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Abstract – This paper presents a hybrid optimization method that aims at minimizing the total system losses while taking into account the 

stochastic behavior of Wind Power Generation [WPG] and load during different seasons. One issue related to wind power integration 

concerns the location and capacities of the wind turbines [WTs] in the network. Although the location of wind turbines is mainly determined 

by the wind resource and geographic conditions, the location of wind turbines in a power system network may significantly affect the 

distribution of power flow, power losses, etc. The hybrid optimization method combines the Genetic Algorithm [GA], gradient based 

constrained nonlinear optimization and the sequential Monte Carlo simulation [MCS] method. The GA is suitable for finding the optimal 

capacity and location of WTs as both control variables are integer values. The gradient-based constrained nonlinear optimization is adopted 

for the optimal power factor setting of WTs as the algorithm usually provides the fastest solution.  
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I Introduction 

 

The connection of large amounts of wind turbines [WTs] to 

distribution systems presents a number of technical 

challenges to Distribution Network Operators [DNOs]. 

These challenges, such as steady-state voltage variation, 

power losses, voltage stability and reliability, are partly due 

to the mismatch between the location of energy resources 

and the local network capability of accommodating the new 

generation. Particularly, the location of WTs is determined 

by the local wind resources and geographical conditions. 

However, the capacity of the existing network where the 

WTs will be connected may not be sufficient to deliver the 

generated wind power. As a result, network reinforcement is 

required, which calls for a high capital investment. System 

losses, being a major concern for DNOs, may be reduced or 

increased with the connection of WTs, depending on the 

locations and capacities of the connected WTs. System 

losses can be minimized by regulating WTs’ power factors 

or reactive power outputs. This could benefit DNOs by 

reducing system operation costs without extra investment. 

Furthermore, DNOs may charge wind power producers for 

kWh energy flow through their networks by evaluating total 

network investment and system losses for a time span of 20 

years [WTs’ life time]. Therefore, a reduction in system 

losses also benefits wind power producers by reducing their 

connection fee per kWh. 

 

II Wind Power Model 

 

A. Single Wind Power Model 

The model was developed on the basis of one-year wind 

power data measured from the offshore wind farm with a 

rated capacity of 165.6 MW. The model is called ‘LARIMA’ 

because a limiter is added to a standard autoregressive 

integrated moving-average [ARIMA] model In a 

LARIMA(p, d, q) model, p represents the order of an 

autoregressive [AR] process, q represents the order of a 

moving average [MA] process, and d represents the degree 

of differencing operation. The model is shown in Fig. 1.  

 

 
Fig. 1. Single Wind Power Model 

 

B. Wind Power Simulation 

The following presents a numerical example of the bivariate-

LARIMA model based on the wind power data measured 

from the wind farm. According to the determined bivariate-

LARIMA model, two correlated wind power time series are 

simulated.wind power data from Part A and Part B of the 

wind farm are used for parameter estimations. Part A of the 

wind farm has the same capacity as Part B.  In order to 

account for the seasonal variation, the wind power data are 

grouped into summer and winter period. For each group of 

data (y1(t) and y2(t)), the square-root and one-degree 

differencing transformation are applied to obtain two new 

time series z1(t) and z2(t). 

 

C. Wind Power Time Series Simulation 
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Bivariate wind power time series, Y1(t) and Y2(t), are 

simulated according to Fig. 2. The time-domain plot and the 

scatter plot of the two time series are shown in Fig. 2. Y1(t) 

is referred to as Wind power A and Y2(t) is referred to as 

Wind power B. In the actual situation, wind may pass 

through Part A and Part B of the wind farm at the same time, 

which results in similar WPG from the two parts of the wind 

farm; whereas wind may pass from Part A to Part B of the 

wind farm, which results in different WPG from the two parts 

of the wind farm. These two consequences are also observed 

in the simulated time series in Fig. 2(a), where Wind power 

A and Wind power B have identical values during certain 

periods and discrepancy during other periods. The time-

domain plot also shows that Wind power A fluctuates in a 

very similar way as Wind power B due to their strong cross-

correlation. The strong correlation is also observed in the 

scatter plot in Fig. 2 (b), whose shape tends to follow a 

straight line. In addition, the two ends of the scatter plot are 

more condensed than the middle part. This is caused by the 

upper and lower limits of WPG due to cut-in and rated wind 

speed. For comparison, two wind power time series are 

simulated independently by using the LARIMA model in 

Fig. 1 for Part A and Part B of the wind farm without taking 

into account their cross-correlations. The sample probability 

distribution of the sum of the two uncorrelated time series is 

shown in Fig. 2 (b). Evidently, the probability distribution is 

very different from the one shown in Fig. 2 (a). This indicates 

the importance of correlation modeling when simulating 

WPG. 

 

 
Fig. 2. Wind power (a) time-domain plot, (b) scatter plot 

 

III Optimization Approaches 

 

During the planning stage of a modern distribution system, 

utilities are interested in knowing the optimal locations and 

capacity of WTs in the network so that the total system power 

losses can be minimized during system operation. In 

addition, the utilities would like to know if the system power 

losses can be further reduced by controlling the power factor 

of WTs. However, the utilities usually confront a dilemma 

that how the stochastic behavior of wind power can be taken 

into account in a realistic way. The following demonstrates 

one solution to the issues addressed above.  

The presented solution combines standard optimization 

techniques with sequential Monte Carlo simulation (MCS), 

which is widely accepted as an effective approach to the 

analysis of stochastic generation.  The hybrid optimization 

method is graphically illustrated in Fig. 3. The method 

consists of four parts: 1) load flow calculation for the 

evaluation of system steady state performance, 2) sequential 

MCS for the probabilistic assessment of load flow results, 3) 

constrained nonlinear optimization for the optimal power 

factor setting of WTs, and 4) GA for the optimal allocation 

of WTs. The following describes the implementation of the 

hybrid optimization method in detail. 

 

Fig. 3. Hybrid optimization Scheme 

 

A. Optimal Power Factor Setting of Wind Turbines 

The constrained nonlinear optimization algorithm aims to 

minimize total system power losses by controlling the power 

factor of WTs. The optimization considers the voltage and 

current limits that are fulfilled at a 95%-probability. As 

shown in Fig. 3, the optimization requires inputs of total 

system power losses, bus voltages and line currents from the 

sequential MCS. The optimization provides outputs of 

minimum power losses to GA as well as corresponding 

optimal power factor of WTs. The algorithm for the 

constrained nonlinear optimization is based on the gradient 

and Hessian information of the Lagrangian. Mathematically, 

the objective function of the optimization is to 

3.1 

where N is the length of a MCS, e.g. 8760 for a evaluation 

over a year; Ploss(i) are the total system power losses at ith 

hour; Ploss are the average system power losses over the 

study period. The total system losses are calculated by the 
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sequential MCS shown in Fig. 4. The algorithm performs N 

consecutive load flow calculations in chronological order. 

The algorithm requires inputs of power factor of WTs, wind 

power time series and load time series. The algorithm 

provides outputs of average system power losses Ploss and 

time series of bus voltages and line currents over the studied 

period. 

 

B. Genetic Algorithm for Optimal Allocation of Wind 

Turbines 

 

The GA is used in order to select the types and number of 

WTs to be allocated at each candidate bus. The GA randomly 

generates the initial population of solutions (individuals) by 

defining a set of vectors. Each vector, or called a 

chromosome, has a size N N N e C T = × , where C N is the 

number of candidate locations and T N is the number of 

defined WT types. This is shown in Fig. 4. 

 

 
Fig. 4. Schematic of the GA chromosome 

 

As shown in Fig. 4, a chromosome consists of a vector of 

integers, each of which represents the number of WTs of a 

given type to be allocated at a candidate bus. For instance, 

WTs of type A is associated with the first part of the vector 

with the size of NC, which is the number of the candidate 

locations. Each element of  this vector is an integer 

representing the number of WTs of type A connected to the 

corresponding bus. As such, the locations and types of WTs 

are expressed as a string of integers. At each generation of 

the GA, a new set of improved individuals is created by 

selecting individuals according to their fitness; the selection 

mechanism used here is the normalized geometric ranking 

scheme. After the new population is selected, genetic 

operators are applied to selected individuals for a discrete 

number of times. These genetic operators are simple 

crossover and binary mutation. A simple crossover randomly 

selects a cut-point dividing each parent into two segments. 

Then, two segments from different parents are combined to 

form a new child . A binary mutation changes each of the bits 

of the parent based on the probability of mutation. An elitism 

mechanism is also adopted to ensure the best member of the 

population is not lost. The iteration process continues until 

one of the stopping criteria is reached. 

 

 

C. Genetic Algorithm - Monte Carlo Hybrid 

Optimization Method 

 

For each chromosome of the GA, the constrained nonlinear 

optimization algorithm nested in the GA algorithm computes 

the fitness function used by the GA and the optimal power 

factor setting of WTs. The constrained nonlinear 

optimization algorithm is based on a sequential MCS, which 

performs a number of load flow calculations in the 

chronological order of a year. The sequential MCS generates 

time series of system power losses, bus voltages and line 

currents. The system power losses are exported to the 

constrained nonlinear optimization algorithm as its objective 

function, with the bus voltages and line currents as its 

nonlinear constraints. The constrained nonlinear 

optimization provides outputs of minimum power losses to 

the GA given a specified number and location of WTs. 

Consequently, this hybrid method will deliver the best 

locations as well as the best WT types in the end.  

 

IV SIMULATION STUDY 

 

The 69-bus radial distribution system is used as a case 

network for the simulation studies. A 12 MVA 33/11 kV 

substation transformer is included in the network to connect 

the four main distribution feeders to the slack bus (bus 1). 

The upper two feeders are located in area A, and the lower 

two are located in area B. The 11-kV side of the transformer 

is denoted as bus 70. The voltage at the 11-kV side is 

controlled at 1.0167 p.u. by a tap regulator. There are in total 

13 tap positions, with maximum six steps above and below 

the reference position. One tap step adjusts voltage by 0.0167 

p.u. The voltage limits of all buses are set to ±6% of the 

nominal value (11 kV), i.e. Vmax = 1.06 p.u. and Vmin = 

0.94 p.u. The current limit of all lines is 157A. In this case, 

the average active power losses of the network without the 

connection of WTs are 25 kW. 

 

A. Simulation Results 

 

Table 1. The initial values of the number and power factor 

of WTs for the hybrid optimization method 

 
 

Table 2. The optimal values of the number and power 

factor of WTs found by the hybrid optimization method 
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Simulation that uses the hybrid optimization algorithm is 

carried out on the distribution system with wind power and 

load time series. It is assumed that WTs of three different 

capacities are chosen by the DNO. These capacities are 20 

kW, 50 kW and 100 kW. Maximum five WTs of each type 

are allowed at a given location. This requirement may be set 

by the available land for building WTs. For another 

distribution network with a different load level, WTs with 

different capacities may be considered. Consequently, GA is 

used to search for the optimal number of WTs of each type 

at the candidate locations. It is also assumed that the power 

factor is the same for all WTs connected to the same bus. 

 

V. CONCLUSION 

 

This paper presents a hybrid optimization method to find the 

optimal sitting, sizing and power factor setting of WTs in a 

distribution system in order to minimize the network power 

losses. The method combines the GA, gradient-based 

constrained nonlinear optimization and the sequential MCS 

method, which takes into account the stochastic behavior of 

WPG and load. The optimization algorithm considers a 95%-

probability of fulfilling the bus voltage and line/transformer 

thermal limits. With this optimization algorithm, a 

significant reduction of system power losses is achieved as a 

result of the integration of wind power. Therefore, the 

described hybrid optimization method can be used to assist 

the network operators to assess the system performance and 

to plan future integration of WTs in an effective and practical 

way. 
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