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I. INTRODUCTION 

In recent years, fractional order differential equations 

have become very popular mathematical modeling [1]. A 

physical interpretation of fractional integral and 

derivative is given in [2]. Although there are many 

approach  to  generalize the nth derivative of f(t),but  the 

most commonly used definitions are Riemann–Liouville 

and Caputo fractional derivatives. Fractional-order 

differential equations occur in a surprising number of real-

world models. At the heart of a lot of applications is the 

phenomenon of anomalous diffusion. The isotropic 

normal diffusion equation is (with time scaled to remove 

physical constants): 

𝑢𝑡 − ∆u = 0 

and can be derived in a number of ways: a random walk 

model, Fick’s   law of diffusion and the Langevin 

equation are discussed in[3]. According to Vlahos et al., 

the assumptions for these models are fair for diffusion in 

homogeneous media, but not for a medium which is 

highly heterogeneous, a particular case they discuss is 

when the diffusive system is far from equilibrium 

II.  OVERVIEW: FRACTIONAL CALCULUS 

Fractional Calculus is a term used for the theory of 

derivatives and integrals of arbitrary order, which 

generalize the notion of integer order differentiation and 

n-fold integration. The idea behind Fractional calculus is 

to generalize the definition of differentiation and 

integration with order 𝑛 ∈ ℕ to order  𝑠 ∈ ℝ. The first 

discussion [9] on Fractional Calculus began in 1695 in a 

letter to L’Hopital by Leibniz in which he discussed about 

calculus of arbitrary order. Fractional Calculus is three 

centuries old. Few names that laid the foundation of 

Fractional Calculus are Abel, Liouville, Riemann, Euler, 

Caputo etc.  Fractional Calculus has recently been applied 

in various areas of engineering, science, finance, applied 

mathematics and bio engineering.[10] . It has earlier been 

observed that derivatives of non-integer order are useful 

for describing the properties of various real materials like 

polymer, rocks etc. Also the fractional order models were 

found more logical to talk an discuss about than the 

integer-order models.  In this paper we are focusing on 

Fractional Derivatives. Different people gave different 

definitions for the Fractional Derivative. Few definitions 

are : 

Grunwald-Letnikov Fractional Derivatives: Let us 

consider a continuous function f(t) 

We define 

𝐷𝑡
𝑝

𝑓(𝑡) = lim
ℎ→0

𝑛ℎ=𝑡−𝑎

ℎ−𝑝 ∑(−1)𝑟

𝑛

𝑟=0

 (
𝑝

𝑟
) 𝑓(𝑡 − 𝑟ℎ) 𝑎

  

The above formula has been obtained under the 

assumption that the derivatives f (k)(t) (k=1, 2, 3,. . . 

,m+1) are continuous in the closed interval [a,t] and that 

m is the integer number satisfying m > p-1. 

Riemann-Liouville Derivatives: 

                                             𝐷𝑡
𝑝

𝑓(𝑡) = (
𝑑

𝑑𝑡
)𝑚+1

𝑎
 ∫ (𝑡 −

𝑡

𝑎

𝜏)𝑚−𝑝 𝑓(𝜏)𝑑𝜏,  (𝑚 ≤ 𝑝 < 𝑚 + 1) 

Caputo’s Fractional Derivatives:  

The definition of the fractional differentiation of the 

Riemann-    

Liouville Derivatives type played an important role in the 

development of the theory of fractional derivatives and for 

its applications in pure mathematics. However, the 

demands of modern  technology require a certain revision 

of well established mathematical approach .The Caputo 

approach provides an interpolation between an integer 

order derivatives: 

                                           

𝐷 
𝛼𝑓(𝑥) =

1

Γ(𝛼−𝑛)
∫

𝑓(𝑛)(𝑢)

(𝑥−𝑢)(∝−𝑛+1)

𝑥

𝑎 
𝐶  , 𝑛 − 1 <∝< 𝑛 , ∝∈

ℝ , 𝑛 ∈ ℕ 

 Euler’s Fractional Derivatives: 
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𝑑∝

𝑑𝑡∝
[𝑡𝛽] = 𝐷𝑡

𝛼[𝑡𝛽] =
Γ(𝛽 + 1)

Γ(𝛽 + 1 − 𝛼)
𝑡𝛽−𝛼 , 𝛼 ∈ ℝ 

. 

Sequential Fractional Derivatives:  
The main idea of differentiation and integration of 

arbitrary order is the generalization of iterated integration 

and differentiation. In all these approaches we replace the 

integer valued parameter n of a operator denoted by 
𝑑𝑛

𝑑𝑡𝑛  

with a non integer parameter p. 

However, we can assume that the n-th order 

differentiation is simply a series of n first order    

differentiation .So, considering more general expressions 

 

             𝐷𝑡
𝛼 = 𝐷𝑡

𝛼1𝐷𝑡
𝛼2𝐷𝑡

𝛼3 … … … . 𝐷𝑡
𝛼𝑛  

  

Where 𝛼 = 𝛼1 + 𝛼2 + 𝛼3 + ⋯ … … . 𝛼𝑛,which we will 

also call the sequential fractional derivatives. 

Indeed, Riemann-Liouville Derivatives can be written as  

 

        𝐷𝑡
𝑝

𝑓(𝑡) =
𝑑

𝑑𝑡𝑎
 𝑑

𝑑𝑡
… … .

𝑑

𝑑𝑡
𝐷𝑡

−(𝑛−𝑝)
𝑓(𝑡)𝑎

    (n-1≤

𝑝 < 𝑛) 

While the Caputo fractional differential operator can be 

written as 

         𝐷 
𝛼𝑓(𝑥) = 

𝐶  𝐷𝑡
−(𝑛−𝑝) 𝑑

𝑑𝑡
… … .

𝑑

𝑑𝑡𝑎
  f(t) (n-

1< 𝑝 ≤ 𝑛 − 1 )  

Properties of Fractional Derivatives:  

Fractional Derivatives satisfy almost all the properties 

that hold for[5] ordinary derivatives. We are aware of the 

general properties of the derivative operator 𝐷𝑡
𝑛 , 𝑛 ∈ ℕ. 

Below mentioned are the properties of Fractional 

Derivative that can be easily verified: 

 𝐷𝑡
∝[𝑓(𝑡)𝑔(𝑡)] = ∑ (∝

𝑘
)∞

𝑘=0 𝐷𝑡
∝−𝑘[𝑓(𝑡)]𝐷𝑡

𝑘[𝑔(𝑡)]  

where (∝
𝑘

) =
Γ(∝+1)

Γ(k+1)Γ(∝+1−k)
. 

 𝐷𝑡
∝[𝑓(𝑡)𝐶] = ∑ (∝

𝑘
)∞

𝑘=0 𝐷𝑡
∝−𝑘[𝑓(𝑡)]𝐷𝑡

𝑘[𝐶] =

𝐷𝑡
∝[𝑓(𝑡)]𝐶. 

 𝐷𝑡
∝[ℎ(𝑡) + 𝑔(𝑡)] = ∑ (∝

𝑘
)∞

𝑘=0 𝐷𝑡
∝−𝑘[𝑡0]𝐷𝑡

𝑘[ℎ(𝑡) +

𝑔(𝑡)] = 𝐷𝑡
∝[ℎ(𝑡)]+𝐷𝑡

∝[𝑔(𝑡)] . 
 𝐷𝑡

∝[ℎ(𝑎𝑡)] = 𝑎∝𝐷𝑥
∝[ℎ(𝑥)] , 𝑥 = 𝑎𝑡 . 

 𝐷𝑡
∝[𝑡−𝑚] = (−1)∝ Γ(𝑚+∝)

Γ(m)
𝑡−(𝑚+∝). 

 𝐷𝑡
𝜇+𝜈[𝑓(𝑡)] = 𝐷𝑡

𝜇[𝐷𝑡
𝜈(𝑓(𝑡))] = 𝐷𝑡

𝜈[𝐷𝑡
𝜇

(𝑓(𝑡))]. 

           𝐷𝑡
−1[𝑡𝛽] =

Γ(𝛽+1)

Γ(β+1+1)
𝑡𝛽+1 =

𝑡𝛽+1

𝛽+1
,  

Where  

 𝛼 ∈ 𝐷𝑡
∝[𝑓(𝑡)𝑔(𝑡)] = ∑ (∝

𝑘
)∞

𝑘=0 𝐷𝑡
∝−𝑘[𝑓(𝑡)]𝐷𝑡

𝑘[𝑔(𝑡)], 

                  where (∝
𝑘

) =
Γ(∝+1)

Γ(k+1)Γ(∝+1−k)
. 

 𝐷𝑡
∝[𝑓(𝑡)𝐶] = ∑ (∝

𝑘
)∞

𝑘=0 𝐷𝑡
∝−𝑘[𝑓(𝑡)]𝐷𝑡

𝑘[𝐶]  =

𝐷𝑡
∝[𝑓(𝑡)]𝐶 Where 𝐶 is an arbitrary constant. 

 𝐷𝑡
∝[ℎ(𝑡) + 𝑔(𝑡)] = ∑ (∝

𝑘
)∞

𝑘=0 𝐷𝑡
∝−𝑘[𝑡0]𝐷𝑡

𝑘[ℎ(𝑡) +

𝑔(𝑡)] = 𝐷𝑡
∝[ℎ(𝑡)]+𝐷𝑡

∝[𝑔(𝑡)] . 

 𝐷𝑡
∝[ℎ(𝑎𝑡)] = 𝑎∝𝐷𝑥

∝[ℎ(𝑥)] under the scaling 𝑥 =

𝑎𝑡. 

 𝐷𝑡
∝[𝑡−𝑚] = (−1)∝ Γ(𝑚+∝)

Γ(m)
𝑡−(𝑚+∝) for a given 𝑚 ∈

ℝ. 

 𝐷𝑡
𝜇+𝜈[𝑓(𝑡)] = 𝐷𝑡

𝜇[𝐷𝑡
𝜈(𝑓(𝑡))] = 𝐷𝑡

𝜈[𝐷𝑡
𝜇

(𝑓(𝑡))] 

under the composition of 𝐷𝑡
𝜈  and 𝐷𝑡

𝜇
on 𝑓(𝑡). 

 𝐷𝑡
−1[𝑡𝛽] =

Γ(𝛽+1)

Γ(β+1+1)
𝑡𝛽+1 =

𝑡𝛽+1

𝛽+1
, where 𝛽 ∈ ℝ 

corresponding to a negative order derivative. 

Mittag-Leffler Function: 

The Exponential function play a important role in the 

theory of integer order differential equation its one 

parameter generalization is denoted by[4] 

                  𝑬𝜶(𝒛) =∑
𝒛𝒌

Γ(α𝑘+1)
∞
𝒌=𝟎  

was introduced by G.M Mittag Leffler [5, 6, 7] and also 

studied by A.William[8, 9] . 

III. LAPLACE TRANSFORMS AND INVERSE 

LAPLACE OF FRACTIONAL DERIVATIVES: 

The Laplace transform of a function f(t) is defined as 

         F(s) = L(f(t))=∫ 𝑒−𝑠𝑡∞

0
f(t) dt  

For existence of Laplace transform of f(t), f(t) must be of 

exponential order. The original f(t) can be obtained  from 

F(s) with the help of [3]Inverse Laplace Transform  

        f(t) = 𝐿−1[𝐹(𝑠), 𝑡] = ∫ 𝑒𝑠𝑐+𝑖∞

𝑐−𝑖∞
𝐹(𝑠)𝑑𝑠 ,   c= Re(s)>

𝑐0  

Where 𝑐0 lies in right half plane of the absolute 

convergence of Laplace integral. 

 Laplace Transform of convolution is defined as 

                 f(t)*g(t) =∫ 𝑓(𝑡 − 𝜏)𝑔(𝜏)𝑑𝜏 = ∫ 𝑔(𝑡 −
𝑡

0

𝑡

0

𝜏)𝑓(𝜏)𝑑𝜏  

        Another useful property which we are needed is 

Laplace Transform of derivative of  an integer order  

         n of a function f(t) : 

        L{𝑓𝑛(𝑡); s} = 𝑠𝑛𝐹(𝑠) − ∑ 𝑠𝑛−𝑘−1𝑛−1
𝑘=0 {𝑓𝑛(0) = 

𝑠𝑛𝐹(𝑠) − ∑ 𝑠𝑘𝑛−1
𝑘=0 𝑓𝑛−𝑘−1(0) 

 

Likewise, we can easily prove Laplace Transform of 

Fractional derivatives of order p> 0 in terms of Riemann-

Liouville Derivatives pth 

       L{ 𝐷𝑡
𝑝

𝑓(𝑡); 𝑠}0
 =𝑠𝑝F(s)− ∑ 𝑠𝑘𝑛−1

𝑘=0 [ 𝐷𝑡
𝑝−𝑘−1

𝑓(𝑡)]0
  

 (n-1≤ 𝑝 < 𝑛) 

 

Similarly, we can easily establish Laplace Transform 

Caputo Derivative as 

      L{ 𝐷 
𝛼𝑓(𝑥); 𝑠} 

𝐶 = 𝑠𝑝F(s)− ∑ 𝑠𝑝−𝑘−1𝑛−1
𝑘=0 {𝑓𝑛(0)} 

  (n-1< 𝑝 ≤ 𝑛) 

IV. EXISTENCE AND UNIQUENESS OF 

SOLUTIONS 

In this chapter we consider the existence and uniqueness 

of solutions of initial value problem of fractional order 



 Dimple Singh al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4,  
Issue 2, June 2017, pp. 6-10 

© 2017 IJRRA All Rights Reserved               page-8 

differential equation. First we consider the case of linear 

fractional order differential equations with continuous 

coefficients and bring the proof of existence and 

uniqueness theorem for one –term and n-term fractional 

differential equations. 

Then we give the proof of existence and uniqueness 

theorem for general term fractional differential equations. 

Finally, we discuss the dependence of solution of general 

fractional differential equations on initial conditions. 

Linear Fractional Differential Equation. 

In this section the existence and uniqueness of solutions 

of initial value problem for liner   fractional differential 

equations with sequential derivatives are discussed. 

Let’s consider the following initial value problem: 

             

𝐷𝑡
𝜎𝑛𝑦(𝑡) + ∑ 𝑝𝑗(𝑡)𝑛−1

𝑗=1 [ 𝐷𝑡

𝜎𝑛−𝑗
𝑦(𝑡)]0

 + 𝑝𝑛(𝑡)𝑦(𝑡) = 𝑓(𝑡)0
 

     (0< 𝑡 < 𝑇 <∝)       (4.1.1) 

              [ 𝐷𝑡
𝜎𝑛−1𝑦(𝑡)]0

 
𝑡=0= 𝑏𝑘  

,k=1,2,3…………………………………..n,        

(4.1.2)  

         Where 𝐷𝑡
𝜎𝑘

𝛼
 = 𝐷𝑡

𝛼𝑘
𝛼

 𝐷𝑡
𝛼𝑘−1

𝛼
 … … … . . 𝐷𝑡

𝛼1
𝛼

  

                       𝐷𝑡
↑𝜎𝑘−1

𝛼
 =

𝐷𝑡
↑𝛼𝑘−1

𝛼
 𝐷𝑡

𝛼𝑘−1
𝛼

 ……………….. 𝐷𝑡
𝛼1

𝛼
  

         Where     𝜎𝑘 = ∑ 𝛼𝑗
𝑘   
𝑗=𝑖         

(k=1.2…………………..n) 

                         0< 𝛼𝑗 ≤ 1 (𝑗 = 1,2 … … … . . 𝑛) 

        And f(t) ∈ 𝐿1(0, 𝑇) i.e. ∫ |𝑓(𝑡)| < ∞
𝑇

0
 

        Here we assume f(t) = 0 for t > 𝑇. Also we can have 

𝑝𝑘(t) = 0  for k =1,2……….n 

Theorem:  

If (𝑡) ∈ 𝐿1(0, 𝑇), Then the equation 𝐷𝑡
𝜎𝑛𝑦(𝑡) = 𝑓(𝑡)0

  

     (4.1.1.1) 

  has unique solution 𝑦(𝑡) ∈ 𝐿1(0, 𝑇), which satisfying 

the initial conditions given by (4.1.2) 

Proof: Using Laplace transform of Sequential Fractional 

Derivative and equation (4.1.1.1), we get 

             𝑠𝜎𝑛Y(s) +∑ 𝑠𝛼𝑛−𝜎𝑛−𝑘[𝑛−1
𝑘=0 [ 𝐷𝑡

𝜎𝑛−𝑘−1
𝑦(𝑡)0

 ]𝑡=0= 

F(s) 

Where,Y(s) and F(s) denote the Laplace transform of y(t) 

and f(t). 

 

  Using Initial Conditions: 

                  Y(s) =𝑠−𝜎𝑛 F(s) +∑ 𝑏𝑛−𝑘𝑠−𝜎𝑛−𝑘
𝑛−1
𝑘=0   and by 

Inverse Laplace Transform 

                  y(t)=1/Γ(𝜎𝑛) ∫ (𝑡 − 𝜏)𝜎𝑛−1𝑡

0
f(𝜏)𝑑𝜏 

+ ∑
𝑏𝑛−𝑘

Γ(𝜎𝑛−𝑘)
𝑡𝜎𝑛−𝑘−1𝑛−1

𝑘=0  

  For  𝑛 − 𝑘 = 𝑖 we have y(t)=1/Γ(𝜎𝑛) ∫ (𝑡 −
𝑡

0

𝜏)𝜎𝑛−1f(𝜏)𝑑𝜏 + ∑
𝑏𝑖

Γ(𝜎𝑖)
𝑡𝜎𝑖−1𝑛

𝑖=1  

Now by definition of Riemann-Liouville Derivatives of 

power function and taking in to account that   
1

Γ(−m)
=

0 for m = 1,2,3 … ….  we can easily obtained 

Dt
σk

0
 (

tσi−1

Γ(σi)
) = 

tσi−σk−1

Γ(σi−σk)
       ,    k< 𝑖   and  Dt

σk
0
 (

tσi−1

Γ(σi)
) = 0 

whenk ≥ i 

Dt
σk

0
 (

tσi−1

Γ(σi)
) = 

tσi−σk

Γ(σi−σk−1)
   ,    k< 𝑖   and  Dt

σk
0
 (

tσi−1

Γ(σi)
) = 

1when i = k       

Dt
σk

0
 (

tσi−1

Γ(σi)
) = 0 if k> 𝑖  Where k = 1, 2,………n and i = 

1,2,3…………………..n 

It follows that y(t) ∈ L1(0, T) and it satisfies the initial 

conditions. So existence of solution is proved. Uniqueness 

follows from the linear property of fractional derivative 

and Laplace Transform. 

Indeed If there exist two solutions y1(t)and  y2(t) of 

considered problem, then the function  

 z(t) = y1(t) −   y2(t)  must satisfies the  Dt
σnz(t) = 00

  

and the initial conditions which gives    Laplace transform 

of z(t) as zero and it proves the uniqueness of the solution. 

Theorem: If 𝑓(𝑡) ∈ 𝐿1(0, 𝑇) and 𝑝𝑗(t) 

(j=1,2,3……………… n) are continuous functions in the 

closed interval [0,T] Then the initial value problem (4.1.1-

4.1.2) has a unique solution 𝑦(𝑡) ∈ 𝐿1(0, 𝑇). 

Proof: Let us assume that the above equation has solution 

y(t) and, let us consider  

𝐷𝑡
𝜎𝑛𝑦(𝑡) = 𝜑(𝑡)0

    

Using previous theorem 

y(t) = 1/Γ(𝜎𝑛) ∫ (𝑡 − 𝜏)𝜎𝑛−1𝑡

0
f(𝜏)𝑑𝜏 + ∑

𝑏𝑖

Γ(𝜎𝑖)
𝑡𝜎𝑖−1𝑛

𝑖=1                                                   

(4.1.2.1) 

using 4.1.1 and 4.1.2.1 we have 

𝐷𝑡
𝜎𝑛𝑦(𝑡) + ∑ 𝑝𝑛−𝑘(𝑡)𝑛−1

𝑘=1 𝐷𝑡
𝜎𝑘𝑦(𝑡)0

 + 𝑝𝑛(𝑡)𝑦(𝑡) = 𝑓(𝑡)0
  

     We obtain the volterra integral equation for  the 

function 𝜑(𝑡) : 

𝜑(𝑡) + ∫ 𝐾(𝑡, 𝜏)

𝑡

0

 𝜑(𝑡)𝑑𝑡 = 𝑔(𝑡) 

Where  K(t, τ) = pn(t)
(t−τ)σn−1

Γ(σn) 
+ 

∑
(t−τ)σn− σk−1

Γ(σn−σk)

n−1   pn−k(t)
k=1  

g(t) = f (t) − pn(t) ∑ bi

n

i=1

tσi−1

Γ(σi)

− ∑ pn−k(t)

n−1

k=1

∑ bi

n

i=k+1

tσi−σk−1

Γ(σi − σk) 
 

As pj(t) (j=1,2,3……………… n) are continous functions 

in the closed interval [0,T]  

So we have 

                      K(t, τ) =
k∗(t,τ)

(t−τ)1−μ    and 
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       Where k∗(t, τ)is continous for 0 ≤ t ≤ T and 0 ≤
τ ≤ T  and 

μ = min(σn, σn − σn−1, σn − σn−2, σn

− σn−3 … … … … … … … … . . σn − σ1)
= min (σn, αn) 

        Similarly, g(t) can be written 

                      g(t) =
g∗(t)

(t)1−ν   

Where g∗(t)is continous in [0,T] and  

ν = min(σ1, σ2, σ3 … . . σn;σ2 − σ1, … … … … … … σn −

σ1; … … . . σn − σn−1) = min (σn, αn) 

clearly0 < μ ≤ 1 and 0 < ν ≤ 1 .It is known that  the 

equation with weak singular kernel and with choice of 

g(t) has a unique solution φ(t) ∈ L1(0, T).The unique 

solution (t) ∈ L1(0, T) can be obtained using the previous 

theorem 

5. Examples 

         In this section We use Laplace Method to solve 

ordinary Fractional differential Equation.  

Example1: Consider the equation  

                      𝐷𝑡

1

2𝑓(𝑡) + 𝑎𝑓(𝑡)0
 = 0  (𝑡 > 0); 

[ 𝐷𝑡

−1

2 𝑓(𝑡)]0
 

𝑡=0= 𝐶 

         Applying Laplace Transform, we get 

         F(S) = 
𝐶

𝑠
1

2⁄ +𝑎
 ,    [ 𝐷𝑡

−1

2 𝑓(𝑡)]0
 

𝑡=0= 𝐶 

 

          Using Inverse Laplace Transform 

𝑓(𝑡) = 𝐶𝑡
1

2⁄ 𝐸1

2
,
1

2

(−𝑎√𝑡) 

 

Example2: Let us consider the following Equations 

𝐷𝑡
𝑄𝑓(𝑡) + 𝐷𝑡

𝑞
𝑓(𝑡) = ℎ(𝑡)0

  

 

Let’s assume here 0 < 𝑞 < 𝑄 < 1. Laplace Transform Of 

above equations leads to 

((𝑠𝑄 + 𝑠𝑞)𝐹(𝑠) = 𝐶 + 𝐻(𝑠) 

[ 𝐷𝑡
𝑄−1𝑓(𝑡) + 𝐷𝑡

𝑞−1
𝑓(𝑡)]0

 
𝑡=0= 𝐶  and then after taking 

inversion for 𝛽 = 𝑄 𝑎𝑛𝑑 𝛼 = 𝑄 − 𝑞    
 we get 

𝑓(𝑡) = 𝐶𝐺(𝑡) + ∫ 𝐺(𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏
𝑡

0

 

                                                     

[ 𝐷𝑡
𝑄−1𝑓(𝑡) + 𝐷𝑡

𝑞−1
𝑓(𝑡)]0

 
𝑡=0 = 𝐶   

𝐺(𝑡) = 𝑡𝑄−1𝑬𝑸−𝒒,𝑸(−𝒕𝑸−𝒒) 

Example 3: Consider the following non-homogenous 

fractional differential equation 

  𝐷𝑡
𝛼𝑦(𝑡) + 𝜆𝑦(𝑡)0

 = ℎ(𝑡) 

[ 𝐷𝑡
𝛼−𝑘𝑦(𝑡)]0

 
𝑡=0= 𝑏𝑘  

,k=1,2,3…………………………………..n, where 

𝑛 − 1 < 𝛼 < 𝑛 

Taking into account  the initial conditions ,The 

Laplace Transform of the above equation is 

𝑠𝛼𝑌(𝑠) − 𝜆𝑌(𝑠) = 𝐻(𝑠) + ∑ 𝑏𝑘

𝑛

𝑘=1

𝑠𝑘−1 

 

The inverse Laplace Transform give the solution: 

           Y(t)𝑦(𝑡) = ∑ 𝑏𝑘
𝑛
𝑘=1 𝑡𝛼−𝑘𝑬𝜶,𝜶−𝒌+𝟏(𝜆𝒕𝜶) + ∫ (𝑡 −

𝑡

0

𝜏)𝛼−1𝑬𝜶,𝜶(𝜆(𝑡 − 𝜏)𝜶)ℎ(𝜏)𝑑𝜏. 

V. CONCLUSION   

In this paper, we prove the existence and uniqueness of 

solutions of initial value problem of  fractional order 

differential equation. First we consider the case of linear 

fractional order differential equations with continuous 

coefficients and bring the proof of existence and 

uniqueness theorem for one –term and n-term fractional 

differential equations.Then We Illustrate some examples 

using Laplace Transform Method to solve Ordinary 

Fractional Differential equations.. 
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