
 V Ajith et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 4, Dec
2017, pp. 115-119

 © 2018 IJRAA All Rights Reserved page - 115-

Building a virtual storage device to life

for the secrets

V Ajith1, P Aravind2, G David Abishai3, J Krishna Kumar4,

Ms.P.Gowthami 5

1,2,3,4 Final MEE, 5 Assistant Prof

Medical electronics engineering, Sengunthar college of engineering

Abstract- This abstract states that the man is called intelligent because of the brain. But we loss the knowledge of a

brain when the body is destroyed after the death. Virtual brain project will search for insights into how human beings

think and remember. The main aim is to upload human brain into a VBOT Sensor. After the death of the body, the

virtual brain will act as the man's brain. Such models will shed light on how memories are stored and retrieved. This

could reveal many exciting aspects of the brain, such as the form of memories, memory capacity and how memories are

lost. This project contains two sensors wireless body area sensor network named Nanobots.This sensor is a wireless

network of wearable computing devices. BAN devices may be embedded inside the body.it gather energy from the body

temperature and communicate with the VBOT Sensor. Next Sensor is VBOT Sensor it acts like virtual Brain. Through

this sensor we can store our secret and our intelligence with the help of PC or Mobile. We can use the secret of a person

after the death.

Index Terms—Virtual storage device to life for the secrets

I. INTRODUCTION

The man is called intelligent because of the brain. The brain

translates the information delivered by the impulses, which

then enables the person to react. But we loss the knowledge

of a brain when the body is destroyed after the death of man.

That knowledge might have been used for the development of

the human society. What happen if we create a brain and up

load the contents of natural brain into it?

The name of the world’s first virtual brain. That means a

machine that can function as human brain. Today scientists

are in research to create an artificial brain that can think,

response, take decision, and keep anything in memory. The

main aim is to upload human brain into machine. So that man

can think, take decision without any effort. After the death of

the body, the virtual brain will act as the man .So, even after

the death of a person we will not loose the knowledge,

intelligence, personalities, feelings and memories of that man

that can be used for the development of the human society.

No one has ever understood the complexity of human brain.

It is complex than any circuitry in the world. So, question may

arise “Is it really possible to create a human brain?” The

answer is “Yes”. Because what ever man has created today

always he has followed the nature. When man does not have

a device called computer, it was a big question for all.

Technology is growing faster than every thing. IBM is now in

research to create a virtual brain, called “Blue brain”. If

possible, this would be the first virtual brain of the world.

With in 30 years, we will be able to scan ourselves into the

computers. Is this the beginning of eternal life?

Virtual storage device is an artificial brain, which does not

actually the natural brain, but an act as the brain. It can think

like brain, take decisions based on the past experience, and

response as the natural brain can. It is possible by using a

super computer, with a huge amount of storage capacity,

processing power and an interface between the human brain

and this artificial one. Through this interface the data stored

in the natural brain can be up loaded into the computer. So the

brain and the knowledge, intelligence of anyone can be kept

and used for ever, even after the death of the person. First, it

is helpful to describe the basic manners in which a person may

be uploaded into a computer. Raymond Kurzweil recently

provided an interesting paper on this topic. In it, he describes

both invasive and noninvasive techniques. The most

promising is the use of very small robots, or nanobots. These

robots will be small enough to travel throughout our

circulatory systems. Traveling into the spine and brain, they

will be able to monitor the activity and structure of our central

nervous system. They will be able to provide an interface with

computers that is as close as our mind can be while we still

reside in our biological form. Nanobots could also carefully

scan the structure of our brain, providing a complete readout

of the connections between each neuron. They would also

record the current state of the brain. This information, when

entered into a computer, could then continue to function as us.

All that is required is a computer with large enough storage

space and processing power. Is the pattern and state of neuron

connections in our brain truly all that makes up our conscious

selves? Many people believe firmly those we posses a soul,

while some very technical people believe that quantum forces

contribute to our awareness. But we have to now think

technically.

Note, however that we need not know how the brain actually

functions, to transfer it to a computer. We need only know the

media and contents. The actual mystery of how we achieved

consciousness in the first place, or how we maintain it, is a

separate discussion. Really this concept appears to be very

difficult and complex to us. For this we have to first know

how the human brain actually works.

 V Ajith et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 4, Dec
2017, pp. 115-119

 © 2018 IJRAA All Rights Reserved page - 116-

A wireless sensor network (WSN) sometimes called a

wireless sensor and actuator network (WSAN) are spatially

distributed autonomous sensors to monitor physical or

environmental conditions, such as temperature, sound,

pressure, etc. and to cooperatively pass their data through the

network to a main location. The more modern networks are

bi-directional, also enabling control of sensor activity. The

development of wireless sensor networks was motivated by

military applications such as battlefield surveillance; today

such networks are used in many industrial and consumer

applications, such as industrial process monitoring and

control, machine health monitoring, and so on.

II. SYSTEM OVERVIEW

Specification analysis

Today scientists are in research to create an artificial brain that

can think, response, take decision, and keep anything in

memory. The main aim is to upload human brain into

machine. So that man can think, take decision without any

effort. After the death of the body, the virtual brain will act as

the man .So, even after the death of a person we will not loose

the knowledge, intelligence, personalities, feelings and

memories of that man that can be used for the development of

the human society. No one has ever understood the

complexity of human brain. It is complex than any circuitry

in the world. So, question may arise “Is it really possible to

create a human brain?” The answer is “Yes”. Because what

ever man has created today always he has followed the nature.

When man does not have a device called computer, it was a

big question for all. Technology is growing faster than every

thing. IBM is now in research to create a virtual brain, called

“Blue brain”. If possible, this would be the first virtual brain

of the world. With in 30 years, we will be able to scan

ourselves into the computers.

B.Wireless sensor network

A wireless sensor network (WSN) sometimes called

a wireless sensor and actuator network (WSAN) are spatially

distributed autonomous sensors to monitor physical or

environmental conditions, such as temperature, sound,

pressure, etc. and to cooperatively pass their data through the

network to a main location. The more modern networks are

bi-directional, also enabling control of sensor activity. The

development of wireless sensor networks was motivated by

military applications such as battlefield surveillance; today

such networks are used in many industrial and consumer

applications, such as industrial process monitoring and

control, machine health monitoring, and so on. The WSN is

built of "nodes" – from a few to several hundreds or even

thousands, where each node is connected to one (or

sometimes several) sensors. Each such sensor network node

has typically several parts: a radio transceiver with an internal

antenna or connection to an external antenna, a

microcontroller, an electronic circuit for interfacing with the

sensors and an energy source, usually a battery or an

embedded form of energy harvesting. A sensor node might

vary in size from that of a shoebox down to the size of a grain

of dust, although functioning "motes" of genuine microscopic

dimensions have yet to be created. The cost of sensor nodes is

similarly variable, ranging from a few to hundreds of dollars,

depending on the complexity of the individual sensor nodes.

Size and cost constraints on sensor nodes result in

corresponding constraints on resources such as energy,

memory, computational speed and communications

bandwidth. The topology of the WSNs can vary from a simple

star network to an advanced multi-hop wireless mesh

network. The propagation technique between the hops of the

network can be routing or flooding.

Today we are developed because of our intelligence.

Intelligence is the inborn quality that can not be created. Some

people have this quality, so that they can think up to such an

extent where other can not reach. Human society is always

need of such intelligence and such an intelligent brain to have

with. But the intelligence is lost along with the body after the

death. The virtual brain is a solution to it. The brain and

intelligence will alive even after the death. We often face

difficulties in remembering things such as people’s names,

their birthdays, and the spellings of words, proper grammar,

important dates, history, facts etc... In the busy life every one

want to be relaxed. Can’t we use any machine to assist for all

these? Virtual brain may be the solution to it. What if we

upload ourselves into computer, we were simply aware of a

computer, or maybe, what if we lived in a computer as a

program?

III. HARDWARE

The AVR is a modified Harvard architecture 8-bit RISC

single-chip microcontroller, which was developed by Atmel

in 1996. The AVR was one of the first microcontroller

families to use on-chip flash memory for program storage, as

opposed to one-time programmable ROM,EPROM, or

EEPROM used by other microcontrollers at the time.

The AVR is a modified Harvard architecture machine, where

program and data are stored in separate physical memory

systems that appear in different address spaces, but having the

ability to read data items from program memory using special

instructions.

32-bit AVRs

In 2006 Atmel released microcontrollers based on the 32-bit

AVR32 architecture. They include SIMD and DSP

instructions, along with other audio- and video-processing

features. This 32-bit family of devices is intended to compete

 V Ajith et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 4, Dec
2017, pp. 115-119

 © 2018 IJRAA All Rights Reserved page - 117-

with the ARM-based processors. The instruction set is similar

to other RISC cores, but it is not compatible with the original

AVR or any of the various ARM cores.

Device architecture

Flash, EEPROM, and SRAM are all integrated onto a single

chip, removing the need for external memory in most

applications. Some devices have a parallel external bus option

to allow adding additional data memory or memory-mapped

devices. Almost all devices (except the smallest TinyAVR

chips) have serial interfaces, which can be used to connect

larger serial EEPROMs or flash chips.

Program memory

Program instructions are stored in non-volatile flash memory.

Although the MCUs are 8-bit, each instruction takes one or

two 16-bit words.

The size of the program memory is usually indicated in the

naming of the device itself (e.g., the ATmega64x line has 64

kB of flash, while the ATmega32x line has 32 kB).

There is no provision for off-chip program memory; all code

executed by the AVR core must reside in the on-chip flash.

However, this limitation does not apply to the AT94 FPSLIC

AVR/FPGA chips.

Internal registers

The AVRs have 32 single-byte registers and are classified as

8-bit RISC devices. In the tinyAVR and megaAVR variants

of the AVR architecture, the working registers are mapped in

as the first 32 memory addresses (000016–001F16), followed

by 64 I/O registers (002016–005F16). In devices with many

peripherals, these registers are followed by 160 “extended

I/O” registers, only accessible as memory-mapped I/O

(006016–00FF16). Actual SRAM starts after these register

sections, at address 006016 or, in devices with “extended

I/O”, at 010016. Even though there are separate addressing

schemes and optimized opcodes for accessing the register file

and the first 64 I/O registers, all can still be addressed and

manipulated as if they were in SRAM.

The very smallest of the tinyAVR variants use a reduced

architecture with only 16 registers (r0 through r15 are

omitted) which are not addressable as memory locations. I/O

memory begins at address 000016, followed by SRAM. In

addition, these devices have slight deviations from the

standard AVR instruction set. Most notably, the direct

load/store instructions (LDS/STS) have been reduced from 2

words (32 bits) to 1 word (16 bits), limiting the total direct

addressable memory (the sum of both I/O and SRAM) to 128

bytes. Conversely, the indirect load instruction's (LD) 16-bit

address space is expanded to also include non-volatile

memory such as Flash and configuration bits; therefore, the

LPM instruction is unnecessary and omitted.

In the XMEGA variant, the working register file is not

mapped into the data address space; as such, it is not possible

to treat any of the XMEGA's working registers as though they

were SRAM. Instead, the I/O registers are mapped into the

data address space starting at the very beginning of the

address space. Additionally, the amount of data address space

dedicated to I/O registers has grown substantially to 4096

bytes (000016–0FFF16). As with previous generations,

however, the fast I/O manipulation instructions can only reach

the first 64 I/O register locations (the first 32 locations for

bitwise instructions). Following the I/O registers, the

XMEGA series sets aside a 4096 byte range of the data

address space, which can be used optionally for mapping the

internal EEPROM to the data address space (100016–

1FFF16). The actual SRAM is located after these ranges,

starting at 200016.

GPIO ports

Each GPIO port on a tiny or mega AVR drives up to eight pins

and is controlled by three 8-bit registers: DDRx, PORTx and

PINx, where x is the port identifier.

DDRx: Data Direction Register, configures the pins as either

inputs or outputs.

PORTx: Output port register. Sets the output value on pins

configured as outputs. Enables or disables the pull-up resistor

on pins configured as inputs.

PINx: Input register, used to read an input signal. On some

devices (but not all, check the datasheet), this register can be

used for pin toggling: writing a logic .

GSM technology:

GSM refers to second-generation wireless

telecommunications standard for digital cellular services.

First deployed in Europe, it is based on TDMA (Time

Division Multiple Access) technology. GSM uses three

frequency bands: 900 MHz, 1800 MHz and 1900 MHz. Dual-

band phones operate on two out of three of these frequencies,

while tri-band phones operate on all three frequencies.

GSM (Global System for Mobile Communications, originally

Groupe Spécial Mobile),

It is a standard set developed by the European

Telecommunications Standards Institute (ETSI) to describe

protocols for second generation (2G) digital cellular networks

used by mobile phones. The GSM standard was developed as

a replacement for first generation (1G) analog cellular

networks, and originally described a digital, circuit switched

network optimized for full duplex voice telephony. This was

expanded over time to include data communications, first by

circuit switched transport, then packet data transport via

GPRS (General Packet Radio Services) and EDGE (Enhanced

Data rates for GSM Evolution or EGPRS).Further

improvements were made when the 3GPP developed third

generation (3G) UMTS standards followed by fourth

generation (4G) LTE Advanced standards."GSM" is a

trademark owned by the GSM Association.

IV. SOFTWARE

An embedded system is an application that contains at least

one programmable computer (typically in the form of a

microcontroller, a microprocessor or digital signal processor

chip) and which is used by individuals who are, in the main,

unaware that the system is computer-based.

Introduction

Looking around, we find ourselves to be surrounded by

various types of embedded systems. Be it a digital camera or

a mobile phone or a washing machine, all of them has some

kind of processor functioning inside it. Associated with each

 V Ajith et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 4, Dec
2017, pp. 115-119

 © 2018 IJRAA All Rights Reserved page - 118-

processor is the embedded software. If hardware forms the

body of an embedded system, embedded processor acts as the

brain, and embedded software forms its soul. It is the

embedded software which primarily governs the functioning

of embedded systems.

During infancy years of microprocessor based systems,

programs were developed using assemblers and fused into the

EPROMs. There used to be no mechanism to find what the

program was doing. LEDs, switches, etc. were used to check

correct execution of the program. Some ‘very fortunate’

developers had In-circuit Simulators (ICEs), but they were too

costly and were not quite reliable as well.

As time progressed, use of microprocessor-specific assembly-

only as the programming language reduced and embedded

systems moved onto C as the embedded programming

language of choice. C is the most widely used programming

language for embedded processors/controllers. Assembly is

also used but mainly to implement those portions of the code

where very high timing accuracy, code size efficiency, etc. are

prime requirements.

Initially C was developed by Kernighan and Ritchie to fit into

the space of 8K and to write (portable) operating systems.

Originally it was implemented on UNIX operating systems.

As it was intended for operating systems development, it can

manipulate memory addresses. Also, it allowed programmers

to write very compact codes. This has given it the reputation

as the language of choice for hackers too.

As assembly language programs are specific to a processor,

assembly language didn’t offer portability across systems. To

overcome this disadvantage, several high level languages,

including C, came up. Some other languages like PLM,

Modula-2, Pascal, etc. also came but couldn’t find wide

acceptance. Amongst those, C got wide acceptance for not

only embedded systems, but also for desktop applications.

Even though C might have lost its sheen as mainstream

language for general purpose applications, it still is having a

strong-hold in embedded programming. Due to the wide

acceptance of C in the embedded systems, various kinds of

support tools like compilers & cross-compilers, ICE, etc.

came up and all this facilitated development of embedded

systems using C. Subsequent sections will discuss what is

Embedded C, features of C language, similarities and

difference between C and embedded C, and features of

embedded C programming.

EMBEDDED SYSTEMS PROGRAMMING

Embedded systems programming is different from developing

applications on a desktop computers. Key characteristics of

an embedded system, when compared to PCs, are as follows.

Embedded devices have resource constraints(limited ROM,

limited RAM, limited stack space, less processing power)

Components used in embedded system and PCs are different;

embedded systems typically uses smaller, less power

consuming components. Embedded systems are more tied to

the hardware.

Two salient features of Embedded Programming are code

speed and code size. Code speed is governed by the

processing power, timing constraints, whereas code size is

governed by available program memory and use of

programming language. Goal of embedded system

programming is to get maximum features in minimum space

and minimum time.

Embedded systems are programmed using different type of

language

 Machine Code

 Low level language, i.e., assembly

 High level language like C, C++, Java, Ada, etc.

 Application level language like Visual Basic, scripts,

Access, etc.

Assembly language maps mnemonic words with the binary

machine codes that the processor uses to code the instructions.

Assembly language seems to be an obvious choice for

programming embedded devices. However, use of assembly

language is restricted to developing efficient codes in terms of

size and speed. Also, assembly codes lead to higher software

development costs and code portability is not there.

Developing small codes are not much of a problem, but large

programs/projects become increasingly difficult to manage in

assembly language. Finding good assembly programmers has

also become difficult nowadays. Hence high level languages

are preferred for embedded systems programming.

Use of C in embedded systems is driven by following

advantages it is small and reasonably simpler to learn,

understand, program and debug. C Compilers are available for

almost all embedded devices in use today, and there is a large

pool of experienced C programmers.

• Unlike assembly, C has advantage of processor-

independence and is not specific to any particular

microprocessor/ microcontroller or any system. This makes it

convenient for a user to develop programs that can run on

most of the systems. As C combines functionality of assembly

language and features of high level languages, C is treated as

a ‘middle-level computer language’ or ‘high level assembly

language’. It is fairly efficient. It supports access to I/O and

provides ease of management of large embedded projects.

Many of these advantages are offered by other languages also,

but what sets C apart from others like Pascal, FORTRAN, etc.

is the fact that it is a middle level language; it provides direct

hardware control without sacrificing benefits of high level

languages. Compared to other high level languages, C offers

more flexibility because C is relatively small, structured

language; it supports low-level bit-wise data manipulation.

Compared to assembly language, C Code written is more

reliable and scalable, more portable between different

platforms (with some changes). Moreover, programs

developed in C are much easier to understand, maintain and

debug. Also, as they can be developed more quickly, codes

written in C offers better productivity. C is based on the

philosophy ‘programmers know what they are doing’; only

the intentions are to be stated explicitly. It is easier to write

good code in C & convert it to an efficient assembly code

(using high quality compilers) rather than writing an efficient

 V Ajith et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 4, Issue 4, Dec
2017, pp. 115-119

 © 2018 IJRAA All Rights Reserved page - 119-

code in assembly itself. Benefits of assembly language

programming over C are negligible when we compare the ease

with which C programs are developed by programmers.

Objected oriented language, C++ is not apt for developing

efficient programs in resource constrained environments like

embedded devices. Virtual functions & exception handling of

C++ are some specific features that are not efficient in terms

of space and speed in embedded systems. Sometimes C++ is

used only with very few features, very much as C.

V.CONCLUSION

This paper describes a portable wireless Brain-Ma-chine-

Brain Interface (BMBI) that links the brain to external

hardware, In conclusion, we will be able to transfer ourselves

into computers at some point. Most arguments against this

outcome are seemingly easy to circumvent. They are either

simple minded, or simply require further time for technology

to increase. The only serious threats raised are also overcome

as we note the combination of biological and digital

technologies. They will be able to provide an interface with

computers that is as close as our mind can be while we still

reside in our biological form. Nanobots could also carefully

scan the structure of our brain, providing a complete readout

of the connections between each neuron. They would also

record the current state of the brain. This information, when

entered into a computer, could then continue to function as us.

All that is required is a computer with large enough storage

space and processing power.

