
 Rakesh Garg. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 3,

Sept 2017, pp. 44-49

© 2017 IJRRA All Rights Reserved page- 44-

A Comprehensive Review on

Regression Testing Techniques

Rakesh Garg

Associate Professor, Department of Computer Science & Engineering, Amity University,
Noida, Uttar Pradesh

Abstract: The purpose of regression testing is to ensure that changes made to software, such as adding new

features or modifying existing features, have not adversely affected features of the software that should not

change. Regression testing is usually performed by running some, or all, of the test cases created to test

modifications in previous versions of the software. Many techniques have been reported on how to select

regression tests so that the number of test cases does not grow too large as the software evolves As the software

systems evolve with time, regression testing is an important and very expensive activity to ensure that this

evolution will not disrupt the existing functionalities of the system. An important issue, in this context, is optimal

selection of subset of test cases from the initial test suite to minimize the testing time, cost and effort.

Researchers have proposed various types of regression test selection techniques that are code-based, and model-

based. Code-based regression test selection techniques can be effectively applied for unit-testing. It uses

relationship between code parts and test cases that traverse them to locate test cases for retest when code is

modified. This paper is the analysis of both code-based and model-based regression testing technique according

to some comparison and evaluation criterion.

Keywords: Regression Testing

I. INTRODUCTION

Regression testing is expensive and essential part of an

effective testing process, for achieving quality of the

software and for gaining confidence in modified software.

Regression testing is performed on modified software to

provide confidence that modified code behaves as

intended and that modifications have not adversely

affected the unmodified part of the software[12].In

regression testing existing test suite developed for the

original program can be reused to test the modified

software. Instead of rerunning whole tests from original

test, selective regression testing approach select a subset

of test suite relevant for modified and affected part of the

program. Regression testing is effective and reduce cost

iff the cost of selecting a part of test suite is less than the

cost of running the tests that are omitted. During

maintenance, both the specification and implementation

of the software are modified to fix defects, change

functionality, or satisfy new requirements. For both types

of modifications regression testing can be categorized into

two types: Corrective regression testing and Progressive

regression testing. Progressive regression testing is

applied when specifications have been changed and new

test cases must be designed for the added part of the

specification. It is well known that regression testing

generally has been applied in maintenance phase.

However with object-oriented programming techniques,

evolutionary process model or an incremental model is

followed by projects. Under this model, components from

legacy systems or third parties will be re-used in new

projects. Thus regression testing is an important activity

to gain confidence in re-used components. Regression

testing can be applied in various ways code based,

specification-based and model-based. Code-based

techniques are white-box method that is they select test

cases based on the difference between original and

modified code. It uses relationships between code parts

and test cases that traverse them to locate test cases for

retest when code is modified. An important issue with

unit-testing is scalability problem. As software systems

grow in size and complexity, so does the need for higher

level models and abstractions in their development.

Model centric development creates opportunities to drive

regression testing processes at higher abstraction levels.

A model-based technique is a black-box method. It selects

test cases based on model modification, so it uses

relationships between model elements and test cases that

traverse those elements to locate test cases for retest.

Instead of rerunning whole tests from original test,

selective regression testing approach select a subset of test

suite relevant for modified and affected part of the

program. Selective regression testing is effective and

reduces cost if the cost of selecting a part of test suite is

less than the cost of running the tests that are omitted.

During maintenance, both the specification and

implementation of the software are modified to fix

defects, change functionality, or satisfy new

requirements. For both types of modifications regression

testing can be categorized into two types: Corrective

regression testing and Progressive regression testing.

 Rakesh Garg. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 3, Sept
2017, pp. 44-49

© 2017 IJRRA All Rights Reserved page- 45-

Corrective regression testing is applied when

specification is not changed: probably some other changes

are done i.e. correcting an error. Progressive regression

testing is applied when specifications have been changed

and new test cases must be designed for the added part of

the specification. It is well known that regression testing

generally has been applied in maintenance phase.

However with object-oriented programming techniques,

evolutionary process model or an incremental model is

followed by projects. Under this model, components from

legacy systems or third parties will be re-used in new

projects. Thus regression testing is an important activity

to gain confidence in re-used components. Regression

testing can be applied in various ways code based,

specification-based and model-based. Code-based

techniques are white-box method that is they select test

cases based on the difference between original and

modified code. It uses relationships between code parts

and test cases that traverse them to locate test cases for

retest when code is modified. An important issue with

unit-testing is scalability problem. As software systems

grow in size and complexity, so does the need for higher

level models and abstractions in their development.

Model centric development creates opportunities to drive

regression testing processes at higher abstraction levels.

A model-based technique is a black-box method. It selects

test cases based on model modification, so it uses

relationships between model elements and test cases that

traverse those elements to locate test cases for retest.

In the next section we present background about the

regression testing, in section 3 and 4 the survey of existing

code-based and model-based techniques is presented with

detail discussion. Code-based and Model-based

regression testing approaches are evaluated in section 5,

finally we concluded in section 5.

II. BACKGROUND

Regression testing process involves selecting a subset of

the test cases from the original test suite, and if necessary

creates some new test cases to test the modified software.

Regression Testing

Let 𝑃 is the original software product, 𝑃′ is the modified

software product and T is the set test cases to test 𝑃. A

typical regression testing on modified software proceeds

as follows:

1. Select 𝑇′ ⊆𝑇, a set of test cases to execute on the

modified software product 𝑃′.

2. Test 𝑃′ with 𝑇′, to verify modified software product’s

correctness with respect to T′.

3. If necessary, create 𝑇′′ , a set of new test cases to test

𝑃′.

4. Test 𝑃′ with new tests 𝑇′′, to validate 𝑃′ with respect to

𝑇′′.

5. Create 𝑇′′′, a new test suite and test history for 𝑃′, from

𝑇, 𝑇′, and 𝑇′′.

In performing the above mentioned steps, a selective

retest approach addresses several problems. Step 1

involves the regression test selection problem. This

problem also identifies test cases in T that are now

obsolete for 𝑃′.Test t is obsolete if t specifies an input to

𝑃′ is no longer valid for 𝑃′,or t specifies an invalid input-

output relation for 𝑃′. Step3involves the coverage

identification problem: the problem of identifying

portions of 𝑃′ or 𝑆′ that requires additional testing. Steps

2 and 4 address the test execution problem. Step 5

addresses the test maintenance problem: the problem of

updating and storing test information [8].

Framework for Evaluation

M.J Harrold [11] proposed a set of basis in which

selective retest techniques can be compared and

evaluated. These categories are inclusiveness, precision,

efficiency, generality, and accountability.

Inclusiveness

Inclusiveness measures the extent to which a selective

retest strategy S selects modification-revealing tests from

the initial test suit T for inclusion in T′ where a test 𝑇𝑖∈𝑇

is modification-revealing if it produces different outputs

in P and P′. ‘m’ of these test-cases. The inclusiveness of

S with respect to P, P′ and T is expressed as ((m/n)∗100).

Note: If for all P, P′ and T, S is 100% inclusive relative to

P, P′ and T then S is safe.

Precision

Precision the extent to which a selective retest strategy

ignores test cases that are non-modification-revealing.

Test cases that are Suppose T is containing n

modification-revealing tests, and S selects selected by a

technique but are not relevant are false positives. A

selective retest strategy S is, therefore, precise if it there

are no false positives. Suppose T contains n non-

modification-revealing tests, and S selects m of these

tests. The precision of S relative to P, P′ and T is the

percentage calculated by the expression ((m/n)∗100).

Efficiency

Efficiency of a selective retest strategy S is measured in

terms of its space and time requirements. Space efficiency

is affected by the test history and program analysis

information a method store. Where time is concerned, a

selective retest strategy is more economical than a retest-

all strategy if the cost of selecting T′ is less than the cost

of running the test sin T- T′. Thus, efficiency of S varies

with the size of test cases that a method stores, as well as

with the computational cost of that method.

Generality

The generality of a selective retest strategy S is its ability

to function in a wide and practical range of situations.

Accountability

Accountability refers the extent to which a selective retest

strategy promotes the use of structural coverage criteria as

it increase the effectiveness of testing. If a program is

initially tested with such a criterion, then after

 Rakesh Garg. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 3,

Sept 2017, pp. 44-49

© 2017 IJRRA All Rights Reserved page- 46-

modifications it is desirable to confirm that the criterion

remains satisfied

III. CODE BASED APPROACHES

Code based techniques select tests based on changes made

to two versions of the code. These techniques are very

specific to the programming language used to develop the

code. It uses relationships between code parts and test

cases that traverse them to locate test cases for retest when

code is modified.

Control dependence graph based Test Selection

Technique

Rothermel, Harrold, and Dedhia [7] [17] presented a

control flow based regression test selection algorithm.

They used CFGs to represent the implementation of

procedures P and P’ and use edges in the CFGs as

potential affected entities. Affected entity means the

entity is affected (changes its behavior) by the

modification. By traversing in parallel the CFG for P and

the CFG for P’, affected entities are selected. Given two

nodes 𝑁 and 𝑁′, from 𝐺 and G′ respectively, algorithm

determines whether the two nodes have successor nodes

whose labels differ along some pair of identically labeled

outgoing edges. If 𝑁 and 𝑁′ have any such successors, test

cases that traverse the edges to the successors are

modification traversing.

In this case, algorithm selects the edge in 𝐺 that connects

𝑁to that successor and adds it to the set of affected

entities. If𝑁 and 𝑁′ have equivalent successors with like-

labeled edges, traversing continues along the edges. In

Figure 1, there is a sample CFG 𝐺 on the left with its

modified version 𝐺′ on the right. For 𝐺 in Figure1, a test

suite T has been given consisting of test cases t1, t2, and

t3 and the edge-coverage matrix for this test suite is shown

in Table 1. From 𝐺 to 𝐺′, a node S5a has been inserted and

node S7 has been erroneously deleted. The algorithm

begins the traversal at entry nodes in 𝐺 to 𝐺′, and traverses

like paths in the two graphs by traversing like-labeled

edges until detecting a difference in the target nodes of

these edges. When the algorithm reaches node P4 and P4′

in 𝐺 and 𝐺′, it finds that the targets of the branches labeled

“T” differ. It adds edge (P4,S5) to the set of affected

entities and stops its traversal along this path. Therefore

test case T2 is selected for regression testing. The

algorithm then considers the edges labeled “F” from node

P4. When reaches nodes S6 and S6’in 𝐺 and 𝐺′, it

discovers that the labels of the successors of these nodes,

S7 and 𝑆8′ differ; therefore, edge (S7, S8) is added to the

set of tests for retesting, and traversal along this path has

been stopped. There might be changes that occur later in

the same path. Before it reaches these changes, a test case

will certainly pass the first change. Identifying the first

change is enough for identifying test cases for later

changes. There are no additional affected edges found in

subsequent traversals. After all affected edges have been

identified; they are used with the edge-coverage matrix to

select test cases.

Fig 1. CFGs G and G’ for P and P’

Evaluation

This technique is Safe. It selects each modification

traversing test that executes a new or modified statement

in P’, therefore selects each modification revealing test

that may produce different output for P and P’ It is not

precise because if a node containing the definition of

variable V is changed, the algorithm selects all tests that

enter the region (E) that encloses V. However there exist

a test t that never reaches a use of V and cannot cause the

modified program to produce different output. It is

efficient, it can run in time O(|T| 𝑛2) ,Can be fully

automatable ,does not require prior computation of

mapping original program and its modified version, in the

presence of significant changes avoid processing and

stops traversing. It support generality, it can be applied to

all procedural languages; support both intra procedural

and inter procedural test selection. It does not fulfill

Coverage Criteria because does not guarantee the

traversal of the modified part of the program.

Program dependence graph based Test Selection

Technique

Rothermel [12] presented a program dependence graph

based regression test selection algorithm. A PDG

represents both control dependence and data dependence

 Rakesh Garg. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 3,

Sept 2017, pp. 44-49

© 2017 IJRRA All Rights Reserved page- 47-

in a single graph. It contains several types of nodes;

statement nodes, region nodes which summarize the

control dependence conditions necessary to reach

statements in the region and predicate node. The

algorithm uses PDGs that represent the implementation of

procedure P and 𝑃′, test suite T of the original program,

and a Boolean function Correspondence that tracks the

mapping between nodes in both PDGs. The Proposed

algorithm excludes tests that execute changed definition

statement, but do not reach uses of changed definition.

The use of control dependence information ensures

selection of safe test sets while data dependence

information improves precision in test selection. The

algorithm begins the traversal at entry nodes in original

PDG G and modified PDG 𝐺′and check the

correspondence between nodes N and 𝑁′. Correspondence

is a pair of arrays that track each node in 𝐺 and 𝐺′. If

correspondence between two nodes in 𝐺 and 𝐺′ cannot be

mapped, then all tests through N must be selected. Now

traversal through ‘cd’ successors of 𝑁 and 𝑁′ is not

required, because all tests reaching nodes beneath 𝑁 and

𝑁′ via the chain of control dependencies summarized by

𝑁 have now been selected. If correspondence between

nodes 𝑁 and 𝑁′ can be mapped, mapped nodes are

examined. If nodes representing predicate, output or

control transfer statements are new, modified or deleted

or nodes are marked as “affected” then all tests through 𝑁

must be selected. If n contains a variable definition, data

dependence edges originating at n is used to find nodes U

containing uses reached from n. Some of these nodes may

have already been marked “visited” during traversal. For

any such visited nodes, algorithm selects tests in 𝑁.history

∩ 𝐶.history where 𝐶 is the cd-predecessor of U, because

all such tests exercise a changed definition and may reach

the use at node U. If U is not marked “visited”, U is

marked as “affected” and tests in 𝑁, history is attached to

𝐶. Algorithm considers each new or modified cd-

successor n of 𝑁′ and each deleted cd successor n of

𝑁.Traversal starts with E and E’, and marked as “visited”.

Correspondence between cd-successors of E and E’ is

equivalent causing algorithm to check E and E’ has new,

modified or deleted cd-successors. Since they don’t have

such cd-successor, algorithm also finds no affected uses

in the cd-successors of E and E’ and thus call itself on P3

andP3’. After comparing R1 and R1’, then R2 and R2’,

then P6 and P6’ with no differences, R3 and R3’ are

invoked. Node pairs (S7, S7’) and (S8, S8’) are equivalent

and S8a is new. Since S8a does not involve a predicate,

there are no “affected” uses under R3 and R3’ and S8a is

a new cd-successor of R3’, data dependence edge

originating at S8a is used to find the uses of x3.S16’ uses

the definition and marked as “visited”. The test T2 is

selected because this is only test in both R2.history and

R3.history. When considered R5 and R5’, it has been

found that cd-successorP13 of R5 has been modified.

Since P13 is a predicate, all tests through R5.history is

selected i.e. T2,…, T5. If S16 had not already been

visited, and would marked as “affected” then test {T2} in

R3.history would be attached to S16.

Evaluation

This technique is Safe and identifies a precise number of

tests, by providing a means for excluding tests that

execute changed definition statement, but do not reach

uses of changed definitions. It is also efficient, support

generality, and fulfills coverage criteria and guarantees

the traversal of the modified part of the program.

IV. MODEL-BASED APPROACH

This paper also presents an analysis of model based

regression testing techniques. These techniques generate

regression tests using different system models. Most of

the techniques are based on the UML models. The

techniques in this survey use some models like, class

diagrams, state machines diagrams, activity diagram, and

use case diagrams etc.

Class and State Diagram-Based Regression Test

Selection Technique

Farooq et al. [3] have proposed a model based selective

technique using class diagram and state diagram model of

UML to classify the test cases and generate regression test

suite. In UML based modeling, artifacts are interrelated.

A change in one artifact may cause a change in another

artifact without even being reflected on it. For example, a

message in the sequence diagram may change due to a

change in its respective operation in the class diagram.

This change may not be reflected directly in the sequence

diagram and consulting the class diagram becomes

essential to obtain this change information. They defined

two types of changes in their proposed approach; Class-

driven changes and State-driven changes.

The changes in data members, operations, relationships

and dependencies are catered by using the information

from class diagram and were obtained by comparing

baseline and delta version of the class diagram. These

changes may or may not reflect on the state machine. The

changes in object behavior were catered by analyzing the

state machine and were obtained by comparing the

baseline and delta version of the state machine and by

using the Class-driven changes. The class driven changes

they identified are Modified Expression, Changed,

Multiplicity, Modified Property, Modified Attribute,

Modified Operation Parameter, Modified Operation,

Modified Association, Added/deleted Attribute,

Added/deleted Operation, Added/deleted association.

State driven changes state machines are composed of

regions and regions are composed of states, transitions

and other vertices. They identified changes associated

with states and transitions. The state driven change

categories identified were added/deleted state, modified

state, added/deleted transition, modified transition,

modified event, modified actions, and modified guards.

 Rakesh Garg. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 3,

Sept 2017, pp. 44-49

© 2017 IJRRA All Rights Reserved page- 48-

After the identification of these changes, test cases can be

generated according to the categories of both classes of

changes, which are in fact the test suite for regression

testing. To verify the applicability of the proposed

technique, they have applied it on a case study.

A UML class and sequence diagrams –Based

Regression Test Selection Technique

The approach proposed by L. Naslavsky et al [2] adopts

UML class and sequence diagrams as its modeling

perspective. They identified two phases for this approach.

1st phase an infrastructure comprised of test-related

models has been created and fine-grained relationship

among these models and test cases from models are

generated. This infrastructure is used, in turn, to support

the identification of test cases for retest in the 2nd phase.

The approach uses model-based control flow graph

(mbcfg) information to support impact analysis on

behavioral models . The following are considered as

examples of direct class diagram changes and how they

would impact other entities: (1) If a class attribute that

comprise an OCL constraint (e.g. operation pre-, post-

condition) is changed, the OCL constraint is considered

changed; (2) If an OCL constraint navigates a changed

association, that OCL constraint is considered changed;

(3) if a class invariant is changed, all operations of the

class are considered changed (including the constructor).

The proposed approach selects test cases to re-test the

implementation. Thus, the change impact identification

on behavioral models aims at locating entities in the

model that might require implementation modification. It

seizes existence of mbcfg along with the traceability

models to perform necessary impact analysis. They

adapted the code-based algorithm in [15] to perform

traversal of mbcfg (phase 2). The adapted algorithm

checks if an edge leading up to a node was modified, prior

to checking for node modifications. The edge is

considered modified if it has a modified constraint

(guard). Guards’ modifications are identified using

traceability relationships to locate corresponding guards

in the UML model. Modified edges are added to the set of

dangerous edges. Identification of modified guards results

in addition of all other edges with the same tail to the set

of dangerous edges. Indeed, a guard change might result

in modified test cases’ expected behavior. Nodes’

equivalence is identified using traceability relationships

to locate the corresponding operations in the UML model.

Then, it checks if tha telement was modified looking it up

in the differencing model and in the list of impacted

operations.

Evaluation

This technique is safe, precise, and fulfills coverage

criteria.

Risk-based regression Testing

The proposed approach [14] is considered as risk-based

regression testing. In this approach the authors have

considered the risk related to the software potential

defects as a threat to the failure after the changes as a

significant factor, so a risk model is presented as well as

the model of regression testing. In [16] Amland presented

a simple risk model with only two elements of Risk

Exposure: (i) The probability of a fault being present.(ii)

The cost(consequence or impact) of a fault in the

corresponding ISSN function if it occurs in operation. The

mathematical formula to calculate Risk Exposure is RE

(f) = P (f) × C (f).Purpose of regression testing is to

achieve software quality and coverage criteria. Two types

of test cases are to be included to achieve and differentiate

these requirements, targeted tests and safety tests.

Activity diagram is traversed to identify affected edges,

and then test cases are selected that execute the affected

edges based on the traceability matrix to create Targeted

Tests. Next to generate test cases that are required to

achieve overage target and are risk-based, four steps are

used. In the first step the cost for each test case is assessed.

The cost of every test case is categorized through 1-5

where the lowest value depicts the lower cost and the high

value as higher cost. Two kinds of costs are taken into

consideration: (i) The consequences of a fault as seen by

the customer, (ii) The consequences of a fault as seen by

the vendor. In the second step severity probability is

derived for each test case. The severity probability is

calculated by multiplying the number of defects and the

average severity of defects. In the third step Risk

Exposure is calculated for each test case by multiplying

the cost and severity probability of defects. The obtained

value is considered as the risk of the test case. In the fourth

and final step the test cases with higher value of risk are

chosen and included in the regression test suite. This

technique is evaluated on a large industrial based case

study.

Evaluation

This technique is safe, precise, and fulfills coverage

criteria.

V. CONCLUSION

This survey presents code-based and model-based

regression testing and their analysis with respect to the

parameters presented by Harrold[11]. It can be helpful in

exploring new ideas in the area of regression testing

specifically both types of regression testing. This

evaluation of the model based regression testing

techniques can be helpful to improve the existing

techniques where they lack. This evaluation can also be

very helpful to evaluate code based techniques and how

these techniques can be adopted for model based

regression technique.

VI. REFERENCES

[1]. Q.Farooq, M. Zohaib Z.Iqbal, Z.Malik, M. Riebisch, A

Model-Based Regression Testing Approach for Evolving

Software Systems with Flexible Tool Support, In

proceeding of: 17th IEEE International Conference and

 Rakesh Garg. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 3,

Sept 2017, pp. 44-49

© 2017 IJRRA All Rights Reserved page- 49-

Workshops on the Engineering of Computer-Based

Systems, ECBS 2010,

[2]. Oxford, England, UK, pp 41-49, March 2010.

[3]. L. Naslavsky , D. J. Richardson , A Model-Based

Regression Test Selection Technique, Proc. ICSM , pp

515-518, 2009.

[4]. Q Farooq, M. Zohaib,Z. Iqbal ,An Approach for Selective

State Machine based Regression Testing, ACM

proceedings of the 3rd international workshop on

Advances in model-based testing, pp 44-52, 2007.

[5]. L. Naslavsky, H. Ziv, D. J. Richardson, Towards

Traceability of Model based Testing Artifacts, AMOST,

pp 105-114, July 2007.

[6]. L. Naslavsky, Using Traceability to Support Model-

Based Regression Testing, ASE, pp 567-570, November

2007.

[7]. H. Muccini, M. Dias, Software architecture-based

regression testing,The journal of System

andSoftware,pp1379-1396, 2006.

[8]. Harrold, M.J., 1998. Architecture-based regression

testing of evolving systems. In: Proceedings of the

International Workshop on the Role of Software

Architecture in Testing and Analysis – ROSATEA 98,

July, pp. 73–77,1998.

[9]. F. Rothermel, M.J. Harrold, A safe efficient Regression

Test Selection Technique, ACM Transactions on

Software Engineering and Methodology, V.6, no.2, pages

173-210, April 1997.

[10]. E. Wong, J. R. Horgan, A Study of Effective Regression

Testing in Practice. Proceedings of the 8th IEEE

International Symposium on Software Reliability

Engineering (ISSRE’97), pp-264-274, November 1997.

[11]. 10.G. Rothermel, M.J. Harrold, Analyzing Regression

Test Selection Techniques, TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL.22, NO. 8, pages

529-551, AUGUST 1996.

[12]. G. Rothermel, M.J Harrold, A framework for evaluating

regression Test Selection Techniques, In: Proceeding of

the 16th International Conference on Soft. Engineering,

ICSE 1994, Sorrento, Italy, pp 201-210, May 1994.

[13]. G. Rothermel, M.J Harrold, Selecting Tests and

identifying

[14]. Test Coverage Requirements for Modified Software, In

Proceeding of the ACM international Symp. On

Software,pp-169-184, August 1994.

[15]. H.K.N leung and White. Insight into Regression Testing.

In

[16]. Proceedings of the conference on Software Maintenece-

1989,pp 60-69,October 1989.

[17]. Y. Chen, R. Probert, and D. Sims. Specification-based

regression test selection with risk analysis. In CASCON

’02: Proceedings of the 2002 conference of the Centre for

Advanced Studies on Collaborative research, page 1,

2002.

[18]. G. Rothermel, M.J Harrold, Regression Test Selection for

Java Software, Proc. of the ACM Conf. on OO

Programming, Systems, Languages, and Applications

(OOPSLA'01), ACM Copyright,2001.

[19]. Stale Amland, Risk Based Testing and Metrics: Risk

analysis fundamentals and metrics for software testing

including a financial application case study, The Journal

of Systems and Software, Vol. 53, 2000, pp. 287-295.

[20]. Gregg Rothermel, Mary Jean Harrold, and Jeinay Dedhia,

Regression Test Selection for C++ Software, Journal of

Software Testing, Verification, and Reliability, Vol. 10,

No. 2, June 2000.

