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Abstract: In this paper we deal with various integral transform of Fractional derivative based on the Riemann-Liouville 

Derivatives, Riemann-Liouville Derivatives and Caputo’s Fractional   derivatives.We anticipate perspective applications 

of fractional Transform in physical systems.    
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I. INTRODUCTION : 

The Fourier Transform is a tool that breaks a waveform (a 

function or signal) into an alternate representation, 

characterized by sine and cosines. The Fourier Transform 

shows that any waveform can be re-written as the sum of 

sinusoidal functions. The Fourier Transform therefore gives us 

a unique way of viewing any function - as the sum of simple 

sinusoids. its widespread popularity is due to its practical 

application in virtually every field of science and engineering. 

The Laplace transform is very similar[3] to the Fourier 

transform. While the Fourier transform of a function is a 

complex function of a real variable (frequency), the Laplace 

transform of a function is a complex function of a complex 

variable. Laplace transforms are usually restricted to functions 

of t with t > 0. A consequence of this restriction is that the 

Laplace transform of a function is a holomorphic function of 

the variable s. Unlike the Fourier transform, the Laplace 

transform of a distribution is generally a well-behaved 

function. Also techniques of complex variables can be used 

directly to study Laplace transforms. As a holomorphic 

function, the Laplace transform has a power series 

representation. This power series expresses a function as a 

linear superposition of moments of the function. 

II. OVERVIEW: FRACTIONAL CALCULUS 

Fractional Calculus is a term used for the theory of derivatives 

and integrals of arbitrary order, which generalize the notion of 

integer order differentiation and n-fold integration. The idea 

behind Fractional calculus is to generalize the definition of 

differentiation and integration with order 𝑛 ∈ ℕ to order  𝑠 ∈
ℝ. The first discussion[9] on Fractional Calculus began in 

1695 in a letter to L’Hopital by Leibniz in which he discussed 

about calculus of arbitrary order. Fractional Calculus is three 

centuries old. Few names that laid the foundation of Fractional 

Calculus are Abel, Liouville, Riemann, Euler, Caputo etc.  

Fractional Calculus has recently been applied in various areas 

of engineering, science, finance, applied mathematics and bio 

engineering.[10] . It has earlier been observed that derivatives 

of non-integer order are useful for describing the properties of 

various real materials like polymer, rocks etc. Also the 

fractional order models were found more logical to talk an 

discuss about than the integer-order models.  In this paper we 

are focusing on Fractional Derivatives. Different people gave 

different definitions for the Fractional Derivative. Few 

definitions are : 

Grunwald-Letnikov Fractional Derivatives: Let us 

consider a continous function  

     f(t),We define 

𝐷𝑡
𝑝

𝑓(𝑡) = lim
ℎ→0

𝑛ℎ=𝑡−𝑎

ℎ−𝑝 ∑(−1)𝑟

𝑛

𝑟=0

 (
𝑝

𝑟
) 𝑓(𝑡 − 𝑟ℎ) 𝑎

  

The above formula has  been obtained under thc assumption 

that the derivatives 𝑓(𝑘)(𝑡) (k=1,2,3,. . . ,m+1) are continuous 

in the closed interval [a,t] and that m is the integer number 

satisfying m>p-1 

 

Riemann-Liouville Derivatives: 

                                             𝐷𝑡
𝑝

𝑓(𝑡) = (
𝑑

𝑑𝑡
)𝑚+1

𝑎
 ∫ (𝑡 −

𝑡

𝑎

𝜏)𝑚−𝑝 𝑓(𝜏)𝑑𝜏,  (𝑚 ≤ 𝑝 < 𝑚 + 1) 

Caputo’s Fractional Derivatives: The definition of the 

fractional differentiation of the Riemann-Liouville 

Derivatives type played an important role in the development 

of the theory  

of fractional derivatives and for its applications in pure 

mathematics. However, the demands of modern  technology 

require a certain revision of well established mathematical 

approach .The Caputo approach provides an interpolation 

between an integer order derivatives: 

                                           𝐷 
𝛼𝑓(𝑥) =

1

Γ(𝛼−𝑛)
∫

𝑓(𝑛)(𝑢)

(𝑥−𝑢)(∝−𝑛+1)

𝑥

𝑎 
𝐶  , 

𝑛 − 1 <∝< 𝑛 , ∝∈ ℝ , 𝑛 ∈ ℕ 

Euler’s Fractional Derivatives: 
𝑑∝

𝑑𝑡∝
[𝑡𝛽] = 𝐷𝑡

𝛼[𝑡𝛽] =
Γ(𝛽 + 1)

Γ(𝛽 + 1 − 𝛼)
𝑡𝛽−𝛼 , 𝛼 ∈ ℝ 

. 

Sequential Fractional Derivatives: The main idea of 

differentiation and integration of arbitrary order is the 

generalization of iterated integration and differentiation. In all 

these approaches we replace the integer valued parameter n of 

a operator denoted by 
𝑑𝑛

𝑑𝑡𝑛  with a  

non integer perameter p. 
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However ,we can assume that the n-th order differentiation is 

simply a series of n first order differentiation .So, considering 

more general expressions 

 

             𝐷𝑡
𝛼 = 𝐷𝑡

𝛼1𝐷𝑡
𝛼2𝐷𝑡

𝛼3 … … … . 𝐷𝑡
𝛼𝑛  

  

 

Where 𝛼 = 𝛼1 + 𝛼2 + 𝛼3 + ⋯ … … . 𝛼𝑛 

Which we will also call the sequential fractional derivatives. 

 

Indeed, Riemann-Liouville Derivatives can be written as  

 

𝐷𝑡
𝑝

𝑓(𝑡) =
𝑑

𝑑𝑡𝑎
 𝑑

𝑑𝑡
… … .

𝑑

𝑑𝑡
𝐷𝑡

−(𝑛−𝑝)
𝑓(𝑡)𝑎

    (n-1≤ 𝑝 < 𝑛) 

While the Caputo fractional differential operator can be 

written as 

𝐷 
𝛼𝑓(𝑥) = 

𝐶  𝐷𝑡
−(𝑛−𝑝) 𝑑

𝑑𝑡
… … .

𝑑

𝑑𝑡𝑎
  f(t) (n-1< 𝑝 ≤ 𝑛 − 1 )  

Properties of Fractional Derivatives:  
Fractional Derivatives satisfy almost all the properties that 

hold for[5] ordinary derivatives. We are aware of the general 

properties of the derivative operator 𝐷𝑡
𝑛 , 𝑛 ∈ ℕ. Below 

mentioned are the properties of Fractional Derivative that can 

be easily verified: 

 𝐷𝑡
∝[𝑓(𝑡)𝑔(𝑡)] = ∑ (∝

𝑘
)∞

𝑘=0 𝐷𝑡
∝−𝑘[𝑓(𝑡)]𝐷𝑡

𝑘[𝑔(𝑡)]  

where (∝
𝑘

) =
Γ(∝+1)

Γ(k+1)Γ(∝+1−k)
. 

 𝐷𝑡
∝[𝑓(𝑡)𝐶] = ∑ (∝

𝑘
)∞

𝑘=0 𝐷𝑡
∝−𝑘[𝑓(𝑡)]𝐷𝑡

𝑘[𝐶] =

𝐷𝑡
∝[𝑓(𝑡)]𝐶. 

 𝐷𝑡
∝[ℎ(𝑡) + 𝑔(𝑡)] = ∑ (∝

𝑘
)∞

𝑘=0 𝐷𝑡
∝−𝑘[𝑡0]𝐷𝑡

𝑘[ℎ(𝑡) +

𝑔(𝑡)] = 𝐷𝑡
∝[ℎ(𝑡)]+𝐷𝑡

∝[𝑔(𝑡)] . 
 𝐷𝑡

∝[ℎ(𝑎𝑡)] = 𝑎∝𝐷𝑥
∝[ℎ(𝑥)] , 𝑥 = 𝑎𝑡 . 

 𝐷𝑡
∝[𝑡−𝑚] = (−1)∝ Γ(𝑚+∝)

Γ(m)
𝑡−(𝑚+∝). 

 𝐷𝑡
𝜇+𝜈[𝑓(𝑡)] = 𝐷𝑡

𝜇[𝐷𝑡
𝜈(𝑓(𝑡))] = 𝐷𝑡

𝜈[𝐷𝑡
𝜇

(𝑓(𝑡))]. 

𝐷𝑡
−1[𝑡𝛽] =

Γ(𝛽+1)

Γ(β+1+1)
𝑡𝛽+1 =

𝑡𝛽+1

𝛽+1
,  where 𝛼 ∈ 𝐷𝑡

∝[𝑓(𝑡)𝑔(𝑡)] =

∑ (∝
𝑘

)∞
𝑘=0 𝐷𝑡

∝−𝑘[𝑓(𝑡)]𝐷𝑡
𝑘[𝑔(𝑡)], where (∝

𝑘
) =

Γ(∝+1)

Γ(k+1)Γ(∝+1−k)
. 

 𝐷𝑡
∝[𝑓(𝑡)𝐶] = ∑ (∝

𝑘
)∞

𝑘=0 𝐷𝑡
∝−𝑘[𝑓(𝑡)]𝐷𝑡

𝑘[𝐶]  =

𝐷𝑡
∝[𝑓(𝑡)]𝐶 where 𝐶 is an arbitrary constant. 

 𝐷𝑡
∝[ℎ(𝑡) + 𝑔(𝑡)] = ∑ (∝

𝑘
)∞

𝑘=0 𝐷𝑡
∝−𝑘[𝑡0]𝐷𝑡

𝑘[ℎ(𝑡) +

𝑔(𝑡)] = 𝐷𝑡
∝[ℎ(𝑡)]+𝐷𝑡

∝[𝑔(𝑡)] . 
 𝐷𝑡

∝[ℎ(𝑎𝑡)] = 𝑎∝𝐷𝑥
∝[ℎ(𝑥)] under the scaling 𝑥 = 𝑎𝑡. 

 𝐷𝑡
∝[𝑡−𝑚] = (−1)∝ Γ(𝑚+∝)

Γ(m)
𝑡−(𝑚+∝)for a given 𝑚 ∈

ℝ. 

 𝐷𝑡
𝜇+𝜈[𝑓(𝑡)] = 𝐷𝑡

𝜇[𝐷𝑡
𝜈(𝑓(𝑡))] = 𝐷𝑡

𝜈[𝐷𝑡
𝜇

(𝑓(𝑡))] 

under the composition of 𝐷𝑡
𝜈  and 𝐷𝑡

𝜇
on 𝑓(𝑡). 

 𝐷𝑡
−1[𝑡𝛽] =

Γ(𝛽+1)

Γ(β+1+1)
𝑡𝛽+1 =

𝑡𝛽+1

𝛽+1
,  where 𝛽 ∈ ℝ 

corresponding to a negative order derivative. 

 

III. INTEGRAL TRANSFORM OF FRACTIONAL 

DERIVATIVES:  

In this section, we formulate Laplace and Fourier Transform 

of Fractional derivative of different approach discussed in 

above section. 

3.1 Laplace Transforms OF Fractional  Derivatives: 

The laplace transform of a function f(t) is defined as 

F(s) = L(f(t))=∫ 𝑒−𝑠𝑡∞

0
f(t) dt  

For existence of Laplace transform of f(t), f(t) must be of 

exponential order.  

the original f(t) can be obtained  from F(s) with the help of 

[3]Inverse Laplace Transform  

f(t) = 𝐿−1[𝐹(𝑠), 𝑡] = ∫ 𝑒𝑠𝑐+𝑖∞

𝑐−𝑖∞
𝐹(𝑠)𝑑𝑠 ,   c= Re(s)> 𝑐0  

Where 𝑐0 lies in right half plane of the absolute convergence 

of Laplace  integral. 

 

Laplace Transform of convolution is defined as 

 

f(t)*g(t) =∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏 = ∫ 𝑔(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏
𝑡

0

𝑡

0
  

 

  Another useful property which we are needed  is Laplace 

Transform of  derivative of  an integer order n of a function 

f(t) : 

L{𝑓𝑛(𝑡);s}=𝑠𝑛𝐹(𝑠) − ∑ 𝑠𝑛−𝑘−1𝑛−1
𝑘=0 {𝑓𝑛(0) = 𝑠𝑛𝐹(𝑠) −

∑ 𝑠𝑘𝑛−1
𝑘=0 𝑓𝑛−𝑘−1(0) 

 

Likewise, we can  easily prove  Laplace Transform of 

Fractional derivatives of order p> 0 in terms of  Riemann-

Liouville Derivatives 

p 

L{ 𝐷𝑡
𝑝

𝑓(𝑡); 𝑠}0
 =𝑠𝑝F(s)− ∑ 𝑠𝑘𝑛−1

𝑘=0 [ 𝐷𝑡
𝑝−𝑘−1

𝑓(𝑡)]0
  

 (n-1≤ 𝑝 < 𝑛) 

 

 

 

 

Similarly, we can easily establish Laplace Transform Caputo 

Derivative as 

L{ 𝐷 
𝛼𝑓(𝑥); 𝑠} 

𝐶 = 𝑠𝑝F(s)− ∑ 𝑠𝑝−𝑘−1𝑛−1
𝑘=0 {𝑓𝑛(0)} 

  (n-1< 𝑝 ≤ 𝑛) 

 

 

  

3.2 Fourier Transform of Fractional Derivatives:  

The exponential Fourier Transform of a continous function 

h(t) which is absolutely integrable in (-∞, ∞) is given by 

𝐹𝑒{ℎ(𝑡); 𝜔} = ∫ 𝑒𝑖𝜔𝑡
∞

−∞

ℎ(𝑡)𝑑𝑡 

The original h(t) can be restored by Inverse Fourier Transform 

defined as 

 

h(t) =
1

2𝜋
∫ 𝑒−𝑖𝜔𝑡∞

−∞
𝐹𝑒(𝜔)𝑑𝜔 

Fourier Transform of the Convolution  

h(t)*g(t) =∫ ℎ(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏 = ∫ 𝑔(𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏
∞

−∞

∞

−∞
 of the 

two functiona h(t) and g(t), which are defined in 
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 (-∞, ∞) is equal to the product of their Fourier Transform: 

𝐹𝑒{h(t)*g(t);𝜔} = 𝐻𝑒(𝜔). 𝐺𝑒(𝜔) 

Under the assumption that both 𝐻𝑒(𝜔) 𝑎𝑛𝑑 𝐺𝑒(𝜔) exist. 

Another useful property of the Fourier Transform which is 

frequently used in solving applied problem is the Fourier 

Transform of derivatives of h(t).The Fourier Transform of  n-

th order derivative of h(t) is: 

𝐹𝑒{{ℎ𝑛(𝑡); 𝜔} =(−𝑖𝜔)𝑛𝐻𝑒(𝜔)  
 

We can easily evaluate exponential Fourier Transform of the 

Riemann-Liouville Derivatives, Riemann-Liouville 

Derivatives and Caputo’s Fractional Derivatives with lower 

terminal  𝑎 = −∞ 

𝐹𝑒{𝐷𝑡
𝛼𝑔(𝑡); 𝜔}= (−𝑖𝜔)𝛼−𝑛𝐹𝑒(𝑔𝑛(𝑡); 𝜔) 

  = (−𝑖𝜔)𝛼−𝑛(−𝑖𝜔)𝑛 𝐺𝑒(𝜔) 

  = (−𝑖𝜔)𝛼 𝐺𝑒(𝜔) 

Where 𝐷𝛼  denotes any of the mentioned  Fractional 

derivatives. 

IV. CONCLUSION  

In this paper, we deals with  transform of Fractional 

Derivatives , namely, the Laplace Transform and Fourier 

Transform. and offer the corresponding formula for transform 

of  fractional derivative . The formulation concerning Fourier 

and Laplace Transform as brought out in this paper are 

anticipated to be of a prototype consideration towards 

perspective developments for analysing the oscillation 

equation[8] with a fractional order damping term and for 

studying relaxation processes in insulators .Laplace Transform 

can be useful for solving applied problem leading to linear 

fractional differential equation with constant coefficient with 

accompanying initial condition  in traditional form. We leave 

such considerations open for a future research. 
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