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Abstract: Random number generation refers to many applications such as simulation, numerical analysis, cryptog- 

raphy etc. Field Programmable Gate Array (FPGA) are reconfigurable hardware systems, which allow rapid 

prototyping. This research work is the first comprehensive survey on how random number generators are 

implemented on Field Programmable Gate Arrays (FPGAs). A rich and up-to-date list of generators specifi- cally 

mapped to FPGA are presented with deepned 

 technical details on their definitions and implementations. A classification of these generators is presented, which 

encompasses linear and nonlinear (chaotic) pseudo and truly random number generators. A statistical comparison 

through standard batteries of tests, as well as implementation comparison based on speed and area performances, 

are finally presented.s. 
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I. INTRODUCTION 

Randomness is a common word used in many applications 

[1] such as simulations [2], numerical analysis [3], 

computer pro- gramming, cryptography [4], decision 

making, sampling, etc. The general idea lying behind this 

generic word most of the times refers to sequences, 

distribution, or uniform outputs generated by a specific 

source of entropy. In other words, the probabilities to 

generate the same output are equal (50% to have ‘‘0’’ or 

‘‘1’’). If we take the security aspect,  many  cryptosystem 

algorithms rely on the generation of random numbers. 

These random numbers can serve for instance to produce 

large prime numbers which are at the origin of cipher key 

construction [5] (for example, in RSA algorithm [6], in 

Memory Encryption [7] or Rabin signatures [8]). 

Furthermore, when the generators satisfy some very 

stringent properties of security, the generated numbers can 

act as stream cyphers in symmetric cryptosystems like the 

one-time pad, proven cryptographically secure under some 

assumptions [9]. Randomiza- tion techniques are especially 

critical since these keys are usually updated for each 

exchanged message. Even if an adversary has partial 

knowledge about the random generator, the behavior of this 

latter should remain unpredictable to preserve the overall 

security. From a historical point of view, numerical tables 

and physical devices have provided the first sources of 

randomness designed for scientific applications. On the one 

hand, random numbers were extracted from numerical 

tables like census reports [10], mathe- matical tables [11] 

(like logarithm or trigonometric tables, of inte- grals and of 

transcendental functions, etc.), telephone directories, and so 

on. On the other hand, random numbers were extracted also 

from some kind of mechanical or physical computation like 

the first machine of Kendall and Babington-Smith [12], 

Ferranti Mark 1 computer system [13] that uses the 

resistance noise as a physical entropy to implement the 

random number instruction in the accumulator, the RAND 

Corporation [14] machine based on an electronic roulette 

wheel, or ERNIE (Electronic Random Number Indicator 

Equipment [15]), which was a famous random number 

machine based on the noise of neon tubes and used in Monte 

Carlo simulations [16,17]. 

These techniques cannot satisfy today’s needs of 

randomness due to their mechanical structure, size  

limitation  when  tables  are used [11], and memory space. 

Furthermore, it may be of im- portance to afford to 

reproduce exactly the same ‘‘random se- quence’’ given an 

initial condition (called a ‘‘seed’’), for instance    in 

numerical simulations that must be reproducible — but 

physical generation of randomness presented above does 

not allow such a reproducibility. With the evolution of 

technologies leading to com- puter machines, researchers 

start searching for low cost, efficient, and possibly 

reproducible Random Number Generators (RNGs). This 

search historically began with John von Neumann, who pre- 

sented a generation way based on some computer arithmetic 

op- erations. Neumann generated numbers by extracting the 

middle digits from the square of the previously generated 

number and     by repeating this operation again and again. 

This method called mid-square is periodic and terminates in 

a very short cycle. There- fore, periodicity and deterministic 

outputs  that  use  an  operator or arithmetic functions are 

the main difference with the earlier generators. They are 

known in literature as ‘‘pseudorandom’’ or ‘‘quasirandom’’ 

number generators (PRNGs), while circuits that use a 

physical source to produce randomness are called ‘‘true’’ 

random number generators (TRNGs). 

TheFPGA devices are reconfigurable hardware systems. 

They allow a rapid prototyping, i.e., explore a number of 

hardware solutions and select the best one in a shorter time. 

The design methodology on FPGA relies on the use of a 

High Description Language (i.e, Verilog, VHDL, or 

SystemC) and a synthesis tool. Because of this, FPGA  has 

become popular platforms for implementing random gener- 

ators or complete cryptographic schemes, due to the 

possibility to achieve high-speed and high-quality 

generation of random. 

II. STATISTICAL TEST ANALYSIS 

Statistical tests are used to evaluate whether the output of a 

given RNG can be separated from a real random sequence 
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obtained, for instance, by rolling a dice. Such tests are 

usually grouped    in ‘‘Batteries’’, like the FIPS [132], 

DieHARD [25], NIST SP800  22 [133], TestU01 [26], or 

AIS [134] ones. In what follows, the content of these tests is 

recalled, for completeness purpose so as to make our article 

self-contained. 

The National Institute of Standard and Technologies 

introduced their first test battery namely Federal Information 

Processing Stan- dard (FIPS) 140-1 [132] in 1994. These 

quick result tests have been further updated to the FIPS 140-

2 [135] version, which covers more complex test batteries 

(focused for instance on security level). 

Meanwhile, the DieHARD battery has been proposed by 

George Marsaglia [25]. It contains 18 tests of randomness. It 

was designed to provide a better way of analysis in 

comparison to the pre- viously released NIST tests. Unlike 

this latter, the p-values have now to belong to some fixed 

chosen interval α, 1 α , with a signification level of α for 5% 

for instance. An example of these batteries are: ‘‘Birthday 

spacings’’, ‘‘Overlapping permutations’’, ‘‘Ranks of 

matrices’’, ‘‘Monkey tests’’, ‘‘Count the 1′s’’, ‘‘Parking 

lot’’, ‘‘Minimum distance’’, ‘‘Random spheres’’, ‘‘The 

sqeeze test’’, ‘‘Overlapping sums’’, ‘‘Runs’’, and ‘‘The 

craps’’. 

The AIS-31 battery [134] is a German standard to test and 

eval- uate the security properties of truly random number 

generators. It uses 9 statistical tests for the evaluation of a 

TRNG. AIS can be divided in two categories: the first one 

consists of T0-T4, which are the same function of FIPS 140-

1 [132]. These later are mostly used to test the outputs of a 

post-processing. T0 is the ‘‘disjointedness test’’, which 

collects 65 536 of 48-bit and verifies that two adjacent values 

must not be equal. T1 is the monobit test, T2 is the poker 

test, T3 is the run test, and T4 is the longest run test. As for 

T5, it is part, is the auto-correlation test, and T6 is a 

‘‘uniform distribution test’’ including of 2 sub-tests. T7 is a 

‘‘comparative test for multinomial distributions’’, and 

finally T8 is an entropy test (Coron’s test). 

In the other side, National Institute of Standard and Tech- 

nologies introduces a new test battery known as ‘‘NIST 

SP800 22’’ [133]. This one aims at testing the random profile 

of a given sequence using 15 tests. More precisely, it 

evaluates a long binary sequences generated by the RNG for 

the randomness and a higher security testing level than the 

FIPS 140-2. The tested sequences must have a fixed length 

N , where the parameter N is such that 103 < N < 107. Then, 

for each statistical test, a set of s sequences is produced by 

the RNG under test, and p-values are obtained. They all need 

to be larger than 0.0001 to reasonably consider the as- 

sociated sequences as uniformly distributed and 

cryptographically secure according to NIST standards. 

The TestU01 battery is now the most complete and stringent 

battery of tests for RNG [26]. It was initially developed by 

‘‘Pierre L’Ecuyer’’ and was implemented in the ANSI C 

language with more than 516 tests grouped inside 7 big sub-

batteries. This new battery of tests covers various classical 

tests already present in other batteries with new algorithms 

for performance and cryptographic tests. 

 

 

III. STATISTICAL RESULTS OF FPGA BASED RNG 

 

In Tables 1 and 2, a number of generators are classified 

accord- ing to the battery test they have undergone. As it can 

be observed, the most stringent battery (Big crush) has only 

been applied twice in the literature, namely [107,122]. Let us 

notice that most (P)RNGs pass the Diehard and NIST 

batteries, while only a few PRNGs have 

next have deeply investigated the non-linear ones, based on 

Blum– Blum–Shub or on chaotic maps. Then a large review 

of the true random number generators for FPGA has been 

proposed, encom- passing respectively the phase-locked 

loop, the ring oscillator, the self-timed ring, and the stability 

TRNG. For each type of RNG, a hardware analysis regarding 

area and throughput has been pro- vided. A section about 

statistical tests has finally been proposed, containing the 

detail of state-of-the-art batteries of tests, and the test results 

of some generators reviewed in this article against these 

batteries. 

It has been tested using the FIPS that has been integrated 

latter inside the NIST. Considering the TestU01 one, only 

crush batteries are usually considered. All generators fail at 

least one test, with the exception of chaotic iterations 

generators that can pass the whole battery. 

Authors in [111,112] investigate the related problem for 

linear PRNGs. They show too that usual chaotic PRNGs are 

not passing the BigCrush when they consider its non 

linearity. However, being linear does not lead to a high linear 

complexity, which is defined by the degree of their 

polynomial characteristic function. How- ever, most random 

number generators are linear recursive, and so they fail in the 

so-called statistical Linear Complexity Test of TestU01 [26]. 

This test characterizes the (P)RNGs by their longest LFSR 

model: non randomness is claimed when the model is too 

short. This model is estimated by using the well-known 

Berlekamp– Massey algorithm [136]. It determines the 

shortest polynomial of a linearly recurrent finite output 

sequence in GF2. Note that all the other generators fail too 

the linear complexity test, except for PCG32 and MRG32K 

3a: indeed, only PRNGs based on chaotic iterations are 

passing TestU01. Under this category, the authors propose 

too an extended internal space of 64 bits (CIPRNG-XOR) 

for 32 bits generators, when they increase the number of 

internal iterations to be uniformly distributed and to pass 

statistical tests. 

Finally, TRNGs are hard to test with TestU01 (specially the 

BigCrush battery), as it needs 1038 random bits for a full 

test. Fig. 18 shows a general throughput of the order of kbps, 

which makes it difficult to collect the minimum amount of 

data needed in such tests. Under these conditions, only the 

TRNG of [122] based on ring oscillators has been proven to 

pass with success the BigCrush battery. Note finally that 

other batteries offer more flexibility and need a lower 

amount of bits for their embedded tests (namely, Diehard, 

NIST, and AIS), but they are less stringent and trustworthy 

than TestU01. 
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IV. EXPERIMENTAL RESULTS AND HARDWARE 

ANALYSIS 

Methodology 

Formally speaking, the space represents the allocation cost 

of most objects used in the algorithm (tables, indexes, loops, 

etc.). It can also be combination of many PRNG algorithms. 

In terms of FPGAs, the latter can be translated in memories, 

registers, and LUT resources, etc. These resources can be a 

single basic operation (like addition or subtraction, 

multiplication of variables or constants), algebraic functions 

(division, modulo, etc.), or any other elemen- tary function. 

The question raised in this section is thus: how much 

hardware resources are needed to provide pseudorandom 

numbers with a good statistical profile? And which 

algorithms outperform the other ones in terms of internal 

resources, while providing higher throughput? 

Almost aforementioned (P)RNGs have been evaluated 

regarding their hardware performance according to three 

parameters: (1) the area, which is the result of (LUT FF )  8, 

(2) the throughput  being the frequency (clock-to-setup) 

multiplied by the RNG output length for one clock cycle, and 

(3) the ratio between throughput over area in Mega bits per 

area unit. 

Hardware implementation resources required by linear 

(P)RNGs, their throughput, and the rate area over throughput 

are presented in Fig. 16, when nonlinear ones are in Fig. 17. 

Finally, the TRNGs are represented in Fig. 18. 

Let us start to discuss the results obtained with linear 

PRNGs, as illustrated in Fig. 16. It appears clearly that the 

cellular automata has the lowest area, when compared to the 

other approaches. Such results can be explained by the need 

of a low amount of resources to store both the states and the 

rules in the cellular automata. Conversely, the TGFSR 

family deploys BRAM block memories to read 3 word and 

write the output in one cycle, whereas LFSR family uses 

more LUTs in order to parallelize the shifting process based 

on the polynomial equation. Another parameter is the use of 

black box as DSP and block memories. The latter optimize 

the logic operation as multiplication, support the floating 

point, store internal process in a multidimensional bloc, and 

finally read and write multiple states in parallel from the 

BRAM. These advantages, leading to the difficulty to 

compare such designs to other ones that do not have that, 

lead naturally to further area bloc consumption in the case of 

an ASIC implementation. As a consequence, we will 

consider that (P)RNGs without black boxes are better and 

more recommended for cryptographic applications. 

V. STATISTICAL TEST ANALYSIS 

Statistical tests are used to evaluate whether the output of a 

given RNG can be separated from a real random sequence 

obtained, for instance, by rolling a dice. Such tests are 

usually grouped    in ‘‘Batteries’’, like the FIPS [132], 

DieHARD [25], NIST SP800  22 [133], TestU01 [26], or 

AIS [134] ones. In what follows, the content of these tests is 

recalled, for completeness purpose so as to make our article 

self-contained. 

The National Institute of Standard and Technologies 

introduced their first test battery namely Federal Information 

Processing Stan- dard (FIPS) 140-1 [132] in 1994. These 

quick result tests have been further updated to the FIPS 140-

2 [135] version, which covers more complex test batteries 

(focused for instance on security level). Meanwhile, the 

DieHARD battery has been proposed by George Marsaglia 

[25]. It contains 18 tests of randomness. It was designed to 

provide a better way of analysis in comparison to the pre- 

viously released NIST tests. Unlike this latter, the p-values 

have now to belong to some fixed chosen interval α, 1 α , 

with a signification level of α for 5% for instance. An 

example of these batteries are: ‘‘Birthday spacings’’, 

‘‘Overlapping permutations’’, ‘‘Ranks of matrices’’, 

‘‘Monkey tests’’, ‘‘Count the 1′s’’, ‘‘Parking lot’’, 

‘‘Minimum distance’’, ‘‘Random spheres’’, ‘‘The sqeeze 

test’’, ‘‘Overlapping sums’’, ‘‘Runs’’, and ‘‘The craps’’. 

The AIS-31 battery [134] is a German standard to test and 

eval- uate the security properties of truly random number 

generators. It uses 9 statistical tests for the evaluation of a 

TRNG. AIS can be divided in two categories: the first one 

consists of T0-T4, which are the same function of FIPS 140-

1 [132]. These later are mostly used to test the outputs of a 

post-processing. T0 is the ‘‘disjointedness test’’, which 

collects 65 536 of 48-bit and verifies that two adjacent values 

must not be equal. T1 is the monobit test, T2 is the poker 

test, T3 is the run test, and T4 is the longest run test. As for 

T5, it is part, is the auto-correlation test, and T6 is a 

‘‘uniform distribution test’’ including of 2 sub-tests. T7 is a 

‘‘comparative test for multinomial distributions’’, and 

finally T8 is an entropy test (Coron’s test). 

In the other side, National Institute of Standard and Tech- 

nologies introduces a new test battery known as ‘‘NIST 

SP800 22’’ [133]. This one aims at testing the random profile 

of a given sequence using 15 tests. More precisely, it 

evaluates a long binary sequences generated by the RNG for 

the randomness and a higher security testing level than the 

FIPS 140-2. The tested sequences must have a fixed length 

N , where the parameter N is such that 103 < N < 107. Then, 

for each statistical test, a set of s sequences is produced by 

the RNG under test, and p-values are obtained. They all need 

to be larger than 0.0001 to reasonably consider the as- 

sociated sequences as uniformly distributed and 

cryptographically secure according to NIST standards. 

 

VI. CONCLUSION 

We have provided a widespread coverage of the current re- 

search in hardware implementation of random number 

generators   
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