
Sushma et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 3,
September 2016, pp. 5-10

© 2016 IJRRA All Rights Reserved page - 5-

Efficient Nature-Inspired Load balancing

algorithms for Grid computing system

Sushma1, Dhirendra Mohan2

1M.Tech Scholar, CSE Department, Rayat Bahra Institute of Management & Technology, Haryana
2Assistant Professor, CSE Department, Rayat Bahra Institute of Management & Technology, Haryana

Abstract—Grid computing is an infrastructure that involves the integrated and collaborative use of computers,

networks, databases and scientific instruments owned and managed by multiple organizations. A major contribution is

to utilize the dynamism of virtualized Grid resources in various workflow management operations. Several algorithms

are proposed throughout the dissertation, each focusing on a different aspect of the larger problem, from monitoring

individual services, to placing a new service workflow in the Grid, to dynamically reallocating resources across

different services to satisfy demands and reduce costs. The goal is to add an end-to-end solution to the Grid provider's

offerings to workflow owners so that the latter can host their workflows in the Grid smoothly without worrying about

managing the underlying Grid resources themselves. We show through experimental results, from both real world

cluster trace logs and synthetic data, that the proposed approaches can perform various management tasks for service

workflows efficiently.

Keywords—ACO, Grid Computing, MIPS rating.

I. INTRODUCTION

Grid computing is all the rage. "It's become the phrase du

jour," says Gartner senior analyst Ben Pring, echoing many of

his peers. The problem is that (as with Web 2.0) everyone

seems to have a different definition. As a metaphor for the

Internet, "the Grid" is a familiar cliché, but when combined

with "computing," the meaning gets bigger and fuzzier. Some

analysts and vendors define Grid computing narrowly as an

updated version of utility computing: basically virtual servers

available over the Internet. Others go very broad, arguing

anything you consume outside the firewall is "in the Grid,"

including conventional outsourcing.

Figure 1

Grid computing comes into focus only when you think about

what IT always needs: a way to increase capacity or add

capabilities on the fly without investing in new infrastructure,

training new personnel, or licensing new software. Grid

computing encompasses any subscription-based or pay-per-use

service that, in real time over the Internet, extends IT's existing

capabilities.

Grid computing is at an early stage, with a motley crew of

providers large and small delivering a slew of Grid-based

services, from full-blown applications to storage services to

spam filtering. Yes, utility-style infrastructure providers are

part of the mix, but so are SaaS (software as a service)

providers such as Salesforce.com. Today, for the most part, IT

must plug into Grid-based services individually, but Grid

computing aggregators and integrators are already emerging.

Figure 2

A scientist studying proteins logs into a computer and uses an

entire network of computers to analyze data. A businessman

accesses his company's network through a PDA in order to

forecast the future of a particular stock. An Army official

accesses and coordinates computer resources on three different

military networks to formulate a battle strategy. All of these

scenarios have one thing in common: They rely on a concept

called grid computing.

At its most basic level, grid computing is a computer network

in which each computer's resources are shared with every other

computer in the system. Processing power, memory and data

Sushma et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 3,
September 2016, pp. 5-10

© 2016 IJRRA All Rights Reserved page - 6-

storage are all community resources that authorized users can

tap into and leverage for specific tasks. A grid computing

system can be as simple as a collection of similar computers

running on the same operating systemor as complex as inter-

networked systems comprised of every computer platform you

can think of.

Today, with such Grid-based interconnection seldom in

evidence, Grid computing might be more accurately described

as "sky computing," with many isolated Grids of services

which IT customers must plug into individually. On the other

hand, as virtualization and SOA permeate the enterprise, the

idea of loosely coupled services running on an agile, scalable

infrastructure should eventually make every enterprise a node

in the Grid. It's a long-running trend with a far-out horizon.

But among big metatrends, Grid computing is the hardest one

to argue with in the long term.

II. RESOURCE MANAGEMENT ISSUE

Resource management is a core function required of any man-

made system. It affects the three basic criteria for system

evaluation: performance, functionality and cost. Inefficient

resource management has a direct negative effect on

performance and cost. It can also indirectly affect system

functionality. Some functions the system provides might

become too expensive or ineffective due to poor performance.

A Grid computing infrastructure is a complex system with a

large number of shared resources. These are subject to

unpredictable requests and can be affected by external events

beyond your control. Grid resource management requires

complex policies and decisions for multi-objective

optimization. It is extremely challenging because of the

complexity of the system, which makes it impossible to have

accurate global state information. It is also subject to incessant

and unpredictable interactions with the environment.

The strategies for Grid resource management associated with

the three Grid delivery models, Infrastructure as a Service

(IaaS), Platform as a Service (PaaS) and Software as a Service

(SaaS), differ from one another. In all cases, the Grid services

providers are faced with large, fluctuating loads that challenge

the claim of Grid elasticity. In some cases, when they can

predict a spike can be predicted, they can provision resources

in advance. For example, seasonal Web services may be

subject to spikes.

For an unplanned spike, the situation is slightly more

complicated. You can use Auto Scaling for unplanned spike

loads, provided there’s a pool of resources you can release or

allocate on demand and a monitoring system that lets you

decide in real time to reallocate resources. Auto Scaling is

supported by PaaS services such as Google App Engine. Auto

Scaling for IaaS is complicated due to the lack of standards.

In the Grid, where changes are frequent and unpredictable,

centralized control is unlikely to provide continuous service

and performance guarantees. Indeed, centralized control can’t

provide adequate solutions to the host of Grid management

policies you have to enforce.

Autonomic policies are of great interest due to the scale of the

system, the large number of service requests, the large user

population and the unpredictability of the load. The ratio of the

mean to the peak resource needs can be large.

Policies and mechanisms

A policy typically refers to the principal guiding decisions,

whereas mechanisms represent the means to implement

policies. Separating policies from mechanisms is a guiding

principle in computer science. Butler Lampson and Per Brinch

Hansen offer solid arguments for this separation in the context

of OS design.

You can loosely group Grid resource management policies into

five classes:

The explicit goal of an admission control policy is to prevent

the system from accepting workloads in violation of high-level

system policies. For example, a system may not accept an

additional workload that would prevent it from completing

work already in progress or contracted. Limiting the workload

requires some knowledge of the global system state. In a

dynamic system, this information is often obsolete at best.

Capacity allocation means allocating resources for individual

instances. An instance is a service activation. Locating

resources that are subject to multiple global optimization

constraints requires you to a search a large space when the

state of individual systems is changing so rapidly.

You can perform load balancing and energy optimization

locally, but global load-balancing and energy-optimization

policies encounter the same difficulties as the ones already

discussed. Load balancing and energy optimization are

correlated and affect the cost of providing the services.

The common meaning of the term load balancing is that of

evenly distributing the load to a set of servers. For example,

consider the case of four identical servers, A, B, C and D.

Their relative loads are 80 percent, 60 percent, 40 percent and

20 percent, respectively, of their capacity. Perfect load

balancing would result in all servers working with the same

load—50 percent of each server’s capacity.

In Grid computing, a critical goal is minimizing the cost of

providing the service. In particular, this also means minimizing

energy consumption. This leads to a different meaning of the

term load balancing. Instead of having the load evenly

distributed among all servers, we want to concentrate it and

use the smallest number of servers while switching the others

to standby mode, a state in which a server uses less energy. In

our example, the load from D will migrate to A and the load

from C will migrate to B. Thus, A and B will be loaded at full

capacity, whereas C and D will be switched to standby mode.

Quality of service is that aspect of resource management that’s

probably the most difficult to address and, at the same time,

possibly the most critical to the future of Grid computing.

Resource management strategies often jointly target

performance and power consumption.

Dynamic voltage and frequency scaling (DVFS) techniques

such as Intel SpeedStep and AMD PowerNow lower the

voltage and the frequency to decrease power consumption.

Motivated initially by the need to save power for mobile

devices, these techniques have migrated to virtually all

processors, including those used in high-performance servers.

As a result of lower voltages and frequencies, the processor

Sushma et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 3,
September 2016, pp. 5-10

© 2016 IJRRA All Rights Reserved page - 7-

performance decreases. However, it does so at a substantially

slower rate than the energy consumption.

Virtually all optimal or near-optimal mechanisms to address

the five policy classes don’t scale up. They typically target a

single aspect of resource management, such as admission

control, but ignore energy conservation. Many require complex

computations that can’t be done effectively in the time

available to respond. Performance models are complex,

analytical solutions are intractable, and the monitoring systems

used to gather state information for these models can be too

intrusive and unable to provide accurate data.

Therefore, many techniques are concentrated on system

performance in terms of throughput and time in system. They

rarely include energy tradeoffs or QoS guarantees. Some

techniques are based on unrealistic assumptions. For example,

capacity allocation is viewed as an optimization problem, but

under the assumption that servers are protected from overload.

Control the Grid

Allocation techniques in computer Grids must be based on a

disciplined approach, rather than ad hoc methods. The four

basic mechanisms for implementing resource management

policies are:

 Control theory: Control theory uses feedback to

guarantee system stability and predict transient behavior,

but it can only predict local behavior.

 Machine learning: A major advantage of machine-

learning techniques is that they don’t need a

performance model of the system. You could apply this

technique to coordinating several autonomic system

managers.

 Utility-based: Utility-based approaches require a

performance model and a mechanism to correlate user-

level performance with cost.

 Market-oriented/economic mechanisms: Such

mechanisms don’t require a system model, such as

combining auctions for bundles of resources.

A distinction should be made between interactive and non-

interactive workloads. The management techniques for

interactive workloads (Web services, for example) involve

flow control and dynamic application placement, whereas

those for non-interactive workloads are focused on scheduling.

A fair amount of work reported in the literature is devoted to

resource management of interactive workloads—some to non-

interactive and only a few to heterogeneous workloads, a

combination of the two. Planning ahead for how you are going

to manage these will help ensure a smooth transition to

working with the Grid

III. EXISTING APPROACHES

Qiang et al. (2009) using feedback control theory, we present

VM-based architecture for adaptive management of virtualized

resources in Grid computing and model an adaptive controller

that dynamically adjusts multiple virtualized resources

utilization to achieve application Service Level Objective

(SLO) in Grid computing. Compared with Xen, KVM is

chosen as a virtual machine monitor (VMM) to implement the

architecture. Evaluation of the proposed controller model

showed that the model could allocate resources reasonably in

response to the dynamically changing resourcerequirements of

different applications which execute on different VMs in the

virtual resource pool to achieve applications SLOs.

Younge et al. (2010) presented a new framework is presented

that provides efficient green enhancements within a scalable

Grid computing architecture. Using power-aware scheduling

techniques, variable resource management, live migration, and

a minimal virtual machine design, overall system efficiency

will be vastly improved in a data center based Grid with

minimal performance overhead..

Zhang et al. (2012) present an adaptive power management

framework in the Grid to achieve autonomic resource

configuration. We propose a software and lightweight

approach to accurately estimate the power usage of virtual

machines and Grid servers. It explores hypervisor-observable

performance metrics to build the power usage model. To

configureGrid resources, we consider both the system power

usage and the SLA requirements, and leverage learning

techniques to achieve autonomic resource allocation and

optimal power efficiency. We implement a prototype of the

proposed power management system and test it on a

Gridtestbed. Experimental results show the high accuracy

(over 90%) of our power usage estimation mechanism and our

resource configuration approach achieves the lowest energy

usage among the compared four approaches

Datta et al. (2012) ease and simplified the web services

rendering it user friendly, stretchable, affordable and adaptable

with the growing demand and complexity of developing web

services and based on the analysis of Human Resource

Management and information system requirements for

numerous enterprises. A GridHR Management web services

would provide a technologically viable solution to the IT world

and other enterprises relating to Human Resource Management.

A Grid HR Management is an open-source HR Information

System that covers Personal Information Management,

Employee Self Services, Benefits, Leave and Salary

Information Management.

Kaewpuang et al. (2013) propose a framework for resource

allocation to the mobile applications, and revenue management

and cooperation formation among service providers. For

resource allocation to the mobile applications, we formulate

and solve optimization models to obtain the optimal number of

application instances that can be supported to maximize the

revenue of the service providers while meeting there source

requirements of the mobile applications. For sharing the

revenue generated from the resourcepool (i.e., revenue

management) among the cooperative mobile Grid service

providers in a coalition, we apply the concepts of core and

Shapley value from cooperative game theory as a solution.

Based on the revenue shares, the mobile Grid service providers

can decide whether to cooperate and share there sources in the

resource pool or not. Also, the provider can optimize the

decision on the amount ofresources to contribute to the

resource pool.

Pengbo et al. (2014) aim to design the network as the

integration of the mobile access part and the Grid computing

part, utilizing the inherent heterogeneity to meet the diverse

quality of service (QoS) requirements of tenants. Furthermore,

Sushma et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 3,
September 2016, pp. 5-10

© 2016 IJRRA All Rights Reserved page - 8-

we propose a novel cross-network radio and Grid resource

management scheme for HMC networks, which is QoS-aware,

with the objective of maximizing the tenant revenue while

satisfying the QoS requirements. The proposed scheme is

formulated as a restless bandits problem,

whose ??indexability?? feature guarantees the low complexity

with scalable and distributed characteristics. Extensive

simulation results are presented to demonstrate the significant

performance improvement of the proposed scheme compared

to the existing ones.

Zhao et al. (2014) propose a reference service framework for

integrating scientific workflow management systems into

various Grid platforms, which consists of eight major

components, including Grid workflow managementservice,

Grid resource manager, etc., and 6 interfaces between them.

We also present a reference framework for the implementation

of Grid Resource Manager, which is responsible for the

provisioning and management of virtual resources in the Grid.

We discuss our implementation of the framework by

integrating the Swift scientific workflow management system

with the OpenNebula and EucalyptusGrid platforms, and

demonstrate the capability of the solution using a NASA

MODIS image processing workflow and a production

deployment on the Science@Guoshi network with support for

the Montage image mosaic workflow..

IV. ANT COLO ALGORITHM

In computer science and operations research, the ant colony

optimization algorithm (ACO) is a probabilistic technique for

solving computational problems which can be reduced to

finding good paths through graphs.

This algorithm is a member of the ant colony algorithms

family, in swarm intelligence methods, and it constitutes some

metaheuristic optimizations. Initially proposed by Marco

Dorigo in 1992 in his PhD thesis,[1][2] the first algorithm was

aiming to search for an optimal path in a graph, based on the

behavior of ants seeking a path between their colony and a

source of food. The original idea has since diversified to solve

a wider class of numerical problems, and as a result, several

problems have emerged, drawing on various aspects of the

behavior of ants

Ant colony optimization algorithms have been applied to many

combinatorial optimization problems, ranging from quadratic

assignment toprotein folding or routing vehicles and a lot of

derived methods have been adapted to dynamic problems in

real variables, stochastic problems, multi-targets and parallel

implementations. It has also been used to produce near-optimal

solutions to the travelling salesman problem. They have an

advantage over simulated annealing and genetic algorithm

approaches of similar problems when the graph may change

dynamically; the ant colony algorithm can be run continuously

and adapt to changes in real time. This is of interest in network

routing and urban transportation systems.

The first ACO algorithm was called the Ant system [8] and it

was aimed to solve the travelling salesman problem, in which

the goal is to find the shortest round-trip to link a series of

cities. The general algorithm is relatively simple and based on

a set of ants, each making one of the possible round-trips along

the cities. At each stage, the ant chooses to move from one city

to another according to some rules:

1) It must visit each city exactly once;

2) A distant city has less chance of being chosen (the

visibility);

3) The more intense the pheromone trail laid out on an

edge between two cities, the greater the probability that

that edge will be chosen;

4) Having completed its journey, the ant deposits more

pheromones on all edges it traversed, if the journey is

short;

5) After each iteration, trails of pheromones evaporate

With an ACO algorithm, the shortest path in a graph, between

two points A and B, is built from a combination of several

paths. It is not easy to give a precise definition of what

algorithm is or is not an ant colony, because the definition may

vary according to the authors and uses. Broadly speaking, ant

colony algorithms are regarded as populated metaheuristics

with each solution represented by an ant moving in the search

space. Ants mark the best solutions and take account of

previous markings to optimize their search. They can be seen

asprobabilistic multi-agent algorithms using a probability

distribution to make the transition between each iteration. In

their versions for combinatorial problems, they use an iterative

construction of solutions. According to some authors, the thing

which distinguishes ACO algorithms from other relatives (such

as algorithms to estimate the distribution or particle swarm

optimization) is precisely their constructive aspect. In

combinatorial problems, it is possible that the best solution

eventually be found, even though no ant would prove effective.

Thus, in the example of the Travelling salesman problem, it is

not necessary that an ant actually travels the shortest route: the

shortest route can be built from the strongest segments of the

best solutions. However, this definition can be problematic in

the case of problems in real variables, where no structure of

'neighbours' exists. The collective behaviour of social insects

remains a source of inspiration for researchers. The wide

variety of algorithms (for optimization or not) seeking self-

organization in biological systems has led to the concept of

"swarm intelligence", which is a very general framework in

which ant colony algorithms fit.

V. RESULTS& CONCLUSION

In experimental work the execution time and cost incurred by

proposed algorithm and existing random resource selection

algorithm to execute tasks is compared against varying number

of resources and tasks.

TIME_SHARED and SPACE_SHARED resource allocation

policies are used to perform the experiments. In all twelve

experiments are carried out:

Experiment 1 to Experiment 4 are performed using

TIME_SHARED allocation policy with varying number of

tasks and resources and execution time and cost is compare.

Experiment 5 to Experiment 8 are performed using

SPACE_SHARED allocation policy with varying number of

tasks and resource and execution time and cost is compared.

Experiment: 1

Sushma et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 3,
September 2016, pp. 5-10

© 2016 IJRRA All Rights Reserved page - 9-

The Total Execution Time of Heuristic Resource Scheduling

Algorithm (HRSA) is compared with Random Resource

Scheduling Algorithm (RRSA) with the following parameters.

Resource Allocation Policy=TIME_SHARED

Number of Resources =25

Number of Tasks = 10 to 50

TABLE 1

Average Improvement in Total Execution Time is = 72.42 %.

Figure 1 shows that as the number of tasks increases the

difference between execution time taken by two algorithms

increases.

Figure 1 Number of Tasks Vs. Execution Time in

TIME_SHARED Allocation.

VI. REFRENCES

[1]. H. El-Rewini, T. G. Lewis, H. H. Ali. Task

scheduling in parallel and distributed systems,

Prentice-Hall, Inc., Upper Saddle River, NJ, 1994

[2]. D. Gupta, P. Bepari. Load sharing in distributed

systems, In Proceedings of the National Workshop

on Distributed Computing, January 1999.

[3]. Z. Xiao, W. Song, and Q. Chen, ―Dynamic resource

allocation using virtual machines for cloud

computing environment,‖ IEEE Transactions on

Parallel and Distributed Systems, vol. 24, no. 6, pp.

1107–1117, 2013.

[4]. L. D. Dhinesh Babu and P. Venkata Krishna, ―Honey

bee behavior inspired load balancing of tasks in

cloud computing environments,‖ Applied Soft

Computing Journal, vol. 13, no. 5, pp. 2292–2303,

2013.

[5]. J. Cao, K. Li, and I. Stojmenovic, ―Optimal power

allocation and load distribution for multiple

heterogeneous multicore server processors across

clouds and data centers,‖ IEEE Transactions on

Computers, vol. 63, no. 1, pp. 45–58, 2014.

[6]. R. N. Calheiros and R. Buyya, ―Meeting deadlines

of scientific workflows in public clouds with tasks

replication,‖ IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 7, pp. 1787–1796,

2014.

[7]. R. Basker, V. Rhymend Uthariaraj, and D. Chitra

Devi, ―An enhanced scheduling in weighted round

robin for the cloud infrastructure services,‖

International Journal of Recent Advance in

Engineering & Technology, vol. 2, no. 3, pp. 81–86,

2014.

[8]. Z. Yu, . Menng, and H. Chen, ―An efficient list

scheduling algorithm of dependent task in grid,‖ in

Proceedings of the 3rd IEEE International

Conference on Computer Science and Information

Technology (ICCSIT ’10), IEEE, Chengdu, China,

July 2010.

[9]. H. M. Fard and H. Deldari, ―An economic

approach for scheduling dependent tasks in grid

computing,‖ in Proceedings of the 11th IEEE

International Conference on Computational Science

and Engineering (CSEWorkshops ’08), pp. 71–76,

IEEE, San Paulo, Brazil, July 2008.

[10]. W. Kadri, B. Yagoubi, and M. Meddeber,

―Efficient dependent tasks assignment algorithm for

grid computing environment,‖ in Proceedings of the

2nd International Symposium on Modelling and

Implementation of Complex Systems (MISC ’12),

Constantine, Algeria, May 2012.

[11]. S. Ijaz, E. U. Munir, W. Anwar, and W. Nasir,

―Efficient scheduling strategy for task graphs in

heterogeneous computing environment,‖ The

International Arab Journal of Information

Technology, vol. 10, no. 5, 2013.

[12]. Y. Xu, K. Li, L. He, and T. K. Truong, ―A DAG

scheduling scheme on heterogeneous computing

systems using double molecular structure-based

chemical reaction optimization,‖ Journal of Parallel

and Distributed Computing, vol. 73, no. 9, pp. 1306–

1322, 2013.

[13]. L.-T. Lee, C.-W. Chen, H.-Y. Chang, C.-C. Tang,

and K.-C. Pan, ―A non-critical path earliest-finish

algorithm for interdependent tasks in heterogeneous

computing environments,‖ in Proceedings of the 11th

IEEE International Conference on High Performance

Computing and Communications (HPCC ’09), pp.

603–608, Seoul, Republic of Korea, June 2009.

Sr.

No.

No of

Tasks

Execution

Time using

HRSA(Sec.)

Execution

Time using

RRSA(Sec.)

Average

Improvement

 %

1 10 5181 8910 71.97

2 20 18182 29597 62.78

3 30 38747 67431 74.02

4 40 66593 116923 75.57

5 50 101353 180192 84.82

Sushma et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 3, Issue 3,
September 2016, pp. 5-10

© 2016 IJRRA All Rights Reserved page - 10-

[14]. B. Xu, C. Zhao, E. Hu, and B. Hu, ―Job scheduling

algorithm based on Berger model in cloud

environment,‖ Advances in Engineering Software,

vol. 42, no. 7, pp. 419–425, 2011.

[15]. B. Mondal, K. Dasgupta, and P. Dutta, ―Load

balancing in cloud computing using stochastic hill

climbing-a soft computing approach,‖ Procedia

Technology, vol. 4, pp. 783–789, 2012.

[16]. M. Rahman, R. Hassan, R. Ranjan, and R. Buyya,

―Adaptive workflow scheduling for dynamic grid

and cloud computing environment,‖ Concurrency

and Computation: Practice and Experience, vol. 25,

no. 13, pp. 1816–1842, 2013.

[17]. G. Gharooni-fard, F. Moein-darbari, H. Deldari, and

A. Morvaridi, ―Scheduling of scientific workflows

using a chaosgenetic algorithm,‖ Procedia Computer

Science, vol. 1, no. 1, pp. 1445–1454, 2010,

International Conference on Computational Science,

ICCS 2010.

[18]. C. Lin and S. Lu, ―Scheduling scientific workflows

elastically for cloud computing,‖ in Proceedings of

the IEEE 4th International Conference on Cloud

Computing, Washington, DC, USA, July 2015.

[19]. Vijindra and S. Shenai, ―Survey on scheduling issues

in cloud computing,‖ Procedia Engineering, vol. 38,

pp. 2881–2888, 2016, Proceedings of the

International Conference on Modelling Optimization

and Computing.

[20]. M. Xu, L. Cui, H. Wang, and Y. Bi, ―A multiple QoS

constrained scheduling strategy of multiple

workflows for cloud computing,‖ in Proceedings of

the IEEE International Symposium on Parallel and

Distributed Processing with Applications (ISPA ’09),

pp. 629–634, IEEE, Chengdu, China, August 2015.

[21]. C. Lin, S. Lu, X. Fei et al., ―A reference architecture

for scientific workflow management systems and the

VIEW SOA solution,‖ IEEE Transactions on

Services Computing, vol. 2, no. 1, pp. 79– 92, 2009.

[22]. S. Ghanbari and M. Othman, ―A priority based job

scheduling algorithm in cloud computing,‖ in

Proceedings of the International Conference on

Advances Science and Contemporary Engineering,

pp. 778–785, October 2012.

