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Abstract.  
Objectives: Weight Initialization is an important parameter in training Single Hidden Layer Feedforward Artificial 

Neural Networks (SFANN) and is important for faster convergence. In this paper a Statistically Resilient Moore-Penrose 

Inverse based Weight Initialization Technique (SRINWIT) for SFANN is proposed to improve the speed of training in 

SFANN. Methods/Statistical analysis: The proposed technique SRINWIT utilizes statistically resilient weight 

initialization method NWIT for input to hidden weight initialization and Moore-Penrose Inverse method for hidden to 

output weight initialization. The technique NWIT ensures that the inputs to a neuron are given their own region of 

activation function, at the same time utilizes the complete (useful) range of activation function. The Moore-Penrose 

Inverse Method ensures that the weight space is as close as possible to the optimal solution before training.  

Findings: The performance of proposed weight initialization technique SRINWIT is compared to Random Weight 

Initialization Technique (RWIT) and Inverse Weight Initialization Technique (INVWIT) for 10 function approximation 

problems. Mean of the mean squared error (MMSE) and median of the MSE (MEDIAN) are compared for both training 

and testing data for all the three weight initialization techniques RWIT, INVWIT and SRINWIT. The results show that 

the performance of SRINWIT is superior as compared to RWIT and INVWIT for at least these 10 function approximation 

task.  

Application/ Improvements: The application of this technique can be tested to enhance the speed of training in the real 

world regression problems. 
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I. INTRODUCTION 

Single hidden layer Feedforward Artificial Neural 

Networks (SFANNs) are shown to be universal 

approximators1, 2, 3 i.e. they have capability to approximate 

any continuous function. Schematic diagram for Single 

hidden layer Feedforward Artificial Neural Network 

(SFANN) is given in Fig.1. 

The 𝑥𝑗’s represents input to the network where 𝑗 ∈

{1, . . 𝑁𝐼} where 𝑁𝐼 is the no. of input connected to the 

network. 𝑤𝑖𝑗  represent weights from 𝑗th input to 𝑖th 

hidden node, 𝑗 ∈ {1, … , 𝑁𝐼} and 𝑖 ∈ {1, … , 𝑁𝐻}, 𝑁𝐻 is the 

total no. of hidden nodes. 𝜃𝑖 represent 𝑖th hidden 

threshold, 𝑖 ∈ {1, … , 𝑁𝐻}. 𝛽𝑖 denote weights between 

hidden & output nodes, 𝑖 ∈ {1, … , 𝑁𝐻} and 𝛾 denotes 

output threshold.  

Input to 𝑖th hidden node is given by (1): 

 

 

𝑛𝑖 = ∑ 𝑤𝑖𝑗𝑥𝑗 + 𝜃𝑖

𝑁𝐼

𝑖=1

 

(1)  

 

The activation function used are sigmoidal as they are 

finite, bounded and differentiable4, 5. Hyperbolic tangent 

function is used at hidden node as activation function. 

 

 
𝜎(𝑥) = tanh(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

(2)  

 

The output of ith hidden node is given as 

 

 ℎ𝑖 = 𝜎(𝑛𝑖) 

 

(3)  

Output of the network (ignoring the bias term 𝛾) is 

given by 

 

 

𝑦 = ∑ 𝛽𝑖ℎ𝑖

𝑁𝐻

𝑖=1

 

(4)  

 

The threshold function at the output node in this work 

is linear.  

Weight initialization significantly affects the speed of 

training in SFANN6-12. A proper method of weight 

initialization is required for better convergence in 

SFANN. Conventionally, small uniform random values 

are used to initialize all the weights from input to hidden 

layer and hidden to output layer, to break symmetry so that 

after training process, the weights can achieve different 

values13, 14. In this paper input to hidden weight are first 

initialized with small random values and hidden to output 

weights are initialized using Moore-Penrose inverse. This 
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technique is named INVWIT. A similar technique was 

proposed by Yam and Chow9. INVWIT is compared to 

conventional Random Weight Initialization Technique 

(RWIT) for 10 function approximation task and is 

expected to give better results than RWIT. 

A statistically resilient method (NWIT) for initializing 

weights was proposed by Mittal et al.12 ensuring inputs to 

neurons are in the useful (active) range of activation 

function is in the active region of activation function and 

utilizes the complete (useful) range of the activation 

function. In this paper a new Statistically Resilient Moore-

Penrose Inverse based weight initialization technique 

(SRINWIT) for SFANN is proposed, in which input to 

hidden weights are initialized using NWIT and hidden to 

output weights are initialized using INVWIT. SRINWIT 

is expected to give better results than both RWIT and 

INVWIT. 

II. INVERSE WEIGHT INITIALIZATION 

TECHNIQUE (INVWIT) 

In INVWIT, small random values are used to initialize 

all input to hidden weights. The hidden to output weights 

are computed using Moore-Penrose Inverse as explained. 

Rewriting Eq.4 as: 

 𝑌 = 𝐻𝛽 (5)  

 

where 𝐻 is vector that gives output of hidden nodes as: 

 

 

𝐻 = [

𝜎(𝑤11𝑥1 + 𝜃1) … 𝜎(𝑤𝐻1 + 𝜃𝐻)

⋮ ⋮
𝜎(𝑤1𝐼𝑥𝐼 + 𝜃1) … 𝜎(𝑤𝐻𝐼 + 𝜃𝐻)

] 

 

(6)  

and 𝛽 is 𝐻 × 1 hidden to output weight matrix as: 

 

𝛽 = [
𝛽1

⋮
𝛽𝐻

] 

(7)  

 

For the purpose of initialization of weights, 𝜎 is 

assumed to be linear. Thus hidden to output weight matrix 

𝛽 is computed as in Eq.8 

 
𝛽 = 𝐻ϯ𝑌 

 

(8)  

where 𝐻ϯ denotes the Moore-Penrose inverse of matrix 

H. 

III. STATISTICALLY RESILIENT INVERSE 

WEIGHT INITIALIZATION TECHNIQUE 

(SRINWIT) 

In this paper a Statistically Resilient Moore-Penrose 

Inverse based Weight Initialization Technique 

(SRINWIT) is proposed. In SRINWIT, all input to hidden 

weights are initialized using technique similar to NWIT 

proposed by Mittal et al.12. Thus all input to hidden 

weights are trained such that the all input to the neuron lies 

in the useful range of activation function. It also ensures 

that the complete (useful) range of activation function is 

used. Algorithm NWIT was established to be better than 

conventional Random Weight Initialization for function 

approximation problems12. A constant value G is defined 

so that for range (−𝐺, 𝐺) 

(𝜎(𝑥))
′

≥ 0.05 

The value of 𝐺 is 2.1783. Thus the weights are 

initialized in the interval (−𝐺, 𝐺) such that active region 

of activation function is well utilized. This range (−𝐺, 𝐺) 

is then divided into 𝐻 parts and all the weights to 𝑛𝑡ℎ 

hidden are assigned values from the 𝑛𝑡ℎ part of interval 

(−𝐺, 𝐺). This method ensures that a separate region of 

activation function is assigned to every hidden node.  

Hidden to output weights are initialized by inverse 

technique as in INVWIT. SRINWIT is expected to 

perform better than both RWIT and INVWIT in terms of 

reaching deeper minima. 

ALGORITHM SRINWIT 

Input :  𝑁𝐼 = Total number of Input, 𝑁𝐻 = Total 

number of Hidden Nodes, 𝐼𝑁𝑃𝑈𝑇 = Input Matrix 

of training sample, 𝑂𝑈𝑇𝑃𝑈𝑇 = Output matrix of 

training sample 

Output : 𝐼𝑊 = Weights from input to hidden 

nodes, 𝐻𝑂 = Weights from Hidden to output 

nodes, 𝐻𝑇 = Threshold at Hidden Node, 𝑂𝑇 = 

Threshold at Output Node 

1. 𝑀𝐴𝑋 =  (𝑁𝐼 + 1) × 𝑁𝐻;   

2. 𝐺 = − log(2 √5 − √19)  

3. 𝑆 =  2 × 𝐺/𝑁𝐻    

4. 𝑊 =  𝑟𝑎𝑛𝑑(1, 𝑀𝐴𝑋)  ×  𝑆 –  𝑆/2  

5. For 𝑖 ranging from 1 to 𝐻 
a. 𝑃 =  (𝑖 − 1)  ×  (𝑁𝐼 + 1)  +  1; 
b. 𝑄 =  (𝑖 − 1)  × (𝑁𝐼 + 1)  + 𝑁𝐼; 
c. 𝐼𝑊(𝑖, 1), … , 𝐼𝑊(𝑖, 𝑁𝐼) =

 𝑊(1, 𝑃), … , 𝑊(1, 𝑄); 
d. 𝐻𝑇(𝑖, 1)  =  𝑊(1, 𝑄 + 1); 
e. 𝑋 =

√𝐼𝑊(𝑖, 1)2 + ⋯ + 𝐼𝑊(𝑖, 𝑁𝐼)2 + 𝐻𝑇(𝑖, 1)2 

f. 𝐼𝑊(𝑖, 1), … , 𝐼𝑊(𝑖, 𝑁𝐼) =
𝐼𝑊(𝑖, 1), … , 𝐼𝑊(𝑖, 𝑁𝐼) × 𝑆 × 𝑖/𝑋 

g. 𝐻𝑇(𝑖, 1) = 𝐻𝑇 × 𝑆 × 𝑖/𝑋  
6. 𝑀𝐴𝑋 =  𝑁𝐻;    

7. 𝑖 =  𝑀𝐴𝑋 + 1;   

8. Add a row of one’s below the last row of 

𝐼𝑁𝑃𝑈𝑇 and to get 𝐼𝑁𝑃𝑈𝑇_𝑀𝐴𝑇𝑅𝐼𝑋  
9. 𝐼𝑁𝑃𝑈𝑇_𝑇𝑂_𝐻𝐼𝐷𝐷𝐸𝑁_𝑊𝐸𝐼𝐺𝐻𝑇𝑆 = [𝐼𝑊 𝐻𝑇]; 
10. Add a column of all one’s after the last column 

of 𝐼𝑁𝑃𝑈𝑇_𝑇𝑂_𝐻𝐼𝐷𝐷𝐸𝑁_𝑊𝐸𝐼𝐺𝐻𝑇𝑆 to get  

 𝐼𝑁𝑃𝑈𝑇_𝑇𝑂_𝐻𝐼𝐷𝐷𝐸𝑁_𝑊𝐸𝐼𝐺𝐻𝑇_𝑀𝐴𝑇𝑅𝐼𝑋. 
11. 𝐻 = 𝐼𝑁𝑃𝑈𝑇_𝑀𝐴𝑇𝑅𝐼𝑋 ∗

𝐼𝑁𝑃𝑈𝑇_𝑇𝑂_𝐻𝐼𝐷𝐷𝐸𝑁_𝑊𝐸𝐼𝐺𝐻𝑇_𝑀𝐴𝑇𝑅𝐼𝑋 
12. 𝛽 = 𝑃𝐼𝑁𝑉(𝐻) ∗ 𝑂𝑈𝑇𝑃𝑈𝑇 

13. 𝐻𝑂(1,1), … , 𝐻𝑂(1, 𝑁𝐻) =
𝛽(1,1), … , 𝛽(1, 𝑀𝐴𝑋) 

14. 𝑂𝑇(1,1) = 𝛽(𝑖) 

IV. EXPERIMENT DESIGN 

For function approximation task, the given 10 functions 

are trained using SFANN. 

1. 1-input function from MATLAB sample file humps.m 
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𝑦 =

1

(𝑥 − 0.3)2 + 0.01
+

1

(𝑥 − 0.9)2 + 0.4
− 6 

(9)  

 

where 𝑥 ∈ [0,1] 
 

2. 2-input function from MATLAB sample file peaks.m 

 𝑦 = 3(1 − 𝑥1)2𝑒(−𝑥2−(𝑥2+1)2)

− 10 (
𝑥1

5
− 𝑥1

3

− 𝑥2
5) 𝑒(−𝑥1

2−𝑥2
2)

− (
1

3
) 𝑒(−(𝑥1+1)2−𝑥2

2) 

(10)  

 

where 𝑥1 ∈ [−3,3] and 𝑥2 ∈ [−3,3]. 
 

3. 2-input function from Breiman15, 16, 17 

 𝑦 = 𝑠𝑖𝑛 (𝑥1 ∗  𝑥2)  (11)  

 

where 𝑥1 ∈ [−2,2] and 𝑥2 ∈ [−2,2] 

4. 2-input function from Breiman15, 16, 17 

 𝑦 = 𝑒𝑥𝑝(𝑥1 ∗ 𝑠𝑖𝑛(𝜋 ∗ 𝑥2)) (12)  

where 𝑥1 ∈ [−1,1] and 𝑥2 ∈ [−1,1] 

5. 2-input function from Gu et.al.16, 17 

 
𝑎 = 40 ∗ 𝑒𝑥𝑝 (8 ∗ ((𝑥1 − .5)2

+ (𝑥2 − .5)2)) 
𝑏 = 𝑒𝑥𝑝 (8 ∗ ((𝑥1 − .2)2 + (𝑥2 − .7)2)) 
𝑐 = 𝑒𝑥𝑝 (8 ∗ ((𝑥1 − .7)2 + (𝑥2 − .2)2)) 

𝑦 = 𝑎/(𝑏 + 𝑐) 

(13)  

 

where 𝑥1 ∈ [0,1] and 𝑥2 ∈ [0,1] 

6. 2-input function from Masters16, 17 

 
𝑦 = (1 + sin(2𝑥1 + 3𝑥2))/(3.5

+ sin(𝑥1 − 𝑥2)) 

(14)  

 

where 𝑥1 ∈ [−2,2] and 𝑥2 ∈ [−2,2] 

7. 2-input function from Maechler et. al. 18, 16, 15 

 
𝑦 = 42.659(. 1 + 𝑥1(. 05 + 𝑥1

4 − 10𝑥1
2𝑥2

2

+ 5𝑥2
4)) 

(15)  

 

where 𝑥1 ∈ [−5,5] and 𝑥2 ∈ [−5,5] 

8. 2-input function from Maechler et. al. 18, 16, 15 

 
𝑦 = 1.3356[1.5(1 − 𝑥1)

+ exp(2𝑥1

− 1) sin(3𝜋(𝑥1 − .6)2)

+ exp(3(𝑥2

− .5)) sin (4𝜋(𝑥2

− .9)2)] 

(16)  

 

where 𝑥1 ∈ [0,1] and 𝑥2 ∈ [0,1] 

9. 2-input function from Maechler et. al. 18, 16, 15 

 
𝑦
= 1.9[1.35
+ exp(𝑥1) sin(13(𝑥1

− .6)2) exp(−𝑥2) sin(7𝑥2)] 

(17)  

 

where 𝑥1 ∈ [0,1] and 𝑥2 ∈ [0,1] 

10. 6-input function from Friedman 19 

 
𝑦 =  10𝑠𝑖𝑛(𝜋𝑥1𝑥2)  +  20(𝑥3  −  .5)2  

+  10𝑥4  +  5𝑥5  +  0𝑥6  

(18)  

 

where 𝑥1 ∈ [−1,1] and 𝑥2 ∈ [−1,1] 
 

750 input samples are generated for each function & 

corresponding output is generated by executing the 

function. Thus, 750 input-output samples form the training 

and test data set. Out of these 750 input-output dataset, 250 

input-output samples are used for training and remaining 

500 are used for testing. During the training process of 

network, both input-output samples are given to network, 

whereas for testing only input sample are given and 

outputs are generated using trained network. This output 

is compared to actual output to generate error. All the 

samples in input-output data sets are scaled to [−1,1]. 
The size of network is summarized in Table 1. The no. 

of input & output is given in the function definition.  𝑁𝐻 

is calculated by conducting exploratory experiments for 

each of the above function by varying 𝑁𝐻 from 4 to 20. 

The optimal value of 𝑁𝐻 for which the result was in a way 

optimal, is considered as value of 𝑁𝐻. 

RPROP (Resilient Backpropagation Algorithm) 

proposed by Reidmiller and Braun20 is used in training 

networks. In RPROP, there is direct adaptation of weight 

step on the basis of local gradient and the current and the 

previous value of the error of training. 

For all of the above 10 function approximation 

problems, 30 networks are trained using the RWIT, 

INVWIT and SRINWIT keeping training algorithms, no. 

of hidden nodes, activation function and other factors as 

constant. A total of 10 × 30 × 2 = 600 networks are 

trained & each network is trained for 1000 epochs. 

These experiments are conducted using MATLAB 

R2015a on a 64 bit Intel i5,  Microsoft Windows 10 system 

with 4 GB RAM. 

Mean of the mean squared error (MMSE) and median 

of the MSE (MEDIAN) are reported for both training and 

testing data for all the three weight initialization 
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techniques RWIT, INVWIT and SRINWIT in Table 2 and 

5. 

V. RESULTS AND DISCUSSION: 

Due to large data volumes of in the experiment, the 

result summary for both train and test data is reported. 

MEAN OF MEAN SQUARE ERROR (MMSE) 

The results of MMSE for RWIT, INVWIT and 

SRINWIT for both train and test data are reported in Table 

2. 

 

Train Data.On inspecting values of train data, it is 

observed that for functions 1, 2, 3, 4, 5, 6, 7, 8, 9 

MMSE (RWIT) > 𝑀𝑀𝑆𝐸(INVWIT)
> 𝑀𝑀𝑆𝐸(𝑆𝑅𝐼𝑁𝑊𝐼𝑇) 

For Function 10, 

MMSE (RWIT) > 𝑀𝑀𝑆𝐸(SRINWIT)
> 𝑀𝑀𝑆𝐸(𝐼𝑁𝑉𝑊𝐼𝑇) 

Table 3 indicates the best technique in terms of MEAN for 

each function for train data. Based on Table 3 we can 

summarize the results for test data as follows: 

─ Performance of SRINWIT is best for 9 functions.  

─ Performance of INVWIT is best for 1 function. 

Test Data.On inspecting values of test data, it is observed 

that for functions 1, 2, 3, 4, 6, 7, 8 and 9 

MMSE (RWIT) > 𝑀𝑀𝑆𝐸(INVWIT)
> 𝑀𝑀𝑆𝐸(𝑆𝑅𝐼𝑁𝑊𝐼𝑇) 

For Function 5 

MMSE (RWIT) > 𝑀𝑀𝑆𝐸(SRINWIT)
> 𝑀𝑀𝑆𝐸(𝐼𝑁𝑉𝑊𝐼𝑇) 

For Function 10, 

MMSE (SRINWIT) > 𝑀𝑀𝑆𝐸(RWIT)
> 𝑀𝑀𝑆𝐸(𝐼𝑁𝑉𝑊𝐼𝑇) 

 
Table 4 indicates the best technique in terms of MEAN for 

each function for test data. Based on Table 4 we can 

summarize the results for test data as follows: 

─ Performance of SRINWIT is best for 8 functions.  

─ Performance of INVWIT is best for 2 functions. 

MEDIAN OF MSE (MEDIAN) 

 

The results of MEDIAN for RWIT, INVWIT and 

SRINWIT for both train and test data are reported in Table 

5.  

Train Data.On inspecting values of train data, it is 

observed that for Functions 2, 6, 7 and 8 

MEDIAN (RWIT) > 𝑀𝐸𝐷𝐼𝐴𝑁(INVWIT)
> 𝑀𝐸𝐷𝐼𝐴𝑁(𝑆𝑅𝐼𝑁𝑊𝐼𝑇) 

For Functions 1 and 9 

MEDIAN (INVWIT) > 𝑀𝐸𝐷𝐼𝐴𝑁(RWIT)
> 𝑀𝐸𝐷𝐼𝐴𝑁(𝑆𝑅𝐼𝑁𝑊𝐼𝑇) 

For Function 3 

MEDIAN (RWIT) > 𝑀𝐸𝐷𝐼𝐴𝑁(SRINWIT)
> 𝑀𝐸𝐷𝐼𝐴𝑁(𝐼𝑁𝑉𝑊𝐼𝑇) 

For Functions 4, 5 and 10 

MEDIAN (SRINWIT) > 𝑀𝐸𝐷𝐼𝐴𝑁(RWIT)
> 𝑀𝐸𝐷𝐼𝐴𝑁(𝐼𝑁𝑉𝑊𝐼𝑇) 

Table 6 indicates the best technique in terms of MEDIAN 

for each function for train data. Based on Table 6 we can 

summarize the results for test data as follows: 

─ Performance of SRINWIT is best for 6 functions.  

─ Performance of INVWIT is best for 4 functions. 

In terms of MEDIAN of train data, performance of 

SRINWIT is best, INVWIT is average and RWIT is 

worse. 

 

Test Data.On inspecting values of test data, it is observed 

that for functions 3, 6, 7 and 8 

MEDIAN (RWIT) > 𝑀𝐸𝐷𝐼𝐴𝑁(INVWIT)
> 𝑀𝐸𝐷𝐼𝐴𝑁(𝑆𝑅𝐼𝑁𝑊𝐼𝑇) 

For Function 1, 2 4 and 9 

MEDIAN (INVWIT) > 𝑀𝐸𝐷𝐼𝐴𝑁(RWIT)
> 𝑀𝐸𝐷𝐼𝐴𝑁(𝑆𝑅𝐼𝑁𝑊𝐼𝑇) 

For Function 5 

MEDIAN (RWIT) > 𝑀𝐸𝐷𝐼𝐴𝑁(SRINWIT)
> 𝑀𝐸𝐷𝐼𝐴𝑁(𝐼𝑁𝑉𝑊𝐼𝑇) 

For Function 10 

MEDIAN (SRINWIT) > 𝑀𝐸𝐷𝐼𝐴𝑁(RWIT)
> 𝑀𝐸𝐷𝐼𝐴𝑁(𝐼𝑁𝑉𝑊𝐼𝑇) 

Table 7 indicates the best technique in terms of MEDIAN 

for each function for test data. Based on Table 7 we can 

summarize the results for test data as follows 

─ Performance of SRINWIT is best for 8 functions.  

─ Performance of INVWIT is best for 2 functions. 

VI. CONCLUSION: 

In this paper, a Statistically Resilient Moore-Penrose 

Inverse based Weight Initialization Technique 

(SRINWIT) for SFANN is proposed in which input to 

hidden weights are initialized using Statistically Resilient 

Weight Initialization technique NWIT keeping in mind 

that the output of hidden neurons lie in the useful range of 

activation function and utilizes the complete (useful) 

range of activation function. The hidden to output weights 

are initialized using Moore-Penrose inverse method. The 

proposed method SRINWIT is compared to RWIT and 

INVWIT for 10 function approximation task. On 

comparing performance of these functions on statistics 

like MMSE, MEDIAN the performance of SRINWIT is 

found to be superior to RWIT and INVWIT. We hereby 

conclude that SRINWIT is better weight initialization 

technique for SFANN for at least these 10 function 

approximation task. 
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Fig. 1. The schematic diagram for SFANN 

Table 1. Network Size Summary 

Function No. of Inputs No. of hidden 

nodes 

No. of outputs 

Fun1 1 7 1 

Fun2 2 12 1 

Fun3 2 15 1 

Fun4 2 15 1 

Fun5 2 4 1 

Fun6 2 15 1 

Fun7 2 15 1 

Fun8 2 10 1 

Fun9 2 12 1 

Fun10 6 10 1 

Table 2. Results Summary For Mean Of Mean Square Error For Training And Testing Data Of RWIT & INVWIT. Value 

Of All Statistics Are Reported × 10−3 

 Train Data Test Data 

Function RWIT INVWIT SRINWIT RWIT INVWIT SRINWIT 

1 1.809 1.453 1.037 1.789 1.484 1.032 

2 0.312 0.232 0.192 0.523 0.473 0.45 

3 13.393 10.683 9.386 17.053 14.275 13.719 

4 19.693 17.373 16.447 26.11 25.947 25.319 

5 0.191 0.18 0.162 0.319 0.287 0.29 

6 49.357 12.895 8.314 54.797 15.752 9.937 

7 7.909 5.22 3.604 9.365 7.102 4.84 

8 3.962 3.246 2.593 4.232 3.46 2.707 

9 6.359 5.71 4.33 8.374 7.88 6.04 

10 1.056 0.637 0.647 2.946 2.243 2.986 
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Table 3. Performance of RWIT, INVWIT and SRINWIT for Functions 1-10 for train data.  indicate that performance 

of that technique is best for the function (MEAN has least value). N indicates the no. of functions for which the 

performance is best 

Function 1 2 3 4 5 6 7 8 9 10 N 

RWIT           0 

INVWIT           1 

SRINWIT           9 

 

Table 4. Performance of RWIT, INVWIT and SRINWIT for Functions 1-10 for test data.  indicate that performance of 

that technique is best for the function (MEAN has least value). N indicates the no. of functions for which the performance 

is best 

Function 1 2 3 4 5 6 7 8 9 10 N 

RWIT           0 

INVWIT           2 

SRINWIT           8 

 

Table 5. Results Summary For Median Of Mean Square Error For Training And Testing Data Of RWIT & INVWIT. 

Values Of All Statistics Are Reported × 10−3 

 

 Train Data Test Data 

Function RWIT INVWIT SRINWIT RWIT INVWIT SRINWIT 

1 
1.026 1.063 1.013 1.027 1.052 0.992 

2 0.263 0.224 0.179 0.429 0.458 0.426 

3 12.955 10.407 12.714 17.144 14.073 13.719 

4 20.164 16.879 24.313 25.397 25.544 25.319 

5 0.183 0.176 0.248 0.326 0.265 0.29 

6 22.277 11.302 10.008 23.892 13.165 9.937 

7 6.405 5.1 4.38 8.108 7.12 4.84 

8 4.459 2.552 1.686 4.663 2.751 2.707 

9 5.65 5.67 3.86 7.471 7.73 5.35 

10 1.009 0.617 2.631 2.907 2.192 2.986 

 

Table 6. Performance of RWIT, INVWIT and SRINWIT for Functions 1-10 for train data.  indicate that performance 

of that technique is best for the function (MEDIAN has least value). N indicates the no. of functions for which the 

performance is best 

Function 1 2 3 4 5 6 7 8 9 10 No 

RWIT           0 

INVWIT           4 

SRINWIT           6 
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Table 7. Performance of RWIT, INVWIT and SRINWIT for Functions 1-10 for test data.  indicate that performance of 

that technique is best for the function (MEDIAN has least value). N indicates the no. of functions for which the 

performance is best 

Function 1 2 3 4 5 6 7 8 9 10 N 

RWIT           0 

INVWIT           2 

SRINWIT           8 

 

 


