlabeled data in learning a classifier. 

(a) Classifier learned using labeled data alone. (b) Utility of 

unlabeled data. The filled dots show the unlabeled data. 
The gray region depicts the data distribution obtained from 
the unlabeled data.  
samples with high similarity between them, must share the 
same label. This may be equivalently expressed as a 

condition that  the  decision boundary between the  classes  
must  pass through low density regions. This assumption 

allows the unlabeled data to regularize the decision 

boundary, which in turn influences the choice of the 
classification models. Many successful semi-supervised 

algorithms like TSVM and Semi-supervised SVM follow 

this approach. These algorithms assume a model for the 
decision boundary, resulting in an inductive classifier. 

 

Classification is a classical problem in machine learning 
and 

data mining [1].there are some training data tuple and each 

having a class and it is represented by a feature vector. Here 
the constraint is to build an model to predicts the class label 

of an unknown test tuple based on the feature vector of an 

tuples. Among these one of the most power full 
classification models are decision tree model. The decision 

trees are very popular because they are easy to understand. 
Many algorithms, such as ID3 [2] and C4.5 [3], have been 

developed for building decision tree. These algorithms are 

widely brought and used in a wide range of applications 
such as image recognition, medical diagnosis [4], and credit 

rating of loan applicants, scientific tests, fraud detection, 

and target marketing. In traditional decision tree 
classification 

In conventional decision tree classification an attribute of a 
tuple is categorical or numerical. But the data uncertainty in 
common in many applications. The value of a 

feature/attribute is  thus best captured not  by  a  single 

point value, but by a range of values giving rise to a 
probability distribution. A simple way to handle data 

uncertainty is to abstract probability distributions by 

summary statistics such as means and variances. We  call  
this  approach averaging. An another way is to handle the 

complete information carried by the probability distribution 
to build a decision tree is called efficient distribution based 

.In this paper we study how to constructing decision tree 

classifiers on data with uncertain numerical attributes. Our 
goal are 1) To develop an algorithm for constructing 

decision trees for uncertain data by using the efficient 

Distribution-based approach,2)to verify whether the 
Efficient distribution based approach could lead to a higher 

classification accuracy than with averaging approach, and 
3)to build a theoretical foundation on pruning techniques  

and that can greatly improve the computational efficiency 

of the Efficiency Distribution-based algorithms. 

III. MEASUREMENT ERRORS: 

Due to measurements errors data may often imprecise. An 

example A new tympanic thermometer is analyzed and 
tested experimentally.   An   electrically   calibrated   pyro   

electric detector of special configuration is employed to 

determine a person’s body temperature. An energy-storage, 
power-supply- isolated capacitor is used as the electrical 

heating reference. The new thermometer design has 

accuracy within 0.1 °C with a 90% confidence and is 
immune to ambient temperature, detector aging, and 

parameter variations. An equivalent-circuit model is 
established in the analysis to account for the heat exchanges 

among the tympanum, the surroundings, and the detector as 

well as for the electro thermal behavior of the detector. The 
model provides effective simulation of the thermometer 

with PSPICE. Critical parameters governing the accuracy 

and the limitation of the tympanic thermometer are also 
pointed out by the simulation. 

2 Data staleness 
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Consider some applications the data values and the recorded 

information  is  always  not  stable,  it  is  always  stale.one 

example is vehicle tracking system. Where it can measure the 

movements of vehicles [6] , from which the uncertain data 

may arises. A typical uncertainty model requires knowledge 

about the moving speed of the device and whether its 

movement is restricted or unrestricted. A 2D probability 

density function is defined over a bounded region to model 

such uncertainty. 

3 Repeated measurements 
Perhaps the  most common  source of uncertainty  comes 

from repeated measurements. For example, a patient’s body 

temperature could be taken multiple times during a day; an 
anemometer could record wind speed once every minute; the 

space shuttle has a large number of heat sensors installed all 

over its surface. When we inquire about a patient’s 
temperature, or wind speed, or the temperature of a certain 

section of the shuttle, which values shall we use? Or, would 
it be  better  to  utilize  all  the  information by  considering 

the distribution given by the collected data values? 
As a more elaborate example, consider the “Breast Cancer” 
dataset reported in [7]. This dataset contains a  number of 
tuples. Each  tuple  corresponds to  a  microscopic image of 
stained cell nuclei. A typical image contains 10–40 nuclei. 
One of the features extracted from each image is the average 

radius of nuclei. We remark that such a radius measure 

contains a few sources of uncertainty: (1) an average is taken 

from a large number of nuclei from an image, (2) the radius 

of an (irregularly-shaped) nucleus is obtained by averaging 

the length of the radial line segments defined by the centroid 

of the nucleus and a large number of sample points on the 

nucleus’ perimeter, and (3) a nucleus’ perimeter was outlined 

by a user over a fuzzy 2D image. From (1) and (2), we see that 

a radius is computed from a large number of measurements 

with a wide range of values. The source data points thus form 

interesting distributions. From (3), the fuzziness of the 2D 

image can be modelled by allowing a radius measure be 

represented by a range instead of a concrete point-value. 
Yet another source of uncertainty comes from the limitation 
of the data collection process. For example, a survey may 
ask a question like, “How many hours of TV do you watch 
each week?” A typical respondent would not reply with an 
exact precise answer. Rather, a range (e.g., “6–8 hours”) is 
usually replied, possibly because the respondent is not so 
sure about the answer himself. In this example, the survey 
can restrict an answer to fall into a few pre-set categories 
(such as “2–4 hours”,   “4–7   hours”,   etc.).   However,   
this   restriction unnecessarily limits the respondents’ 
choices and adds noise to the data. Also, for preserving 
privacy, sometimes point data values   are   transformed   to   
ranges   on   purpose   before publication. 
From the above examples, we see that in many applications, 
information cannot be ideally represented by point data. More 
often, a value is best captured by a range possibly with a pdf. 

1) A basic algorithm for constructing decision trees out of 
uncertain datasets. 
2) A study comparing the classification accuracy achieved 
by the Averaging approach and the Distribution-based 
approach. 
3) A set of mathematical theorems that allow significant 
pruning of the large search space of the best split point 
determination during tree construction. 

4)  Efficient  algorithms  that   employ  pruning  techniques 
derived from the theorems. 
5) A performance analysis on the various algorithms through 
a set of experiments. 

IV TRADITIONAL DECISION TREES 

In  our  model,  a  dataset  consists  of  d  training  

tuples, {t1,t2,….td},   and k numerical feature 

attributes,A1…. Ak. The domain  of  attribute  Aj  is  

dom(Aj).Each  tuple  ti  is associated with a feature vector 

Vi = (vi.1, vi.2,…….vi.k) and a class label ci, where vi,j 

εdom(Aj) and ci εC, the set of all class labels. The 

classification problem is to construct a model M that maps 

each feature vector (vx,1….. vx,k) to a probability 

distribution Px  on C such that given a test tuple t0 
= (v0,1……. v0,k, c0), P0  =M(v0,1….. v0,k) predicts 
the class label c0 with high accuracy. We say that P0 
predicts c0 if 
c0 = arg maxc C 
P0(c). 
In  this  paper  we  study  binary  decision trees  with  tests 
on numerical attributes. Each internal node n of a decision 
tree is associated with an attribute A jn and a split point 
znεdom(A jn), giving a binary test v0,jn   zn. An internal 
node has exactly 2 children,  which  are  labeled  “left”  and 
“right”, respectively. Each leaf node m in the decision tree 
is associated with a discrete probability distribution Pm 
over C. For each c ε C, Pm(c) gives a probability reflecting 
how likely a tuple assigned to leaf node m would have a 
class label of c. 
To determine the class label of a given test tuple t0 
=(v0,1….. 
v0,k;,?), we traverse the tree starting from the root node 

until a leaf node is reached. When we visit an internal node 

n, we execute the test v0;jn _ zn and proceed to the left 

child or the right child accordingly. Eventually, we reach a 

leaf node m. The probability distribution Pm associated 

with m gives the 

probabilities that t0 belongs to each class label c εC. For a 

single result, we return the class label c εC that maximizes 

Pm(c). 
1 Handling Information 
Under our uncertainty model, a feature value is 

represented not by a single value, vi,j , but by a pdf, fi;j . 

For practical reasons, we assume that fi;j  is non-zero only 

within a bounded interval [ai;j ; bi;j]. (We will briefly 

discuss how our method scan be extended to handle pdf’s 

with unbounded domains in Section VII-C.) A pdf fi;j 

could be programmed analytically i fit can be specified in 

closed form. More typically, it would be implemented 

numerically by storing a set of s sample points x ε[ai;j 

,bi;j]with the associated value fi;j (x),  effectively 

approximating fi;j  by  a  discrete  distribution with s 

possible values. We adopt this numerical approach for the 

rest this paper. With this representation, the amount of 

information available is exploded by a factor of s. 

hopefully;  the richer information allows us to build a better 

classification model. On the down side, processing large 

numbers of sample points is much more costly. In this 

paper we show that accuracy can be improved by 

considering uncertainty information. We also propose 
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Data- 
set 

Mincut Rand. 
Graph 
mincut 

Spectral 
Graph 
parti. 

ID3 ST-DT 

VOTING 91.3 91.2 85.9 86.4 91.4 

MUSH 97.7 94.2 91.6 93.3 91.5 

IONO 81.6 82.8 79.7 88.6 88.9 

BUPA 59.3 63.5 61.6 55.3 54.8 

PIMA 72.3 67.5 68.2 70.0 73.1 

 

pruning strategies that can greatly reduce the computational 

effort. 
For  each  internal  node  n  (including  the  root  node),  
to 

determine Φn(c; tx,wx), we first check the attribute Ajn 

and split point zn of node n. Since the pdf of tx under 

attribute Ajn spans  the  interval  [ax;jn,bx;jn],  we  

compute  the  “left” 
 

probability pL=              ,jn(t) dt (or pL = 0 in case zn < 
ax;jn) and the “right” probability pR= 1 - pL. Then, we split 

tx into 2 fractional tuples tL and tR. Tuples tL and tR inherit 

the class label of tx as well as the pdf’s of tx for all 
attributes except Ajn.The tuple tL is assigned a weight of 

wL = wx . pL and its pdf for Ajn is given by 
 

 

FL,jn(x) = { fx,jn(x)/wL  if x 

ε[ax,jn,zn] 

0     otherwise 

the tuple tR is assigned a weight and pdf analogously. We 

define Φn(C;tj,wx)=PL.ΦnL(c;tL,wL)+pR.ΦnR(C;tR.wR) 

where nL and nR are the left child and the right child of 

node respectively 
 

For every leaf node m, recall that it is associated with 

aprobability distribution Pm over C. We define Φm(c; 

tx;wx) =wx _Pm(c). Finally, for each class c, let P(c) = 

Φr(c; t0, 1.0),where r is the root node of the decision tree. 

Obtained this way, each probability P(c) indicates how 

likely it is that the 
test  tuple  t0  has  class  label  c.  These  computations  
are 
illustrated in Figure 1, which shows a test tuple t0 with one 
feature whose pdf has the domain [-2:5, 2]. It has a weight 
of 
1.0 and is first tested against the root node of the decision 
tree. 
Based on the split point -1, we find that pL = 0.3 and pR = 
0.7. So, t0 is split into two tuples tL and tR with weights wL 
= 0.3 
and wR = 0.7. The tuple tL inherits the pdf fromt0over the 
sub 
domain  [-2.5,-1], normalised by  multiplying by a  factor  
of 
1=wL. Tuple tR inherits the pdf from t0 in a= similar 

fashion. These tuples are then recursively tested down the 
tree until the leaf nodes are reached. The weight distributed 

in such a way down to each leaf node is then multiplied 

with the probability of each class label at that leaf node. 
These are finally summed up to give the probability 

distribution (over the class labels) for t0, giving P(A) = 
0:59; P(B) = 0:41. 

 
V. EXPERIMENTAL 

RESULTS 
 

Experiments are conducted with five standard 
data- sets which are drawn from from the data-sets available 

at UCI Machine Learning Repository [13]. Properties of the 

datasets along with distance function used are shown in 

Table I. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Note, same data-sets are used in [7] and [8]. The classifiers 

used for the comparison purpose are, (i) graph mincut-±opt 
[7] (a transductive classifier), (ii) randomized graph mincut 

[8] (a transductive classifier), (iii) spectral graph 

partitioning [9] (a transductive classifier), (iv) ID3 (a 
decision tree based classifier, an inductive classifier) 

[14][15], (v) S-TDT (the proposed method of this paper, a 
transductive classifier). Classifiers for comparison are 

chosen so as to compare with other transductive methods 

which are similar to the proposed method of the paper. Two 
well known induction based classifiers viz., ID3 and 3-

NNC are also used for the comparison purpose. 
It can be seen that the proposed S-TDT method is 
comparable with other classifiers and in some cases shows 
 

TABLE I   DETAILS OF DATA-SETS 

USED 
 
 
 
 
 
 
 
 
 
 

Note, same data-sets are used in [7] and [8]. The 

classifiers used  for  the  comparison purpose are,  (i)  graph 

mincut-±opt [7] (a transductive classifier), (ii) randomized 
graph mincut [8] (a transductive classifier), (iii) spectral 

graph partitioning [9] (a transductive classifier), (iv) ID3 (a 
decision tree based classifier, an inductive classifier) 

[14][15], (v) 3- NNC (3-nearest neighbor classifier, an 

inductive classifier) [16], (vi) SI-TNNC (the proposed 
method of this paper, a transductive classifier). Classifiers 

for comparison are chosen so as to compare with other 

transductive methods which are similar to the proposed 
method of the paper. Two well known induction based 

classifiers viz., ID3 and 3-NNC are also used for the 
comparison purpose. 
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VI. 

CONCLUSION 
For some applications, the examples for which a prediction 
is 
needed are already known when training the classifier. We 
have given a method using Transduction . 
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