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Abstract: Background modeling has emerged as a popular foreground detection technique for various applica- tions in 

video surveillance. Background modeling methods have become increasing efficient in robustly modeling the background 

and hence detecting moving objects in any visual scene. Although several background subtraction and foreground 

detection have been proposed recently, no traditional algorithm today still seem to be able to simultaneously address all 

the key challenges of illumination variation, dynamic camera motion, cluttered background and occlusion. This limitation 

can be attributed to the lack of systematic investigation concerning the role and importance of features within background 

modeling and foreground detection. With the availability of a rather large set of invariant features, the challenge is in 

determining the best combination of features that would improve accuracy and robustness in detection. The purpose of 

this study is to initiate a rigorous and comprehensive survey of features used within background modeling and foreground 

detection. Further, this paper presents a systematic experimental and statistical analysis of techniques that provide 

valuable insight on the trends in background modeling and use it to draw meaningful recommendations for practitioners. 

In this paper, a preliminary review of the key characteristics of features based on the types and sizes is provided in addition 

to investigating their intrinsic spectral, spatial and temporal properties. Furthermore, improvements using statistical and 

fuzzy tools are examined and techniques based on multiple features are benchmarked against reliability and selection 

criterion. Finally, a description of the different resources available such as datasets and codes is provided.  
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I. INTRODUCTION 

Background modeling and foreground detection are important 

steps for video processing applications in video-surveillance [1], 

optical motion capture [2], multimedia [3], teleconferencing and 

human–computer interface. The aim is to separate the moving 

objects, called ‘‘foreground’’, from the static information, called 

‘‘background’’. For example, Fig. 1 shows an original frame of    a 

sequence from the BMC 2012 dataset [4], the reconstructed 

background image and the moving objects mask obtained from a 

decomposition into the low-rank matrix and sparse matrix based 

model [5]. Conventional background modeling methods exploit the 

temporal variation of each pixel to model the background and 

hence use it in conjunction with change detection for foreground 

extraction. The last decade witnessed very significant contribu- 

tions to this field [5–14]. Despite these works and advances to 

background modeling and foreground detection, the dynamic na- 

ture of visual scenes attributed by changing illumination condi- 

tions, occlusion, background clutter and noise have challenged the 

robustness of such techniques. Under this pretext, focus has shifted 

towards the investigation of features and their role in improving 

both the accuracy and robustness of background modeling and 

foreground detection. Although fundamental low-level features 

such as color, edge, texture, motion and stereo have reported 

reasonable success, recent visual applications using mobile devices 

and internet videos where the background is non-static, require 

more complex representations to guarantee robust moving ob- ject 

detection [15]. Furthermore, in order to generalize existing 

background modeling and foreground detection schemes to real- 

life scenes where dynamic variations are inevitable and the pose of 

the camera is little known, automatic feature selection, model 

selection and adaptation for such schemes are often desired. 

Considering the needs and challenges aforementioned, in this 

paper, a comprehensive review of low-level and hand-crafted fea- 

tures used in background modeling and foreground detection is 

initiated for benchmarking them against the complexities of typi- 

cal dynamic scenes. Thus, the aim of this survey is then to provide 

a first complete overview of the role and the importance of features 

in background modeling and foreground detection by reviewing 

both existing and new ideas for (1) novices who could be students 

or engineers beginning in the field of computer vision, (2) experts 

as we put forward the recent advances that need to be improved, 

and (3) reviewers to evaluate papers in journals, conferences, and 

workshops. In addition, this survey gives a complete overview 

Moreover, an accompanying website called the Features Website1 

is provided. It allows the reader to have a quick access to the main 

resources, and codes in the field. So, this survey is intended to be a 

reference for researchers and developers in industries, as well as 

graduate students, interested in robust background modeling and 

foreground detection in challenging environments. 

Some of the main contributions of this paper can be summa- rized 

as follows: 

 

1 https://sites.google.com/site/featuresbackgroundforeground/. 

  

– A review regarding feature concepts: A first complete 

overview of low-level and hand-crafted features used in 

background modeling and foreground detection over the last 

decade concerning more than 600 papers. After a pre- liminary 

overview on the key concepts in the field of fea- tures in Section 2, 

a survey of spectral features including color features are detailed in 

Section 4.  

1.1.1. Feature selection 
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As seen in Section 2.2.1, there is not a unique feature that 
performs better than any other feature independently of the 
back- ground and foreground properties because each 
feature has its strengths and weaknesses against each 
challenge. Thus, a way to take advantage of the properties 
of each feature is to perform feature selection. The aim is to 
use the best feature or the best com- bination of features on a 
per-pixel [335–340] or per-block [282] basis. A set of 
feature could be composed of (1) homogeneous features 
that are feature from the same category, and then the idea is 
to reinforce the reliability for the concerned type of features, 
or 
(2) heterogeneous features to complement the features each 
oth- ers [341]. Once the set of features is determined, 
ensemble learning methods such as the boosting classifier 
can be used for feature selection. Boosting algorithms 
usually generate a weighted linear combination of some 
weak classifiers that perform only a little better than random 
guess. So, weak classifiers can be learned from the feature 
values at a pixel and combined to perform better than the 
others alone. This combination produces a strong classifier. 
Thus, this method can effectively select different features at 
each pixel to distinguish foreground objects from the 
background. 

Extensions of this conventional algorithm are available 
in the form of on-line boosting algorithms [335–337] which 
use several classifier pools, and each pool contains several 
weak classifiers. Once an input image is given, each 
classifier pool selects the best classifier for the given image. 
The selected classifiers form   a strong classifier group, and 
the final classification is performed using those strong 
classifiers. At the same time, each classifier pool selects the 
worst classifier as well. The worst classifier is replaced with 
a randomly selected classifier so that a better classifier can 
be included in the classifier pool. Instead of selecting the 
best classifier from each classifier pool as the previous 
method does, an improvement according to [282] selects 
several good classifiers from each pool. While the previous 
method replaces the worst classifier in each pool, instead 
this improvement replaces several bad classifiers. 
According to the literature in this area, feature selection 

has been less investigated in background modeling and 
foreground detection methods with only 9 papers. 
Practically, only five ap- proaches have so far been used in 
the literature: (1) Adaboost [342] used with the classifier-
based background model [282,335–337], 

(2) Realboost [343] used with the KDE model [338], (3) 
dynamic 

thefeature selection [344] with OR-PCA model [345], (4) 

generic fea- ture selection [346] with the ViBe model [347], 

and (5) One-class SVM [339,340]. These different 

approaches and their characteris- tics are analyzed in Section 

18. 

II. FEATURE RELEVANCE AND LEARNING  

To choose the most discriminative features in a multiple 
fea- tures or feature selection scheme, feature relevance 
may be ad- dressed. More generally, feature relevance can 
be determined in feature learning scheme which can be 
classified as developed in Zhong et al. [348]: 

1. Traditional feature learning: This category 

includes linear algorithms and their kernel extension, 
and manifold learn- ing method. Practically, an 
learning algorithm can be linear or nonlinear, 
supervised or unsupervised, generative or dis- 
criminative, global or local. For example, Principal 
Compo- nent Analysis (PCA) is a linear, unsupervised, 
generative and global feature learning method, while 
Linear Discriminant Analysis (LDA) is a linear, 
supervised, discriminative and global method. Global 
methods aim to preserve the global information of 
data in the learned feature space, but local ones focus 
on preserving local similarity between data dur- ing 
learning the new representations. For instance, unlike 
PCA and LDA, Locally Linear Embedding (LLE) is a 
locality- based feature learning algorithm. Locality-
based feature learning like LLE as manifold learning, 
since it is to discover the manifold structure hidden in 
the high dimensional data. 

2. Deep learning algorithms: Deep learning models 
includes 
models like Convolutional Neural Network (CNN) 
[349] and Recurrent neural network (RNN). A survey of 
deep learning models can be found in Schmidhuber 
[349]. 

Feature relevance has been less investigated in 
background modeling and foreground detection methods 
than manual im- age feature methods, such as Local Binary 
Patterns (LBP) [31], histogram of oriented gradients (HOG) 
[139], and Scale-Invariant Feature Transform (SIFT) [252]. 
For traditional feature learning,  the one work which 
concerns feature relevance is the work of Molina-Giraldo 
et al. [350,351]. The feature relevance analysis is made 
through a Principal Component Analysis (PCA), searching 
for directions with greater variance to project the data. 
Thus,  the relevance of the original features is quantified 
with weight- ing factors. Finally, Molina-Giraldo et al. 
[350,351] developed a background subtraction method 
based a multi-kernel learning in which the weight are 
selected from the feature relevance analysis. Experimental 
results [350,351] on the I2R dataset [109]  show that the 
proposed Weighted Gaussian Kernel Video Segmentation 
(WGKVS) model outperforms SOBS [352]. For deep 
learning algo- rithms, the approaches available in literature 
can be classified as follows: (1) Deep Auto-encoder 
Networks (DAN) [16,353,354], (2) Convolutional Neural 
Networks (CNN) [17,18,355,356], (3) Neural Response 
Mixture (NeREM) [357]. 

III. FEATURES AND CHALLENGES 

In this section, we grouped all the advantages and 
disadvan- tages of the different features in terms of 
robustness against the different challenges met in video and 
detailed in Bouwmans [9], and they can be summarized as 
follows: 

– Color features: Although intensity and color 
features are often very discriminative features and 
allow basic fore- ground detection, they are not 
robust in challenges such as illumination changes, 
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foreground aperture, camouflage in color and 
shadows. However, intensity can be used in com- 
plementarity of color to deal with different color 
problems such as dark foreground and light 
foreground. Furthermore, this combination solves 
saturation problems and minimum intensity 
problems [358], and reduces the number of false 
negatives, false positives and increase true 
positives. But, the intensity as colors cannot work 
with intense shadows and highlight that often occur 
in indoor and outdoor scenes, and in presence of 
gradual or sudden illumination changes [359]. 
Then, different strategies can be found in literature 
to alle- viate the limitations of the basic color 
spaces: (1) the use of well-known color spaces 
which separate the luminance and the 
chrominance information such as HSV and 
YCrCb, 
(2) the use of designed shape color space models 
such as the cylinder color model 
[235,237,360,361], the hybrid cone- cylinder 
[236,362], the ellipsoidal color model [238], the 
box-based color model [239], and the double-
trapezium cylinder model [242], (3) the use of 
characteristics in ad- dition of the intensity or color 
value (mean, variance, min- imum, maximum, 
etc.) (see Section 16), (4) the use of de- signed 
illumination invariant intensity or color features 
ob- tained by normalization [205,219,243,363], 
(5) the use of illumination compensation methods 
[364–373], and (6) the addition of other features 
(see Section 17). Normalization based features 
sacrifice discriminability while texture fea- tures 
cannot operate on texture-less regions. Both types 
of features produce large missing regions in the 
foreground mask. 

– Edge features: Edge features are obtained with edge 
de- tectors which operate on the difference between 
neigh- boring pixels, hence an edge detector should 
be  reason-  ably insensitive to global shifts in the 
mean level, i.e. to global illumination changes. 
Therefore it is interesting  to run 
background/foreground separation algorithms on the 
output from edge detectors, hopefully reducing the 
effects  of rapid illumination changes. So, the edge 
could handles the local illumination changes but also 
the ghost leaved when waking foreground objects 
begin to move. However, edge features are not 
sufficiently good to segment the foreground objects 
isolatedly. Indeed, edge features can sometimes han- 
dle dark and light camouflage problems and it is less 
sensi- tive to global illumination changes than color 
feature [111]. Nevertheless, problems like noise, 
false negative edges due to local illumination 
problems, foreground aperture and camouflage do 
not allow an accurate foreground detection. 
Furthermore, due to the fact that it is sometimes 
difficult to segment the foreground object borders, it 
is not possible to fill the objects, and solve the 
foreground aperture problem. Since it is not possible 

to handle dark and light camouflage problems only 
by using edges due to the foreground aper- ture 
difficulty, the brightness of color model is used to 
solve this problem and help to fill the foreground 
objects. 

– Texture features: Texture features allow to be 
robust in presence of shadows and gradual 
illumination changes, and sometimes in dynamic 
backgrounds. Texture features can produce false 
detections due to textures induced by local 
illumination effects like in cast shadows. 
Furthermore, an algorithm based only on texture 
may cause detection errors in regions of blank 
texture and heterogeneous texture. 

– Motion features: Motion features can handle 
irrelevant background motion and clutter such as 
waving trees and waves. 

– Stereo features: Stereo features allow the model 
to deal with the camouflage in color but not in 
depth. 

Thus, multiple features approaches with two, three or 
a set of features obtained from a bag-of features or by 
feature selection are suitable to address multiple 
challenges in the same video (see Section 17). A 
representative work developed by Li et al. [109] consists 
in a sets of features built following the type of background 
(static or dynamic) as follows: 

– Features for static background pixels: For 
modeling pixels belonging to a stationary 
background object, the stable and most significant 
features are its color and local structure (gradient). 
As the gradient is less sensitive to illumination 
changes, the two types of feature vectors are 
integrated under the Bayes framework in the basic 
product formulation of the likelihoods. 

– Features for dynamic background pixels: For 

modeling dynamic background pixels associated 
with non stationary objects, color co-occurrences 

are used as their dynamic features. This is because 
the color co-occurrence between consecutive 

frames has been found to be suitable to describe the 

dynamic features associated with non stationary 
back- ground objects, such as moving tree branches 

or a flickering screen. 

IV. FEATURES AND STRATEGIES 

There are several strategies in literature such as multi-scales 

strategies, multi-levels strategies, multi-resolutions 

strategies, multi-layers strategies, hierarchical strategies, 

and coarse-to-fine strategies (see Section 2.1). Practically, 

different features can be used following the scale, the level or 

the resolution. For example, a feature can be used at the block 

level (such as Haar-like features in [94]), and other features 

can be used at the pixel level (such  as RGB in [94]). Thus, 

these strategies employed multiple features schemes. Please 

see Tables 9–11 for a quick overview. 
1.1.2. Features and similarities 

The foreground mask is usually obtained from a similar- 
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ity/dissimilarity measure between (1) the direct value of the 

fea- ture in the background model and the current frame, or (2) 

a value computed from the direct value of the feature (mean, 

variance, probability, etc...) in the background model and the 

current frame. This value can be a scalar (intensity value, 

mean, probability, etc.), a vector (2D spatial vector, 3D 

spatiotemporal vector, etc...) or a his- togram (correlogram, 

etc.). Practically, comparison of features can be made by 

using similarity/dissimilarity measures obtained with (1) a 

crisp, statistical or fuzzy distance for scalar cases, (2) a ratio 

for scalar cases, (3) linear dependence measure for vector 

cases, and a intersection measure for histogram 

(correlogram) case. The choice of the suitable 

similarity/dissimilarity measure is guided by the properties 

and the distribution of the concerned features. Furthermore, 

spatial and temporal features such as LBP and LTP need also 

measures for their computing as follows: (1) a measure for 

the distance in the spatial neighborhood, and (2) a measure 

for the distance in the temporal neighborhood. Thus, for 

spatial and temporal features like texture, it needs to choose 

three distances. We list below the different 

similarity/dissimilarity measures used in the literature for 

foreground detection (see Table 8 for a quick overview): 
(A) Similarities for scalar case: Scalar value is the most 

common case in the literature and the similarities used can 
be classified as follows: 

– Difference: The difference computed in a pixel-

wise man- ner between the feature in the 

background model and the current frame is the 

most measure used. So, the difference is obtained 

by a distance and then a threshold is used to classify 

the pixel as background or foreground as follows: 

distance(B(x, y) − I(x, y)) < T

 (4

) 

where B(x, y) and I(x, y) are the values of the feature 

in the background image and in the current image, 

respectively. distance(,) is a distance function. 

Several distance functions have been used in the 

literature and they can be classified as follows: 
1. Crisp distance: The most common distance function 

used for intensity/color values is the absolute dis- 
tance [221,374]. Aach et al. [375] used a total least 
squares distance measure. In an other work, Yadav 
and Sing used a quasi-euclidean distance. To compare 
Spatiotemporal Condition Information (SCI), Wang 
et al. [38] designed a specific measure called Neigh- 
borhood Weighted Spatiotemporal Condition Infor- 
mation (NWSCI). Using compressive features [376], 
Yang et al. [377] developed a (Pixel-to-Model) P2M 
distance. 

2. Statistical distance: To compare the K distribution 
in the original MOG, Stauffer and Grimson [20] used 
the Mahalanobis distance with the RGB features. An 
alter- native to the Mahalanobis distance is the 
Kullback– Leibler (KL) divergence used in 
Makantasis et al. [378] with the infrared features and 
Patwardhan et al. [379] with the RGB features. In a 

further work, Pavlidis   et al. [380] claimed that the 
MOG algorithm needs a divergence measure between 
two distributions so that if the divergence measure 
between the new distribu- tion and one of the existing 
distributions is ‘‘too small’’, these two distributions 
could be merged together. Thus, Pavlidis et al. [380] 
used the Jeffreys divergence measure to check if the 
incoming pixel value can be ascribed to any of the 
existing K Gaussians. Experi- mental results 
presented by Pavlidis et al. [380] show that the false 
positives are reduced in comparison with the 
Mahalanobis distance and the KL divergence. In an 
other work, Santoyo-Morales and Hasimoto-Beltran 
used the Chi-2 distance with YUV features instead of 
the Mahalanobis distance. In a non parametric model 
based on KDE, Ko et al. [381] choose the 
Bhattacharyya distance due to its low computational 
cost. In an other work, Mukherjee et al. [83] developed 
a distance measure based on support weight to 
compare RGB features. St-Charles and Bilodeau 
[382] employed the Hamming distance to compare 
LSBPs. 

Order-Consistency Measure: Xie et al. [189] used an 

explicit model for the camera response function, the camera 

noise model, and illumination prior. Assum- ing a monotone 

and nonlinear camera response func- tion, Xie et al. [189] 

show that the sign of the differ- ence between two pixel 

measurements is maintained across global illumination 

changes. Noise statistics are used to transform each frame into 

a confidence frame where each pixel is replaced by a 

probability that it is likely to keep its sign with respect to the 

most different pixel in its neighborhood. Hence, an order 

consistency measure is defined as a distance between two 

distri- butions. Xie et al. [189] used the Bhattacharyya dis- 

tance due to its properties to the Bayes error. Finally, an 

Illumination Invariant Change Detector via order consistency 

(IICD-OC) is developed. Experimental re- sults [189] on 

videos taken by an omni-directional camera show the 

robustness of IICD-OC against illu- mination changes. But, 

the ordinal measure required a reordering of blocks and it is 

computationally ex- pensive. To solve this problem, Singh et 

al. [383] ex- plicitly modeled noise under which rank-

consistency is tested, and used a probabilistic generative 

model under which frame blocks are generated. The order- 

consistency is posed as a hypothesis validation prob- lem 

using fast significance testing based on PAV. In a further 

work, Parameswaran et al. [373] used the same order-

consistency measure in an illumination compensation 

approach 

V. CONCLUSION 

In conclusion, this review on the role and the importance of 

features for background modeling and foreground detection high- 

lights the following points: 

Features can be classified following their size, their type in a 

specific domain, their intrinsic properties and their math- ematical 

concepts. Each type of features presents different robustness 

against challenges met in videos taken by a fixed cameras. For the 

color feature, YCrCb color space seems to be the more suitable 
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feature [105,384]. For the texture feature, Silva et al. [339] 

provided a study on the LBP and its variants that show that XCS-

LBP is the best LBP feature for this application in presence of 

illumination changes and dynamic backgrounds. Although this 

study covered texture features, it is restricted to LBP features and 

then there is not a full study on the different texture features. For 

the depth feature, it needs to carefully used them following their 

properties as developed in Nghiem and Bremond [560]. Features 

in a domain transform are very useful to reduce computation times 

as in the case of compressive sensing features. 

Several features have been used in other applications and 

none in background modeling and foreground detection such 

several variants of LBP (Multi-scale Region Perpen- dicular LBP 

(MRP-LBP) [299], Scale- and Orientation Adap- tive LBP (SOA-

LBP) [300]). Furthermore, statistical or fuzzy version of crisp 

feature could be investigated such as his- tograms of fuzzy oriented 

gradients [202]. It would be in- teresting to evaluate them for this 

application. 

Because each feature has its strengths and weaknesses against each 

challenge, multiple features schemes are used to combine the 

advantages of their different robustness. Most of the time, gradient, 

texture, motion and stereo fea- tures are used in addition to the 

color feature to deal with camouflage in color, illumination 

changes, dynamic back- grounds and shadows. Different fusion 

operators can be used to combine these different features but fuzzy 

integrals such as the Choquet integral [330] and interval-valued 

Cho- quet [188] seem the best way to aggregate different features 

because dependency between features can be taken into 

account.Because there is not a unique feature that performs better 

than any other feature independently of the background and 

foreground properties, feature selection allows to use the best 

feature or the best combination of features. Exper- imental results 

provided by the existing approaches show the pertinence of feature 

selection in background modeling and foreground detection. 

However, basic algorithms such as Adaboost and Realboost have 

been used most of the time. The most advanced scheme is the 

IWOC-SVM algorithm developed by Silva et al. [339], but more 

advanced selection schemes can be used such as statistical or fuzzy 

feature selection. 

To summarize, the most interesting approach seems to fuse mul- 

tiple features with the intervalued fuzzy Choquet integral. The best 

set of features seems to be illumination invariant color fea- tures 

combined with spatio-temporal texture features and depth features. 

Future research should concern (1) a full evaluation of texture 

features, (2) a full comparison of feature fusion schemes, 

feature selection schemes and (4) reliability of features be- cause it 

has been less investigated. Finally, features learned by deep 

learning methods such as Stacked Denoising Auto-Encoder 

(SDAE) [16] and Convolutional Neural Networks (CNN) [17,18] 

are surely the features that will outperforms all the other features 

because deep learning methods have the sole ability of learning 

features that best fit a given set of data. Furthermore, unlike 

conventional hand-crafted features, learned features come from 

multiple layers which focus on various level of details in the video. 

Thus, learned feature representation allows to well capture the 

intrinsic structural properties of a scene and adaptively discover a 

set of filter patterns that are robust to complicated factors such as 

noise and illumination variation. 
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