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1.  INTRODUCTION 

Several researchers have studied the N-policy for queues. By N-

policy we mean that the server remains idle until there are N-

customers waiting in the queue. Service starts with the arrival of 

the Nth customer and the busy period continues till the system is 

empty. 

In general, the arrival and service processes are considered to be 

independent. But there are many practical situations in which they 

are dependent. This dependency can have a marked effect on 

system performance and must be accounted for any realistic 

analysis.  Borthakur et.al. [1] studied poisson input queueing 

system with startup time and under control-operating policy. 

Heyman [2] studied the T-policy for  the  M/G/1  Queue.  

Chang and Ke [3] investigated the Cost Analysis of a two-phase 

Queue System with Randomized Control Policy. Ayyappan et.al. 

[4] investigated M/M/1 Retrial Queueing System with N-

PolicyMultiple Vacation under Non-Pre-Emtive PriorityService 

by Matrix Geometric Method. Chaudhary [5] discussed a poisson 

queue under N-policy with a general setup time. Chaudhary and 

Baruah [6] studied Analysis of a poisson queue with a threshold 

policy and a grand vacation process: an analytic approach..  

Ksirhnareaddy et.al. [7] investigated Analysis of bulk queue N-

policy multiple vacations and setup times.  Balchandran[8]  

studied Control  pol icies  for  s ingle server  server  

sys tem.  Yadin, and Naor [9] discussed Queueing systems with 

Removal Service Station. Zhang and. Tian [10] studied the N 

threshold policy for the GI/M/1 queue. 

In this paper we consider a single server finite capacity queueing 

system under N-policy with the assumption that the arrival and 

service processes of the system are correlated and follow a 

bivariate Poisson process. 

II.  DESCRIPTION AND POSTULATES OF THE 

MODEL 

We consider a single server finite capacity queueing system with 

the following assumptions. 

(i) The arrival process X1 (t) and the service process X2 (t) of the 

system are correlated and follow a bivariate Poisson process 

having the joint probability mass function of the form 
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1 2, 0,1,2...............; 0, 0,1ix x i    

 0, 0 min , , 0,1n i nµ µ i      

with parameter 0, 1, µn and  

where 0 : mean faster rate of arrivals, mean slower rate of 

arrivals, mean service rate and mean dependent rate (covariance 

between arrival and service process) respectively. 

Server remains idle until the arrival of N customers. 

Initially the customers arrival rate is 0 which reduces to 1 

whenever the system size reaches a prescribed number R (R>N). 

The system continues with the reduced rate 1 as long as the 

number of customers in the queue is greater than some other 

prescribed integer r (r0 and r<R) 

When the content in the system reaches r the arrival rate switches 

back to 0 and the same process is repeated. 

The postulates of the model are as under: 

The rate of no arrival and no service during a small interval of 

time ‘h’ is    01 2nµ h O h      

The rate of one arrival and no service completion during a small 

interval of time ‘h’ when the system is in faster rate 0 of arrivals 

is     0 0h h    

The rate that there is no arrival and no service completion during 

a small interval of time ‘h’ when the system is in slower rate 1 

of arrivals is   

   11 2nµ h O h      

The rate of one arrival and no service completion during a small 

interval of time h, when the system is in slower rate of arrivals is 

   1 h O h    

The rate that there is no arrival and one service completion during 

a small interval of time h when the system is either in faster or 

slower rate of arrivals in    nµ h O h   

The rate that there is one arrival and one service completion 

during a small interval of time h when the system is either in faster 

or slower rate of arrivals is  h O h   

http://www.sciencedirect.com/science/article/pii/0305054887900554
http://www.sciencedirect.com/science/article/pii/0305054887900554
http://www.sciencedirect.com/science/article/pii/S1877042811023627
http://www.sciencedirect.com/science/article/pii/S1877042811023627
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The rate that the occurrence of other than the above events during 

a small interval of time ‘h’ is 0 (h) and the events in non-

overlapping intervals of time are statistically independent. 

III. STEADY STATE RESULTS 

In steady state, the following notations are used 

P0n(0)= The probability that there are n customers in the queue 

when the system is in faster rate of arrivals and the server is idle. 

P1n(0)= The probability that there are n customers in the queue 

when the system is in faster rate of arrivals and the server is busy. 

P1n(1)= The probability that there are n customers in the queue 

when the system is in slower rate of arrivals and the server is busy. 

Here P0n(0) exists for 0nN-1, P1n(0) exists for 0nR-1 and 

P1n(1) exists for nr+1 

The steady state equations which are written through the matrix 

of densities are given by 
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From equation Eq.  1 

    0 000 0 , 0,1......... 1nP P n N       Eq. 15 

From equations Eq.  2, Eq.  3 and Eq.  4 
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Eq. 16 

From equation Eq. 5 and Eq. 6 we recursively derive
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Using equation Eq.  7 
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From equations Eq.  7 and Eq.  8 
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From equations Eq.  7 , Eq.  8 and Eq.  9 

 
 

 
1

1 1 00

1
1 0

1

R N N

r R r

s s
P P

s

 

 





                        Eq. 20 

   1

00 0 1
R r

N N

r R

s
AB P where A s s and B

s s


    


 

From equations Eq.  10 and Eq.  11 we recursively derive 
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Where Pr+1 (1) is given by Eq.  20 

From equations Eq. 13 and Eq. 14we recursively derive

   1 1 11 1 , 1, 1, 1
1

R r
n

n r

t t
P t P n R t s

t

 



 
     

 
                                                                    

Eq.  22 

Where P1r+1 is given by Eq. 20 

Thus from Eq. 15 to Eq.  15,we find that all the steady state 

probabilities are expressed in term of P00(0) 

Under the steady state conditions let P0(0) be the probability that 

the server is idle and P1(0) be the probability that the server is 

busy with faster arrival rate respectively. Then 
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From equations Eq.  16, Eq.  17 and Eq.  19 
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Using Eq. 20 and simplifying, we get 
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 Eq.  24 

Hence 

P (0) = the probability that the system is in faster rate of arrival 

mode 
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Again P(1)= The probability that the system is in slower rate of 

arrival mode 
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From equations Eq.  20 and Eq.  21 
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Eq.  26 

Using the normalizing condition 

P(0)+P(1)=1 and substituting for P(0) and P (1) and simplifying 

we get 
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IV. EXPECTED NUMBER OF UNITS IN THE SYSTEM 

The expected number of units in the system when if is in different 

states can be determined as follows: 

L1= the expected number of customers in the system when the 

server is idle 
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Where P00(0) is given by Eq.  27 

L2 = the expected number of customers in the system when the 

server is busy with faster arrival rate 
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After simplifying 
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                                                                                Eq.  29 

And P00(0) is given by Eq.  27 

L3 = the expected number of customers in the system when the 

server is busy with slower rate of arrivals 
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After simplifying 
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Eq.  30 

Where P1r+1(1) is given by Eq.  20 and P00(0) is given by Eq.  27 

Hence the expected number of customers in the system  
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Where P00(0) is given by Eq.  27 

V. EXPECTED WAITING TIME 

Using the Little’s formula the expected waiting time of the 

customer, who arrive while the server is busy, is calculated as  

 s

s

L
W


                                        Eq.  32 

Where Ls= the number of customers in the system when the server 

is busy. 

=L2+L3 where L2 and L3 are given by Eq. 29 and Eq. 30 

respectively 

And   = the actual mean arrival of the system  
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              = 0 P1 (0) + 1 P (1) where P1 (0) and P (1) are given by 

Eq.  24 and Eq.  26 respectively.                                                           

                                                                                 Eq.  33 

VI. MEAN ADDITIONAL DELAY DUE TO BUILD UP 

PERIOD 

Now we want to derive the waiting time of the customer who 

arrives while the server is idle 

Let IR= Residual build up period (i.e. the duration from the 

arrival of test customer to the instant when N-th customer arrives) 

Now the test customer can be any of the 1,2, …….N customers 

that arrive during build up period. We get- 
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Hence E (D) = Mean of the additional delay due to the build-up 

period. 
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 Where P00(0) is given by Eq. 27 

VII. SOME OTHER SYSTEM CHARACTERISTICS 

Let E(I), E(F) and E(S) denote the expected lengths of the idle 

period, busy period with faster arrival rate and busy period with 

slower arrival rate respectively. Then the expected length of a 

cycle is: 

 E (C) = E (I) + E (F) + E (S)         Eq.  35 

The long run fractions of time the service is idle, busy with faster 

arrival rate and busy with slower arrival rate and given by 
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Hence for Eq.  37 and Eq. 38 
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VIII. NUMERICAL ANALYSIS 

For various values of 0, 1, µ, , r, R, K, N the values of P0(0), 

P(0), P(I), LN and WN are computed and tabulated in the tables. It 

is observed that when the mean dependence rate increases and the 

other parameters are kept fixed, LN and WN decrease and P00 (0) 

(the probability that the system is empty) increases. When the 

arrival rate increases (the other parameters being fixed), P00(0) 

decreases and LN, WN increase. However, with increase in service 

rate, both LN, and WN decrease. Moreover, increase in K results 

an 

increment in Ls and Ws while other parameters are kept 

unchanged. 

XI. CONCLUSION 

Many queueing systems occurring in message and packet 

switching applications have finite waiting room (capacity) for the 

customers. The incorporation of varying input rates make the 

model closer to real life congestion situations. Our study gives an 

insight to improve the service quality of the system. . 

 

Table-1 

S. 
No. r R 0 1 µ  N K P00(0) P(0) P(1) 

1 7 12 8 2 10 0.5 4 25 0.058383 0.963573 0.036427 

2 8 12 8 2 10 0.5 4 25 0.057796 0.967294 0.032706 

3 9 12 8 2 10 0.5 4 25 0.057251 0.970746 0.029254 

4 10 12 8 2 10 0.5 4 25 0.056747 0.973936 0.026064 

5 9 13 8 2 10 0.5 4 25 0.056626 0.974702 0.025298 

6 9 14 8 2 10 0.5 4 25 0.056075 0.978194 0.006 

7 9 15 8 2 10 0.5 4 25 0.05559 0.981265 0.018735 

8 9 16 8 2 10 0.5 4 25 0.055165 0.983955 0.016045 

9 9 11 6 5 9 0.5 5 30 0.071103 0.978113 0.021887 

10 9 11 6.2 5 9 0.5 5 30 0.066648 0.972869 0.027131 

11 9 11 6.3 5 9 0.5 5 30 0.06445 0.969919 0.030081 

12 9 11 6.4 5 9 0.5 5 30 0.062272 0.966741 0.033259 

13 9 11 7 5 9 0.5 5 30 0.049766 0.942476 0.057524 

14 9 11 7 5.3 9 0.5 5 30 0.049535 0.938101 0.061899 

15 9 11 7 5.6 9 0.5 5 30 0.049266 0.933007 0.066993 

16 9 11 7 5.9 9 0.5 5 30 0.048949 0.927001 0.072999 

17 9 13 8 5 8.2 0.5 5 30 0.019262 0.819479 0.180521 

18 9 13 8 5 8.4 0.5 5 30 0.021974 0.844018 0.155982 

19 9 13 8 5 8.6 0.5 5 30 0.024775 0.865538 0.134462 

20 9 13 8 5 8.8 0.5 5 30 0.027641 0.884304 0.115696 

21 9 13 8 5 8.5 0.5 5 30 0.023365 0.855139 0.144861 

22 9 13 8 5 8.5 0.6 5 30 0.023498 0.857276 0.142724 

23 9 13 8 5 8.5 0.7 5 30 0.023634 0.859422 0.140578 

24 9 13 8 5 8.5 0.8 5 30 0.023773 0.861577 0.138423 

25 9 13 6 5 9.5 0.5 4 25 0.097379 0.994341 0.005659 

26 9 13 6 5 9.5 0.5 5 25 0.077953 0.99212 0.00788 

27 9 13 6 5 9.5 0.5 6 25 0.065021 0.988855 0.011145 

28 9 13 6 5 9.5 0.5 7 25 0.055809 0.984012 0.015988 
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Table-2 
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S. 

No. r R 0 1 µ  N K LN WN 

1 7 12 8 2 10 0.5 4 25 4.191349 0.538634 

2 8 12 8 2 10 0.5 4 25 4.250422 0.544663 

3 9 12 8 2 10 0.5 4 25 4.312059 0.551099 

4 10 12 8 2 10 0.5 4 25 4.375239 0.557809 

5 9 13 8 2 10 0.5 4 25 4.400936 0.560757 

6 9 14 8 2 10 0.5 4 25 4.485431 0.570001 

7 9 15 8 2 10 0.5 4 25 4.565005 0.578758 

8 9 16 8 2 10 0.5 4 25 4.639292 0.586975 

9 9 11 6 5 9 0.5 5 30 3.755816 0.628261 

10 9 11 6.2 5 9 0.5 5 30 3.912168 0.634326 

11 9 11 6.3 5 9 0.5 5 30 3.994263 0.63797 

12 9 11 6.4 5 9 0.5 5 30 4.078949 0.642007 

13 9 11 7 5 9 0.5 5 30 4.638807 0.67376 

14 9 11 7 5.3 9 0.5 5 30 4.681902 0.679051 

15 9 11 7 5.6 9 0.5 5 30 4.734122 0.685488 

16 9 11 7 5.9 9 0.5 5 30 4.798556 0.693463 

17 9 13 8 5 8.2 0.5 5 30 7.259152 0.973281 

18 9 13 8 5 8.4 0.5 5 30 6.917821 0.918451 

19 9 13 8 5 8.6 0.5 5 30 6.600254 0.868842 

20 9 13 8 5 8.8 0.5 5 30 6.305646 0.823954 

21 9 13 8 5 8.5 0.5 5 30 6.756114 0.893026 

22 9 13 8 5 8.5 0.6 5 30 6.731716 0.889048 

23 9 13 8 5 8.5 0.7 5 30 6.707214 0.885059 

24 9 13 8 5 8.5 0.8 5 30 6.682602 0.88106 

25 9 13 6 5 9.5 0.5 4 25 3.052022 0.509151 

26 9 13 6 5 9.5 0.5 5 25 3.545531 0.591699 

27 9 13 6 5 9.5 0.5 6 25 4.036393 0.673984 

28 9 13 6 5 9.5 0.5 7 25 4.523453 0.755923 
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