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1. INTRODUCTION

Several researchers have studied the N-policy for queues. By N-
policy we mean that the server remains idle until there are N-
customers waiting in the queue. Service starts with the arrival of
the Nth customer and the busy period continues till the system is
empty.

In general, the arrival and service processes are considered to be
independent. But there are many practical situationsin which they
are dependent. This dependency can have a marked effect on
system performance and must be accounted for any realistic
analysis. Borthakur et.al. [1] studied poisson.input queueing
system with startup time and under _control-operating policy.
Heyman [2] studied the T-policy for the M/G/1 Queue.
Chang and Ke [3] investigated the Cost Analysis of a two-phase
Queue System with Randomized Control Policy. Ayyappan et.al.
[4] investigated M/M/1 Retrial Queueing System - with N-
PolicyMultiple Vacation-under Non-Pre-Emtive PriorityService
by Matrix Geometric Method. Chaudhary [5] discussed a poisson
queue under N-policy with a general setup time. Chaudhary and
Baruah [6] studied Analysis of a poisson queue with a threshold
policy and a grand vacation process: an analytic approach..
Ksirhnareaddy et.al. [7] investigated Analysis of bulk queue N-
policy multiple vacations and setup times. Balchandran[8]
studied Control policies for single server server
system. Yadin, and Naor [9] discussed Queueing systems with
Removal Service Station. Zhang and. Tian [10] studied the N
threshold policy for the GI/M/1 queue.

In this paper we consider a single server finite capacity queueing
system under N-policy with the assumption that the arrival and
service processes of the system are correlated and follow a
bivariate Poisson process.

Il. DESCRIPTION AND POSTULATES OF THE
MODEL

We consider a single server finite capacity queueing system with
the following assumptions.

(i) The arrival process X; (t) and the service process X: (t) of the
system are correlated and follow a bivariate Poisson process
having the joint probability mass function of the form
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with parameter Ao, A1, Pn and €

where Lo : mean faster rate of arrivals, mean slower rate of
arrivals, mean service rate and mean dependent rate (covariance
between arrival and service process) respectively.

Server remains idle until the arrival of N customers.

Initially the customers arrival rate is Ao which reduces to A:
whenever the system size reaches a prescribed humber R (R>N).
The system continues with the reduced rate A, as long as the
number of customers in the queue is greater than some other
prescribed integer r (r>0 and r<R)

When the content in the system reaches r the arrival rate switches
back to Ao and the same process is repeated.

The postulates of the model are as under:

The rate of no arrival and no service during a small interval of
time ‘h’ is 1— (4, + W, —2¢) h+ O (h)

The rate of one arrival and no service completion during a small
interval of time ‘h” when the system is in faster rate Ao of arrivals
is (4, —&)h+0(h)

The rate that there is no arrival and no service completion during
a small interval of time ‘h’ when the system is in slower rate Ay
of arrivals is

1-(4+u,—-2¢)h+0O(h)

The rate of one arrival and no service completion during a small
interval of time h, when the system is in slower rate of arrivals is
(4—&)h+0(h)

The rate that there is no arrival and one service completion during
a small interval of time h when the system is either in faster or
slower rate of arrivals in (W, —£)h+0O (h)

The rate that there is one arrival and one service completion
during a small interval of time h when the system is either in faster

or slower rate of arrivals is ¢h+O (h)
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The rate that the occurrence of other than the above events during
a small interval of time ‘h’ is 0 (h) and the events in non-
overlapping intervals of time are statistically independent.

I1l. STEADY STATE RESULTS

In steady state, the following notations are used

Pon(0)= The probability that there are n customers in the queue
when the system is in faster rate of arrivals and the server is idle.
P1n(0)= The probability that there are n customers in the queue
when the system is in faster rate of arrivals and the server is busy.
Pin(1)= The probability that there are n customers in the queue
when the system is in slower rate of arrivals and the server is busy.
Here Pon(0) exists for 0<n<N-1, P1,(0) exists for 0<n<R-1 and
P1n(1) exists for n>r+1

The steady state equations which are written through the matrix
of densities are given by

~(%—¢) Ry (0)+(%—¢) R, 1(0)=0
1<n<N-1 Eqg. 1
—(4—¢) Py (0)+(n-¢)R,(0)=0 Eq. 2
— (% +H-2¢) B, (0)+(n—¢)R,(0)=0 Eq. 3
(A +1=22) B, (0)+(1=2) Ry (0) ]
+(4—¢) P4 (0)=0
2<n<N-1 Eq. 4
(Z+H—-2¢) Py (0)+ (% —&) Py 1 (0)+(H—&) Pyt
+(Jo =) Pa(0) =0 Eq. 5
(o +1-2¢) P, (0)+ (% -¢) mO)}
(H 5) 1n+1(0)=0
N+l<n<r-1 Eq. 6
(% +H-2¢) P (0)+ (A —¢) Py (0 } eq. 7
+(M=¢)P,1(0)+(K-€) Py (1)=0
(o +1u-26) B, (0)+ (o - m(ow =
+(H 5)P1n+1(0)=0 !
r+l1<n<R-2
— (4 +H-2¢) Pey (0)+(4—¢)Pr,(0)=0 Eq. 9
(ﬂl+u 2s) M() (u 8) 1r+z(1)=0 Eq. 10

Eq. 12

(Mu 28) Po (1) + (4 =) Ros (1) + (- ¢) Rys (1) =0
R+1<n<K-1 Eqg. 13

_(/11_‘9) Prs(1)+(n—¢)P(1)=0

Let s=(ﬂ] and tz(ﬂl_bﬂ]
H—& H—g
From equation Eq. 1

P, (0)=Py(0), n=01.... N-1 Eqg.15
From equations Eq. 2, Eq. 3and Eq. 4
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Eq. 14

s(l—s”)P

R, (0= R,(0), n=12

Eq. 16
From equation Egq. 5 and Eg. 6 we recursively derive

n-N+ 1_SN
Pln (O)ZS N+l (:j POO (0),

.......... N if s=1

Eq. 17
n=N+1 N+2.... rif s=1
Using equation Eq. 7
r-N+ 1_SN
- R0-RL ) e

From equations Eg. 7 and Eq. 8

e [1=8N 1-s™"
R, (0)=S N 1[:] PUO(O)—[ 1—s ]P].Hl(l)

Eq. 19
n=r+1Lr+2, ... R-1
From equations Eq. 7, Eg. 8 and Eq. 9
SR—N+1 (1_ sN )
Rra (1) ~ 1_gR" Po (0) Eq. 20
R+r
= AB Ry (0) where A=s™" (1=5") and B= >
s"—s®
From equations Eq. 10 and Eq. 11 we recursively derive
Pm(l):% B, (). n=r+l r+2...R
If s=Lt=1 Eq. 21

Where P41 (1) is'given by Eq. 20
From equations Eq. 13 and Eq. 14we recursively derive

-R -r
P, (1) =t" (%J P.a(1), n2R+1 t=1s=1

Eq. 22

Where P41 is given by Eq. 20

Thus from Eq. 15 to Eq. 15,we find that all the steady state
probabilities are expressed in term of Pgo(0)

Under the steady state conditions let Po(0) be the probability that
the server is idle and P1(0) be the probability that the server is
busy with faster arrival rate respectively. Then

0)=§ P (0)=N B, (0) Eq. 23
)<Y RO+ 3 RO+ 3 RO

From equatlons Eg. 16, Eg. 17 and Eqg. 19

p0)-3 205 g

n=1 1-s

C 1- " n—N+
Yy (1_2} s P, (0)
l: n N+1 (1 SN)

1-s

as)

1-s

53

n=r+1

Py (0) -

I:?Lr+1 (1)

Using Eqg. 20 and simplifying, we get
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N (R-r)(1-s")s* N v ons(1-s") ) (=)
=|7=- =y == "Jp (0 v U0 ) p g
Pl(o) l:l_s 1_SR—r POO(O) ; 1_5 00( )+HZN+]_ ns l_S 00( )
N n ) Sn_Sr
N T
| N _ N eNt After simplifying
_L_S AB (R r)} Py (0) where A=(1-s")s N(N+1)s+ Ne? ) AB(rs—R)
SF+R _ 2 1_S 1_3 F)()Q(o)
and B=—— L=
s s AB (R+r)(R-r-1) (1-s)
Eq. 24 - 0
Hence r+R

P (0) = the probability that the system is in faster rate of arrival Where A= (1—5N ) s B= rS " and s=1

mode s -

And Pgo(0) is given by Eq. 27
N (1 S ) gR-N+ L3 = the expected number of customers.in the system when the
=|—- — P, (0) where s=1 server is busy with slower rate of arrivals
1-s 1-s R1 K
\ =Y R+ X n R0
= [1_ — AB (R_r)} Poo (0) qu 25 n=r+1 n=R
-s
Again P(1)= The probability that the system is in slower rate of R1 -t t” r K "R t” r
arrival mode = Zl Pra (1) + Z n v (1)
R K n=r+. n=
=> B O+ > PR, After S|mpI|fy|ng
n=r+1 n=R+1 R—rt
From equations Eq. 20 and Eq. 21 172(R+r)(R-r-1)+ = n
R _gn-r K t" (tR=t" = REac R W , S=lt=1
P()=> (_l t j Pont D —( )|:>1r+1 (1) . (K-Kt+)t“H (£ =t") | (1-1)
n=r+1 1-t n=R+1 (r _t) _
(4-t)
_ K-R+1 K-r+1 AB
=[(R-r) (-t)— (et ) | = Ry Eq. 30
(1—t) Where P141(1) is given by Eq. 20 and Poo(0) is given by Eq. 27
Eq. 26 Hence the expected number of customers in the system
Using the normalizing condition Li=L+L+L
P(0)+P(1)=1 and substituting for P(0) and P (1) and simplifying N(N-1) sN AB(rs—R)
we get —_ e —
_ Py (0) 2 1-s (1-s)
(R-1)t 1=s | _AB(r+R)(R-r-1)
- 2
4 N (1-1) AB
P, (0 =<d——+ — -
[ 00( ):' (1_5) (tK—R+1_tK—r+l) (1—'[)2 (R+I’)(R ) R-rt
—— AB P, (0)| 2 (1-t)
(l_t) T K+ -R
(1-t) | (K=Kt+)t (t7 -t )
szl t=#1 Eq. 27 +
(1-t)
Where s=1 t=1
IV. EXPECTED NUMBER OF UNITS IN THE SYSTEM Eq. 31
The expected number of units in the system when if is in different Where Poo(0) is given by Eq. 27
states can be determined as follows:
Li= the expected number of customers in the system when the V. EXPECTED WAITING TIME
server is idle Using the Little’s formula the expected waiting time of the
N-1 N (N _1) customer, who arrive while the server is busy, is calculated as
L= nPR,(0)= ——= Py(0) Eq. 28 L
=1 2 W, = 73 Eqg. 32

Where Pgo(0) is given by Eq. 27 )
L, = the expected number of customers in the system when the ~Where Ls=the number of customers in the system when the server

server is busy with faster arrival rate is busy. _

N r R-1 =L,+Ls where L, and Ls; are given by Eq. 29 and Eq. 30
L= nR,(0)+ > nR,(0)+ > nPR,(0) respectively

n=1 n=N+1 n=r+1

And A = the actual mean arrival of the system
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= %o P1 (0) + A1 P (1) where P1 (0) and P (1) are given by
Eq. 24 and Eqg. 26 respectively.
Eqg. 33

VI. MEAN ADDITIONAL DELAY DUE TO BUILD UP
PERIOD

Now we want to derive the waiting time of the customer who
arrives while the server is idle
Let Ir= Residual build up period (i.e. the duration from the
arrival of test customer to the instant when N-th customer arrives)
Now the test customer can be any of the 1,2, ....... N customers
that arrive during build up period. We get-
1 N —i N-1
E(ly)=— — = —
(1) N Z} ( A j 22
Hence E (D) = Mean of the additional delay due to the build-up
period.
N(N-1)
1 Py (0)
Where Pgo(0) is given by Eq. 27
VII. SOME OTHER SYSTEM CHARACTERISTICS

Let E(I), E(F) and E(S) denote the expected lengths of the idle
period, busy period with faster arrival rate and busy period with
slower arrival rate respectively. Then the expected length of a
cycle is:

E(C)=E()+E(F)+E(S) Eqg. 35
The long run fractions of time the service is idle, busy with faster
arrival rate and busy with slower arrival rate and given by

Eq. 34

% -, (0) Eq. 36

% =P, (o) Eq. 37

E(S)

?C) =P (1) Eqg. 38
N

Clearly E(l1)= - Hence from Eq. 34

E(C)= % [Py (0)]71 , Where Py (0) is given by Eq. 26
Hence for Eq. 37 and Eq. 38

E(F)=P (0) E(c)z[(l'iss)— AEzl(_RS_)r)}% Eq. 39
E(S)=P(1) E(C)
B (R_r)_<tK—R+1_tK—r+1) EAB Eq. 40
| (1-t) (1-t) )

VIII. NUMERICAL ANALYSIS

For various values of Ao, A1, W, &, I, R, K, N the values of Po(0),
P(0), P(1), Ln and Wy are computed and tabulated in the tables. It
is observed that when the mean dependence rate increases and the
other parameters are kept fixed, Ly and Wy decrease and Pqgo (0)
(the probability that the system is empty) increases. When the
arrival rate increases (the other parameters being fixed), Poo(0)
decreases and Ly, Wy increase. However, with increase in service
rate, both Ly, and Wy decrease. Moreover, increase in K results
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an S.

Nolr [R [ho [ [u e [N|JK [Pw(0) [P  [P(D)
1 |7 128 |2 |10 |0.5]4 |25 |0.058383|0.963573(0.036427
2 |8 12118 |2 [10[0.5]4 |25 |0.057796|0.967294(0.032706
3 |9 128 |2 [10[0.5]4 [25 |0.057251]0.970746|0.029254
4 |10 |12 |8 |2 |10 |0.5|4 |25 |0.056747]0.973936|0.026064
9 |13 |8 |2 |10 |0.5]4 |25 |0.056626/0.974702/0.025298

6 14 |8 10 |05 |4 25 0.056075/0.978194|0.006
7 15 8 |2 |10 |0.5]4 |25 |0.05559 |0.981265(0.018735
8 |9 |16 |8 |2 [10[0.5]4 |25 |0.055165|0.983955(0.016045
9 |9 J1206.|5 [9 [0.5]5 |30 [0.071103|0.978113|0.021887
10 (9 |11 [6.2]5 |9 {0.5|5 |30 |0.066648]0.972869(0.027131
11 (9 |11 6.3]5 |9 10.5|5 [30:|0.06445 |0.969919(0.030081
12 (9 |11 |6.4[5 |9 |0.5]5 |30 |0.062272|0.966741]0.033259
1319 |11 7 |5 |9 |0.5(5 |30 |0.049766(0.942476|0.057524
1419 [11 |7 |5.3|9 [0.5|5 |30 |0.049535/0.938101(0.061899
1519 [11 |7 |5.6/9 [0.5|5 |30 |0.049266/0.933007|0.066993
16 (9 |11 |7 |5.9]9 |0:5]5 |30 |0.048949]0.927001(0.072999
1719 |13 |8 |5 [8.2]0.5|5 |30 |0.019262|0.819479|0.180521
18 19 [13 8 8.4|0.5 |5 [30 |0.021974|0.844018)0.155982
19 (9 |13 8 |5 [8.6]0.5|5 |30 |0.024775|0.865538|0.134462
20 |9 |13 |8 |5 [8.8]0.5|5 |30 |0.027641]0.884304(0.115696
2119 |13 |8 |5 [8.5/0.5|5 |30 |0.023365|0.8551390.144861
2219 |1318 |5 [8.5/0.6|5 |30 [0.023498|0.857276|0.142724
239 |13 |8 |5 [8.5(0.7|5 |30 |0.023634|0.859422|0.140578
2419 |13 18 |5 [8.5/0.8|5 |30 |0.023773|0.861577|0.138423
2519 |13 06 |5 |9.5/0.5]4 |25 |0.097379]0.994341|0.005659
26 |9 |13 16 |5 [9.5]0.5|5 |25 [0.077953]0.99212 [0.00788
2719 1316 |5 [9.5]0.5]6 |25 |0.065021]0.988855(0.011145
28 19 |13 06 |5 |9.5|0.5]7 |25 |0.055809]0.984012/0.015988
increment in Ls and Ws while other parameters are kept

unchanged.
X1. CONCLUSION

Many queueing systems occurring in message and packet
switching applications have finite waiting room (capacity) for the
customers. The incorporation of varying input rates make the
model closer to real life congestion situations. Our study gives an
insight to improve the service quality of the system. .

Table-1
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Table-2 % V/s P(0) & P(1)
~ 12
S. N . .
o \g \g
No.| r|R|n |2 |p| e |N|K Ly Wy o 0.8 -
= 06
1 |7 [1218 |2 |10 |05 |4 |25 |4.191349 |0.538634 g 0.4 |
= 02
2 |8 128 |2 |10 [05 |4 |25 |4.250422 |0.544663 z 0. ‘ - » _
3 9 [12/8 [2 |10 |05 |4 [25 |4.312059 [0.551099 2 6 6.1 6.2 6.3 6.4
4 10128 |2 |10 [05 |4 |25 |4.375239 |0.557809 > Value of &,
5 |9 [13]8 |2 |10 [05 |4 |25 |4.400936 |0.560757
—=—P(1
6 |9 |14]8 |2 |10 [05 |4 |25 |4.485431 |0.570001
7 |9 |15/8 |2 |10 [05 |4 |25 |4.565005 |0.578758
8 |9 |16[8 |2 |10 [05 |4 |25 |4.639292 |0.586975
9 |9 |11l/6 |5 |9 |05 |5 |30 [3.755816 |0.628261 7. vis P(O) & PQD)
\75)
10 |9 [11/62]5 |9 |05 |5 [30 [3.912168 |0.634326 '
11 |9 |11 [63]5 |9 |05 |5 [30 |3.994263 [0.63797 § 0 ; 1 ¢ +
12 |9 [11|641]5 |9 |05 |5 [30 |4.078949 |0.642007 & 0.6
S 04 4
13 |9 117 |5 |9 |05 |5 [30 |4.638807 [0.67376 T g2
5 oR & & "
14 |9 [11|7 |53 ]9 |05 |5 [30 |4.681902 |0.679051 o
8 5 5.3 5.6 5.9
15 (9 [11|7 |56 |9 |05 |5 [30 |4.734122 |0.685488 3 Value of 4,
16 (9 [11|7 [59 |9 |05 |5 [30 |4.798556 |0.693463
——P
17 |9 [13|8 |5 [8.2|05 |5 [30 |7.259152 |0.973281
18 |9 [13|8 |5 [8.405 |5 [30 [6.917821 |0.918451
19 |9 [13|8 |5 [8.6/05 |5 [30 |6.600254 |0.868842
20 |9 [13[8 |5 [8.8]05 |5 |30 |6.305646 |0.823954 Hv/s P(0) & P(1)
21 |9 [13/8 |5 (8505 |5 [307]6.756114 (0.893026 3
22 |9 138 |5 [85(0.6 |5 |30 |6.731716 |0.889048 io.s 3 >
23 |9 138 |5 [85[0.7 |5 |30 |6.707214 |0.885059 ;210-6 1
0.4
24 |9 138 |5 [85(0.8 |5 [30 |6.682602 [0.88106 5
(/')02 r —— = 4’
25 |9 [13]6 |5 (9.5[05 |4 |25 [3.052022 |0.509151 So+ ‘ ‘ !
S 82 8.4 8.6 8.8
26 |9 [13]6-|5 [9.5[05 |5 |25 |3.545531 |0.591699 > Value of
alue of p
27 |9 136 |5 {9.5[05 |6 |25 [4.036393 [0.673984
——P(0
28 |9 |13]6 |5 [95[0.5 |7 |25 |4.523453 |0.755923
R v/s P(0) & P(1)
1.2 g v/s P(0) & P(1)
Ol * *
S0 | o]
To | €°i8‘
o o <4
fos S o0
Eo_z— §0.5<
S 0.4
ol ! ! 0 % 0.3
13 14 15 16 > 0.2 - -
Value of R 0.1
0
——70) 0.5 0.6 0.7 0.8
— = Pl Value of &
—e—P(0) —=—P(1)
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N V/s P(0) & P(1)
o 15
T
1 * *
o3
—~
S 05
o
“—
[S) 0 = = i N
3 4 5 6 7
>
= Value of N
>
——P(0)
rvis Wy & Ly
5
45 N o
4 e -
£35
® 3
I
525
g 2
S1s
1
05 T L L
0
7 8 9 10
Value of r
LN
— )
RV/s Ly & Wy
5
45 > +
4
£ 35
23
3
G 25
g 2
©
> 15
1
05 L L
0
13 14 15 16
Value of R
LN
s \NN
Ao V/s Ly & Wy
45
4 ¢ <
L35
Z s
25
5
g 2
©
> 15
1
05 T . .
0
6 6.1 62 63 6.4
Value of &
e—|_ N
WN
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A Vis Ly & Wy
z
=6
35 * *
=3
o2
81 4
ERR- = = ¥
g s 5.3 56 5.9
Value of A,
—#— WN
pv/s Ly & Wy
=z
=8
36 M v
=z
- 4 n
o
2 i
8,1t - - .
2 T T T 1
g 8.2 8.4 8.6 8.8
Value of p
—e—LN
N V/s Ly& Wy
=z
Z5
3 4
i3
52
81
e — ——
S0+ : ; |
> 4 5 6 7
Value of N
—=— WN
rvis P(0) & P(1)
o 15
g
o3 1 < &
o
T 05
g o - - )
5 7 8 9 10
g Value of r
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