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Abstract: In the present study, a trigonometric shear   deformation  theory  is developed  for static  flexural  

analysis of thick isotropic  beams.  The number  of variables  in the  present theory  is same as that in the  

first order shear  deformation theory.    In  this  theory  the  the sinusoidal  function  is used  in displacement 

field in terms  of thickness  coordinate  to represent the  shear deformation  effect  and  satisfy  the  zero  

transverse shear  stress  condition  at  top  and  bottom surface of the beams.  The Governing  differential  

equation  and boundary conditions  of the  theory  are  obtained  by using Principle  of virtual  work.  The  

fixed isotropic beam  subjected  to  varying  load  is examined  using present theory.    The numerical  results 

have been computed for various  lengths  to  thickness  ratios  of the  beams  and  the  results  obtained are  

compared with  those  of Elementary, Timoshenko,   trigonometric and  other  higher  order  refined theories  

and  with the available  solution  in the literature. 

Keywords: Thick beam, shear deformation, isotropic beam, transverse shear  stress,   static   flexure,   

trigonometric  shear  deformation  theory,   principle   of  virtual work 

1.Introduction 

 

It is well-known that elementary theory of bending 

of beam based on Euler-Bernoulli hypothesis  

disregards the  effects of the  shear  deformation and  

stress  con- centration. The theory  is suitable  for 

slender beams and is not suitable  for thick or deep 

beams since it is based on the assumption that the 

transverse normal to neutral axis remains  so during  

bending  and  after bending,  implying  that the  

transverse shear  strain is zero.   Since theory  

neglects  the  transverse shear deformation,  it  

underestimates  deflections  in  case of thick  beams  

where  shear  deformation effects are significant. 

Bresse  [1], Rayleigh  [2] and  Timoshenko  

[3] were the  pioneer  investigators to include  refined   

effects  such  as  rotatory inertia   and  shear    

deformation  in the  beam  theory.   Timoshenko  

showed  that the  effect of transverse vibration of 

prismatic  bars. This theory is now widely referred 

to as Timoshenko beam  theory  or  first  order  shear  

deformation   theory (FSDT) in the  literature.  In 

this  theory  trans- verse shear strain  distribution is 

assumed  to be constant through the  beam  

thickness  and  thus  requires shear correction factor 

to appropriately represent the strain  energy of 

deformation.  Cowper  [4] has given refined 

expression  for the  shear correction  factor  for 

different crosssections of beam.    The accuracy of 

Timoshenko  beam  theory  for transverse 

vibrations of simply  supported beam  in respect  of 

the  funda- mental  frequency  is verified  by  Cowper  

[5] with  a plane stress exact  elasticity  solution.  To 

remove the discrepancies  in classical and first order 

shear defor- mation  theories,  higher order or refined 

shear defor- mation  theories  were developed  and  

are available  in the  open literature for static  and  

vibration analysis of beam. 

Levinson [6], Bickford [7], Rehfield and 

Murty 

[8], Krishna   Murty   [9], Baluch,   Azad  and  

Khidir [10],  Bhimaraddi  and   Chandrashekhara  

[11] presented  parabolic  shear  deformation 

theories  assuming a higher variation of axial 

displacement in terms of thickness  coordinate. 

These theories  satisfy shear stress  free boundary 

conditions  on top  and  bottom surfaces of beam 

and thus  obviate  the need of shear correction  

factor. 

There   is  another   class  of  refined  

theories, which includes  trigonometric functions  

to represent the  shear deformation effects 

through the  thickness. Vlasov and Leontev [12], 

Stein [13] developed refined shear  deformation 

theories  for thick  beams  includ- ing sinusoidal  

function  in terms  of thickness  coordi- nate  in 

displacement field. However, with these the- ories 

shear  stress  free boundary conditions  are  not 
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satisfied  at  top  and  bottom surfaces  of the  beam. 

Further Ghugal and Dahake [14] developed a 

trigonometric  shear  deformation theory  for 

flexure of thick beam  or deep beams  taking  into  

account transverse shear deformation effect. The 

number  of variables  in the  present theory  is same 

as that in the  first order shear deformation theory.  

The trignometric function is used in displacement 

field in terms of thickness co- ordinate  to represent 

the shear deformation effects. A study  of 

literature by Ghugal  and  Shimpi [20] indicates  

that the  research  work  dealing  with flexural 

analysis of thick beams using refined trigonometric  

and  hyperbolic  shear  deformation theories  is very 

scarce and is still in infancy. In this  paper  

development  of trigonometric theory and its 

application to thick  cantilever  beams  is presented. 

2.Formulation of Problem 

 Consider  a thick  isotropic  fixed beam of length  L 

in x direction,  Width  b in y direction  and  depth  

h as shown in Figure  1.  Where  x, y, z are 

Cartesian coordinates. The beam is subjected  to 

transverse load of intensity q (x)  per  unit  length  

of beam.   Under displacement,  Axial  bending  

stress  and  transverse shear stress are required  to 

be determined. 

 
Figure 1: Simply supported beam bending under x-

z plane 

 

2.3  The Displacement  field: 

The  displacement field of the  present beam  

theory can be expressed as follows. The 

trigonometric function is assigned according  to the 

shearing  stress distribution through the thickness  

of beam. 
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Where 

u = Axial displacement in x direction  which is 

func- 
 

tion of x and z. 

 

w = Transverse displacement in z direction  which 

is function  of x. 

φ = Rotation of cross section of beam at neutral 

axis due to shear which is an unknown  function  to 

be de- termined and it is a function of x. 

Normal  strain: 
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Shear strain: 
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Stresses: 

The   one  dimensional   Hookes  law  is  applied   for 

isotropic  material, stress x is related  to strain  x and 

shear stress is related  to shear strain  by the 

following  constitutive relations. 
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where E and G are the elastic constants of the 

beam material. 

2.4  Governing differential equations: 

Governing  differential  equations  and  boundary 

conditions  are obtained from Principle  of virtual  

work. Using  equations   for  stresses,   strains   and  

principle of virtual  work,  variationally consistent 

differential equations  for beam under 

consideration are obtained. The principle  of 

virtual  work when applied  to beam leads to: 
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Where  δ = variational 

operator.  

Employing  Greens  theorem  in above  Equation 

successively, we obtain  the coupled Euler-

Lagrange equations  which are the  governing  

differential  equations   and   associated   boundary  

conditions   of  the beam.  The governing 

differential  equations  obtained are as follows: 
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Where A0 , B0  and C0  are the stiffness 

coefficients in governing  equations.   The  associated  

consistent natural boundary form along the edges 

x = 0 and x = L. 
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Where  w is Prescribed. 
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Where   w is Prescribed. 
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Where  φ is Prescribed. 

The  flexural behaviour  of beam  is given by 

solution of above  equations  8 and  9 by discarding  

all terms containing  time  derivatives and  satisfying  

the  asso- ciate  boundary conditions.   The  stiffness 

coefficient used in governing equations  Equations 

8, 9, 10,11 and 12 are described  as below: 
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2.5  The general solution of governing 

equilib- rium equations of the Beam 

 

The   general   solution   for  transverse  

displacement 

 

w(x) and φ(x)  can be obtained from equation  8 

and 

 

9 by discarding  the terms containing  time (t) 

deriva- tives.   Integrating and  rearranging the  

equation  8, we obtained the following equation 

 3 2
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Where,  Q(x)  is generalised  shear force for 

beam. 
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The second governing  equation  9 can be written 

as: 
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Now using equations  16 and  18 a single equation  

in 

 

terms  of φ is obtained as: 
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The general solution  of equation  19 is as follows: 
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The equation  of transverse displacement w(x) is 

obtained by  substituting the  expression  of φ(x)  

in equation   18 and  integrating it  thrice  with  

respect to  x.   The  general  solution  for w(x)  is 

obtained  as follows: 
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where  k1 ,  k2 ,  k3 ,  k4 ,  k5   and  k6   are  the  

constants 

 

of integration and  can be obtained by applying  

the 

 

boundary conditions  of the beams. 

 

3.  Illustrative example: 

 

In order to prove the efficiency of the present 

theory, the   following  numerical   examples   are  

considered. 

The following material  properties  for beam are 

used. 

 

Material  properties: 

 

1.  Modulus  of Elasticity E=210GPa 

 

2.  Poissions ratio  = 0.30 
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       3.Density=7800  

Kg/m3 

 

3.1   Example 1:    Cantilever  beam with   

uniformly varying load q(x) = q0 (x/L) 

 

A Cantilever beam  has  its  origin  at  left  hand  

side 

support and  is fixed at  x = 0 and  free at  x=L.  

The beam is subjected  to uniformly  varying  load 

q(x) 

 

 

  0

x
q x q

L

 
  

   
 

The  boundary conditions  associated  with this  

problem are as  follows. 

 

At fixed end: 
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At free end: 
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General  expressions  obtained for w(x) and  φ(x)  

are as  follows 
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The axial displacement, stresses and transverse 

shear stress  obtained based  on above  solutions  are 

as follows:
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4.Numerical Results: 

The  numerical  results  for axial displacement, 

transverse displacement, bending stress and 

transverse shear stress are presented in following 

non dimensional form and  the  values  are  

presented  in Table  1 and Table  2 
3

4 4

0 0

0 0

10
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x zx
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w w u u

q L q L
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Table 1:  Non-Dimensional axial displacement �̅� at (x=L/2 ,  z=h/3), Transverse deflection �̅� at (x=L,  z=0), axial 

stress 𝜎𝑥 at (x=0,  z=h/3), maximum transverse shear stress 𝜏�̅�𝑋
𝐶𝑅 and 𝜏�̅�𝑋

𝐸𝐸 at (x=0.01L ,  z=0), of simply supported 

beam subjected  to Varying  load for Aspect  Ratio  4. 

 

Source  Theory �̅� �̅� 𝜎𝑥 𝜏�̅�𝑋
𝐶𝑅 𝜏�̅�𝑋

𝐸𝐸 
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Present TSDT 39.8826 -113.8951 -86.8530 -3.4537 43.8046 

Ghugal  and Sharma HPSDT 39.8451 -113.8138 -82.3315 -3.1320 41.7179 

Krishna  Murty HSDT 39.8453 -113.8134 -86.9805 -3.4677 37.1810 

Timoshenko FSDT 38.4413 -108.00 -72.00 -3.2982 10.1250 

Bernoulli-Euler ETB 37.1250 -108.00 -72.00 – 10.1250 

 

Table 2:  Non-Dimensional axial displacement �̅� at (x=L/2 ,  z=h/3), Transverse deflection �̅� at (x=L,  z=0), axial stress 

𝜎𝑥 at (x=0,  z=h/3), maximum transverse shear stress 𝜏�̅�𝑋
𝐶𝑅 and 𝜏�̅�𝑋

𝐸𝐸 at (x=0.01L ,  z=0), of simply supported beam 

subjected  to Varying  load for Aspect  Ratio  4. 

 

Source  Theory �̅� �̅� 𝜎𝑥 𝜏�̅�𝑋
𝐶𝑅 𝜏�̅�𝑋

𝐸𝐸 

Present TSDT 37.5667 -1702.20 -484.9191 -9.4688 27.5451 

Ghugal  and Sharma HPSDT 37.5609 -1702.00 -473.66 -9.1799 30.1377 

Krishna  Murty HSDT 37.5667 -1701.87 -485.26 -9.1863 26.1853 

Timoshenko FSDT 38.4412 -1687.33 -449.950 -9.1728 25.3125 

Bernoulli-Euler ETB 37.1250 -1687.50 -450.00 – 25.3125 

 

 

 

 

 

 

 
 

 

Figure  2: Variation of Transverse Displacement w 
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Figure 3: Variation of Maximum  Axial displacement 

 

(u)  for AS 04 

Figure  4:  Variation of Maximum  Axial 

displacement (u)  for AS 10 
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Figure  5:  Variation of Maximum  Axial  stress  (σx ) 

 

for AS 04 

Figure 6: Variation of Maximum Axial stress (σx ) 

 

for AS 10 

 

 

 
 

 

 

Figure  7: Variation of Transverse shear stress Figure  8: Variation of Transverse shear stress (τ C R ) 

 

zx ) for AS 

04 

 

for AS 10 
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Figure 9: Variation of Transverse shear stress (τ EE 

) 

 

for AS 04 

Figure 10: Variation of Transverse shear stress (τ EE ) 

 

for AS 10 
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5. Conclusion 

 

From  the  static  flexural  analysis  of cantilever  beam 

following conclusion are drawn: 

 

1.  The  result   of  maximum   transverse   

displacement w obtained by present theory  is in 

excel- lent agreement with  those  of other  

equivalent refined  and  higher  order  theories.    

The  variation  of w for AS 4 and  10 are  

presented as shown in Figure  2. 

 

2.  From  Figure  3  and  Figure  4,  it  can  be  ob- 

served that, the  result  of axial displacement u 

for beam  subjected  to varying  load varies    

linearly  through the  thickness  of beam  for AS 

4 and 10 respectively. 

 

3.  The variation of maximum non dimensional   

axial stresses σx for AS 4 and 10 of beam as 

shown in Figure  5 and Figure  6 respectively. 

 

4.  The maximum  transverse shear stress obtained 

by  present  theory  using  constitutive  relation 

is in  good agreement  with  that of higher    

order  theories  for aspect  ratio  4 and  for aspect 

ratio  10.   The  through thickness  variation of 

this  stress  obtained  via  constitutive  relation 

are  presented  graphically   in  Figure  7  and  8 

and  those  obtained via  equilibrium   equation 

are presented in Figures  9 and 10. 
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