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Abstract— In the present study, thermal deformations and transverse shear deformation effects of isotropic plate were 

analyzed using Trigonometric shear deformation Theory. Analytical formulations and solutions for the thermal stress 

analysis of simply supported isotropic plate subjected to linear thermal load based on trigonometric deformation are 

presented. Simply supported isotropic plate is analysed for the axial displacement, transverse displacement, axial bending 

stress and transverse shear stress. In New Trigonometric Shear Deformation Theory having three variables for the 

displacement field. The displacement field for analysis of plate is trigonometric. Boundary conditions and governing 

differential equations of the theory are obtained using the principle of virtual work. The important feature of the theory is 

that the transverse shear stresses can be obtained directly from the use of constitutive relations, satisfying the stress free 

boundary conditions at top and bottom surfaces of the plate. Hence, the theory eliminates the need of shear correction 

factor. Plates with different aspect ratio are studied. Results obtained from isotropic plates subjected to linear thermal load 

are compared with other shear deformation theory to check the accuracy of the present theory. 
Index Terms—Displacement Field,  Isotropic beam,  Simply Supported plate, Thermal Load 

1.1 Introduction  

In this paper, a variationally consistent trigonometric 

shear deformation theory for thermal stresses is 

developed. The governing differential equations and 

boundary conditions are obtained using principle of 

virtual work. The stiffness matrix is used to find out 

field variables w, ϕ and ψ by using governing 

differential equations. The theory is applied to simply 

supported and uniform isotropic solid plate for thermal 

stress analyses. A closed-form and general solutions 

are obtained. The general solutions for field variables 

w, ϕ and ψ are obtained for plate under consideration 

using appropriate boundary conditions. The general 

expressions for displacements and stresses are 

presented. Results obtained are comparing with those 

of elementary beam theory, higher order shear 

deformation theory. The credibility of the present 

theory is established by accurate evaluation of 

displacements and thermal stresses. 

Theoretical Formulation - The theoretical formulation 

of a uniform plate based on certain kinematical and 

physical assumptions is presented. The variationally 

correct forms of differential equations and boundary 

conditions, based on assumed displacement field will 

be obtained using dynamic version of the principle of 

virtual work. 

1.2The plate under consideration- The variationally 

correct forms of differential equations and boundary 

conditions, based on the assumed displacement field 

are obtained using the principle of virtual work. The 

plate under consideration occupies the following 

region. Consider a thick isotropic simply supported 

plate of length a in x direction, Width b in y direction 

and depth h as shown in Figure 1. Where x, y and z are 

Cartesian coordinates. The plate is subjected to 

sinusoidalthermal load of intensity T(x) on whole 

length of plate. Underthis condition, the axial 

displacement, transversedisplacement, axial bending 

stress and transverseshear stress are required to be 

determined. The beam is made up ofhomogeneous, 

linearly elastic isotropic material with the principal 

material axes parallelto the xandy axes in the plane of 

plate. The plate’s material obeys the generalized 

Hook's law. 

 0 ; 0 ; /2 /2         1x a y b h z h        
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Figure 1: Plate under bending in x-z plane 

1.2.2 Assumptions made in the theoretical 

formulation  

1) The displacements are small and therefore strains 

involved are infinitesimal.  

2) The in-plane displacement u in x direction as well 

as displacement v in y direction consists of three parts:  

a. Displacement component analogous to the 

displacement in classical plate theory of bending. 

b. Displacement component due to shear 

deformation, which is assumed to be 

trigonometric in nature with respect to thickness 

coordinate, such that the maximum shear stress 

occurs at neutral axis.  

c. The displacements are small compared to plate 

thickness. 

3) The transverse displacement w in z direction is 

assumed to be a function of x and y coordinates only.  

4) The body forces are ignored in the analysis.  

5) The plate is subjected to thermal load only. 

 

1.2.1The displacement field of TSDT 

Based on the above mentioned assumptions, the 

displacement field of the present plate theory can be 

expressed as follows. The trigonometric function is 

assigned according to theshearing stress distribution 

through the thickness of plate. 
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Whereuandvare the in-plane displacement 

components in the x andy directionsrespectively, 

andwis the transverse displacement in the z direction. 

The trigonometricfunction in terms of the thickness 

coordinate in both the in-plane displacements uandvis 

associated with the transverse shear stress distribution 

through the thickness ofplate. The functions ϕ(x, y) 

andψ(x, y) are the unknown functions associated with 

theshear slopes. Normal and shear strains are obtained 

within the framework of the lineartheory of elasticity 

using the displacement field. 

 

1.2.1 Strain-displacement relationships 

Normal and shear strains are obtained within the 

framework of linear theory of elasticity using the 

displacement field given: 
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Substituting the in-plane and transverse displacement 

field from Eq. (2)and Eq. (3) into Eq. (4), we get 
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1.2.5 Stress-strain relationships 

For a plate of constant thickness, composed of 

isotropic material, one dimensional Hooke's law is 

applied for isotropic material, stress(𝜎𝑥 ) is related to 

strain(𝜀𝑥)and shear stress is related to shear strain by 

the following constitutive relations: 

The (𝜎𝑥,𝜎𝑦,𝜏𝑥𝑦,𝜏𝑧𝑦,𝜏𝑧𝑥,) are the stress components, 

(𝜀𝑥,𝜀𝑦,𝛾𝑥𝑦,𝛾𝑧𝑦,𝛾𝑧𝑥,)are the strain components, E is the 

modulus of elasticity, 𝛼𝑥and𝛼𝑦are the co efficient of 

a 

b 
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thermal expansion along xandy directions respectively 

andT is the thermal load. 

By inserting Eq. (3.5) in to Eq. (3.7) we get: 
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Where Qijare the plane stress reduced elastic constants 

in the material axes of theplate defined as: 
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Where EandG are the elastic constants of the plate 

material E andG are young’s modulus and shear 

modulus or the elastic constants of the plate material, 

andαis the coefficients of thermal expansion in x and z 

direction respectively andT0andT1is the thermal load. 

 

1.2.6 Governing equations and boundary 

conditions 

Governing differential equations and boundary 

conditions are obtained from Principle of virtual work. 

Using equations for stresses, strains and principle of 

virtual work, variationallyconsistent differential 

equations for plate under consideration are obtained. 

The principle of virtual work when applied to plate 

leads to: 
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Whereδ = variational operator, 

Substituting expressions for the strains and stresses in 

Eq. (3.10)and employingGreen’s theorem 

successively, we obtain the coupled Euler-Lagrange 

equations which are the governing differential 

equations and associated boundary conditions of the 

plate. The governing differential equations obtained 

are as follows: 

 

 

   

4 4 4

:  2 211 224 2 2 412 66

3 3 3 3
       2

11 22 12 663 3 2 2

2 2
1 1

       ,      (11)
2 211 12 12 22

w w w
w D D D D

x x x y

S S S S
x x x y x y

T T
TD TTD TD TTD q

x y



   

  
   

   

      
       
           

 
   

 

 

 

   

3 3 2 2
:  211 553 212 66 11 662 2

2
1

       0,                                           (12)
12 66 11 12

w w
S S S SS SS C

x x y x y

T
SS SS TS TTS

y x x

 
 



 
    

      
     


   

  

 

 

   

3 3 2 2
:  222 443 212 66 66 222 2

2
1

        0,                                          (13)
12 66 12 22

w w
S S S SS SS C

y y x x y

T
SS SS TS TTS

y x y

 
 



 
    

      
     


   

  

 

The associate consistent boundary conditions obtained 

are as below: Along the edge 0 and ,x x a   
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Thus, the variationally consistent governing 

differential equations and boundary conditionsare 

obtained. The coefficients appearing in the governing 

differential equations and boundaryconditions are 

given in Appendix. The flexural behaviour of the plate 

is described by thesolutionsatisfying these equations 

and the associated boundary conditions at each edge of 

theplate. 

 

1.2.7 The general solution of governing equilibrium 

equations of the plate: 

To assess the performance of the present theory in the 

prediction of bending response of a plate under a 

thermal load, a simply supported isotropic plate of 

length L, width b, and thickness h is considered. The 

plate subjected to a thermal load T(x, y) = zT1(x, y) 

varies linearly through the thickness.  
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The quantities T0 are the intensities of thermal load. In 

order to solve the governing equation with the 

prescribed boundary conditions; a generalized Navier 

approach is employed to obtain closed-form solutions. 

The following is the solution form for w(x,y), ϕ(x, y), 

and ψ(x, y) satisfying the boundary conditions of 

simply supported plate as given below 
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Wherewmn, ϕmn, andψmnare the unknown coefficients 

which can be easily determined by substituting Eq. 

(16) andT(x, y) = zT1(x, y) in the set of three governing 

differential equation and solving the resulting 

simultaneous equation as, 
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  

   

 

 
   

 

 

 

Thermal Analysis: 

A simply supported plate of lengtha, width b, and 

thickness h of a homogeneous isotropic material is 

considered. The plate occupies the region described by 

Eqn. (1) in x-y-z Cartesian coordinate system. 

 

1.2.8 Illustrative examples 

In order to prove the efficiency of the present theory, 

the following numerical example is considered. The 

following material properties for plate are used. 

Material properties: 

1. Modulus of Elasticity E = 210 GPa 

2. Poisson’sRatio µ = 0.30 

3. Coefficient of Thermal Expansion 

𝛼𝑥 = 𝛼𝑥 = 12X10−6/℃ 

The kinematic and static (forced) boundary conditions 

associated with various plate bending problems 
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depending upon type of supports are as 

follows:Simply Supported Isotropic Square Plate 

(a=b) 

1.2.9 Mathematical formulation 

 

Expression for axial displacement (w) 

        (26)
m x n y

w w sin sin
mn a b

    
    

   
 

Expression for axial displacement (ϕ) 

             (27)
m x n y

cos sin
mn a b

 
 

   
    

   
 

Expression for axial displacement (ψ) 

                 (28)
m x n y

sin cos
mn a b

 
 

   
    

   
 

 

Substituting expressions for w, ϕ and ψ given by Eqn. 

(26), (27) and (28) into Eqns. (2), (3), and (8), the final 

expressions for axial displacement 𝑢 ,axial 

displacement 𝑣 , axial stresses 𝜎𝑥 , 𝜎𝑦 andtransverse 

shear stress 𝜏𝑥𝑦,𝜏𝑦𝑧 , 𝜏𝑥𝑧 can be obtained respectively. 

 

Expression for axial displacement (u) 

  -           (29)
m m x n y h z

u z w cos sin z sin
mn xya a b h

   




            
             

            

 

Expression for axial displacement (v)

              (30  )-
n m x n y h z

v z w sin cos z sin
mn xyb a b h

   




            
             

            

 

Expression for axial stress (σx) 

 

 

2 2 2 2

2 2

1

          x sin sin                (3
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1)
21

m n m n
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z

m x n y

a
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b

s
   
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







 





          
      

 
  
 

   
   
   

    
    
    

 

Expression for axial stress (σy) 

 

 

2 2 2 2

2 2

1

        sin sin              

 -

                 (32)
21

m n m n
zw

mn mn mna ba by

zT mn

h z
z sin

x y

E m x

a

h

n y

b

   
  



 



 





          
      

 
  
 

   
   

    
    
    

   

 

Expression for transverse shear stress (𝛕xy) 

 

 

2
2

            cos cos                     (3

 

)

-

3
2 1

mn n m
zwxy mn mn mnab b a

E m x n

h z
z sin

h

y

a b

  
  

 







   
    

    
    
    

 
   

   
   

    

 

 

The alternate approach to determine the transverse 

shear stresses is the use of equilibrium equations. 

Integrating the below two equilibrium equation with 

respect to the thickness coordinate and satisfying the 

boundary conditions at the bounding surfaces of the 

plate on can obtain the final expressions of transverse 

shear stresses. The stress equilibrium equations are as 

follows: 

 

0          (34a)

0          (34b)

yxx zx

x y z

xy y zy

x y z

 

  

 
  

  

  

  
  

 

 

Expression for transverse shear stress (𝛕yz) 

 

 

 
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2 28 2

2 2 221
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 
 
 
 
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 
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 
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        

        
      

  
  

  

   
   
   

                               (35)

 

Expression for transverse shear stress (𝛕xz) 

 

 
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   
   
   

 

 

2. RESULTS AND DISCUSSION 

2.1 Numerical Calculation 

In this chapter, the results for maximum transverse 

displacement 𝑤 , in-plane displacements 𝑢 and𝑣 , in-

plane normal stress components 𝜎𝑥and 𝜎𝑦 ,the in-plane 

shear stress components 𝜏𝑦𝑥  transverse shear stress 

components 𝜏𝑦𝑧and𝜏𝑧𝑥are presented in the following 

non dimensional form for the purpose of presenting 

the results in this work. 

For plate subjected to sinusoidal thermal load. 
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All the parameters are obtained by solving the force 

matrix and equilibrium equations. 

 

2.2 Numerical Result for Simply Supported Square 

plate (a=b) is the simply supported thick square plate, 

which is made up of isotropic material. The properties 

of plate are given below. 

1) Coefficient of Thermal Expansion 

αx= αy =12x10-6/℃ 

2) Youngs’sModulus  E= 210GPa  

3) Poissons Ratio µ=0.3, Hence the plate is square, 

a=b 

Table 4.1:Maximum transverse displacement 𝑤at (x 

=a/2 and y = b/2), in-plane displacement components 

𝑢and 𝑣 at (x = 0, y = b/2 and z = h/2) and (x = a/2, y 

= 0 and z = h/2) respectively, of simply supported 

rectangular plate (a = b) subjected to sinusoidal 

thermal load for Aspect Ratio 5.  

Source Model 𝑤 𝑢 𝑣 

Present 
TSDT 

0.5338 0.0335 0.0335 

Shinde 
HSDT 

0.5338 0.0335 0.0335 

Kirchoff - 

Love 
CPT 

0.6470 0.0406 0.0406 

 

Table 4.2: Normal stress components 𝜎𝑥and 𝜎𝑦at (x = 

a/2, y = b/2 and z = h/2), of simply supported 

rectangular plate (a = b) subjected to sinusoidal 

thermal load for Aspect Ratio 5.  

Source Model 𝜎𝑥 𝜎𝑦 

Present 
TSDT 

0.0810 0.0810 

Shinde 
HSDT 

0.0810 0.0810 

Kirchoff - Love 
CPT 

0.0491 0.0491 

 

Table 4.3: in-plane shear stress components 𝜏𝑥𝑦at (x = 

0, y = 0 and z = h/2), transverse shear stress 

components 𝜏𝑦𝑧at(x = a/2, y = 0 and z = 0),transverse 

shear stress components 𝜏𝑧𝑥at (x = 0, y = b/2 and z = 

0) of simply supported rectangular plate (a = b) 

subjected to sinusoidal thermal load for Aspect Ratio 

5.  

Source Model 𝜏𝑥𝑦 𝜏𝑦𝑧 𝜏𝑧𝑥 

Present TSDT 
0.0810 -0.0254 -0.0254 

Shinde HSDT 
0.0810 -0.0254 -0.0254 

Kirchoff 

- Love 
CPT 

0.0981 --- --- 

 

Table 4.4: Maximum transverse displacement 𝑤 at (x 

=a/2 and y = b/2), in-plane displacement components 

𝑢and 𝑣 at (x = 0, y = b/2 and z = h/2) and (x = a/2, y 

= 0 and z = h/2) respectively, of simply supported 

rectangular plate (a = b) subjected to sinusoidal 

thermal load for Aspect Ratio 10. 

 

Source Model 𝑤 𝑢 𝑣 

Present 
TSDT 

1.0676 0.0167 0.0167 

Shinde 
HSDT 

1.0676 0.0167 0.0167 

Kirchoff - 

Love 
CPT 1.2941 0.0203 0.0203 

 

Table 4.5: Normal stress components 𝜎𝑥and 𝜎𝑦at (x = 

a/2, y = b/2 and z = h/2), of simply supported 

rectangular plate (a = b) subjected to sinusoidal 

thermal load for Aspect Ratio 10.  

Source Model 𝜎𝑥 𝜎𝑦 

Present 
TSDT 

0.0405 0.0405 
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Shinde 
HSDT 

0.0405 0.0405 

Kirchoff - Love 
CPT 

0.0245 0.0245 

 

Table 4.6: in-plane shear stress components 𝜏𝑥𝑦at (x = 

0, y = 0 and z = h/2), transverse shear stress 

components 𝜏𝑦𝑧at(x = a/2, y = 0 and z = 0), transverse 

shear stress components 𝜏𝑧𝑥at (x = 0, y = b/2 and z = 

0) of simply supported rectangular plate (a = b) 

subjected to sinusoidal thermal load for Aspect Ratio 

10. 

 

Source Model 𝜏𝑥𝑦 𝜏𝑦𝑧 𝜏𝑧𝑥 

Present TSDT 
0.0405 -0.0063 -0.0063 

Shinde HSDT 
0.0405 -0.0063 -0.0063 

Kirchoff 

- Love 
CPT 0.0491 --- --- 

 

 

Figure 2.1: Variation of maximum transverse 

displacement 𝑤  in z direction of simply supported 

square plate at (x =a/2 and y = b/2) when subjected to 

thermal load with aspect ratio (S). 

 

Figure 2.2: Variation, throughout the thickness, of the 

in-plane displacement components 𝑢  in the x 

directions of simply supported square plate at (x = 0, 

y = b/2 and z = h/2) when subjected to thermal load 

for aspect ratio 5. 

 

Figure 2.3: Variation, throughout the thickness, of the 

in-plane displacement components 𝑢  in the x 

directions of simply supported square plate at (x = 0, 

y = b/2 and z = h/2) when subjected to thermal load 

for aspect ratio 10. 
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Figure 2.4: Variation, throughout the thickness, of the 

in-plane displacement components 𝑣  in the y 

directions of simply supported square plate at (x = a/2, 

y = 0 and z = h/2) when subjected to thermal load for 

aspect ratio 5. (Numerical 1) 

 

Figure 2.5: Variation, throughout the thickness, of the 

in-plane displacement components 𝑣  in the y 

directions of simply supported square plate at (x = a/2, 

y = 0 and z = h/2) when subjected to thermal load for 

aspect ratio 10. (Numerical 1) 

 

Figure 2.6: Variation, throughout the thickness, of the 

in-plane normal stress components 𝜎𝑥  in the x 

directions of simply supported square plate at (x = a/2, 

y = b/2 and z = h/2) when subjected to thermal load 

for aspect ratio 5.  

 

Figure 2.7: Variation, throughout the thickness, of the 

in-plane normal stress components 𝜎𝑥  in the x 

directions of simply supported square plate at (x = a/2, 

y = b/2 and z = h/2) when subjected to thermal load 

for aspect ratio 10. 
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Figure 2.8: Variation, throughout the thickness, of the 

in-plane normal stress components 𝜎𝑦  in the y 

directions of simply supported square plate at (x = a/2, 

y = b/2 and z = h/2) when subjected to thermal load 

for aspect ratio 5. (Numerical 1) 

 

Figure 2.9: Variation, throughout the thickness, of the 

in-plane normal stress components 𝜎𝑦  in the y 

directions of simply supported square plate at (x = a/2, 

y = b/2 and z = h/2) when subjected to thermal load 

for aspect ratio 10. (Numerical 1) 

 

Figure 2.10: Variation, throughout the thickness, of 

the in-plane shear stress components 𝜏𝑥𝑦 of simply 

supported square plate at (x = 0, y = 0 and z = h/2) 

when subjected to thermal load for aspect ratio 5. 

 

Figure 2.11: Variation, throughout the thickness, of 

the in-plane shear stress components 𝜏𝑥𝑦 of simply 

supported square plate at (x = 0, y = 0 and z = h/2) 

when subjected to thermal load for aspect ratio 10. 
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Figure 2.12: Variation, throughout the thickness, of 

the transverse shear stress components 𝜏𝑦𝑧of simply 

supported square plate at (x = a/2, y = 0 and z = 0) 

when subjected to thermal load for aspect ratio 5. 

 

Figure 2.13: Variation, throughout the thickness, of 

the transverse shear stress components 𝜏𝑦𝑧of simply 

supported square plate at (x = a/2, y = 0 and z = 0) 

when subjected to thermal load for aspect ratio 10. 

 

Figure 2.14: Variation of the transverse shear stress 

components 𝜏𝑧𝑥of simply supported square plate at (x 

= 0, y = b/2 and z = 0) when subjected to thermal load 

for aspect ratio 5.  

 

Figure 2.15: Variation of the transverse shear stress 

components 𝜏𝑧𝑥of simply supported square plate at (x 

= 0, y = b/2 and z = 0) when subjected to thermal load 

for aspect ratio 10. 

 

2.5. Discussion of Results 
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In order to validate the efficiency of the present 

Trigonometric shear deformation, a sample problems 

is considered. The results obtained for displacements 

and stresses are compared with the corresponding 

results of the classical plate theory (CPT), higher order 

shear deformation theory (HSDT). The comparison of 

results of maximum non-dimensional axial and 

transverse displacements, axial and shear stresses for 

aspect ratios of 5 and 10 are presented for plate 

subjected to thermal loads. The results in this section 

are discussed below. 

2.5.1 Transverse displacement 𝒘 

Numerical results are obtained for various b/h and a/b 

ratios. It can be observed that the results obtained by 

the present theory are in excellent agreement with 

those of HSDT, whereas CPT underestimates the 

transverse displacements for all aspect ratios b/h with 

respect to that of the present theory. The results 

obtained by using the present theory agree extremely 

well with those obtained by HSDT. CPT under-

predicts the transverse displacement  𝑤. The variation 

of transverse displacement 𝑤 for aspect ratio 5 and 10 

is presented in Table (2.1), (2.2), (2.3), (2.4), (2.5) and 

(2.6) and Fig. (2.1) for simply supported plate with 

sinusoidal thermal load. The displacement predicted 

by CPT is lower than that of TSDT and HSDT. 

Transverse displacement obtained for isotropic plate 

by present theory is in good agreement with higher 

order shear deformation theory. 

2.5.2 The in-plane displacement 𝒖and𝒗 

The in-plane displacement 𝑢  and 𝑣  in the x and y 

directions respectively for aspect ratio 5 and 10 is 

presented in Table (2.1), (2.2), (2.3), (2.4), (2.5) and 

(2.6) and Fig. (2.6) (2.7), (2.8), (2.9).The displacement 

predicted by CPT is lower than that of TSDT and 

HSDT. 

1. The values of axial displacement predicted 

by HSDT and TSDT are identical for all 

aspect ratios. The through thickness 

distribution of this displacement obtained by 

present theory is in close agreement with 

other refined theories except the CPT. 

2. There is considerable variation in result for 

a/b ratio, for a/b = 1 the values for transverse 

shear stresses are same for all aspect ratio. 

4.5.3 The in-plane normal stress components 

𝝈𝒙and𝝈𝒚 

The in-plane normal stress components 𝜎𝑥 and𝜎𝑦  in 

the x and y directions respectively for aspect ratio 5 

and 10 is presented in Table (2.1), (2.2), (2.3), (2.4), 

(2.5) and (2.6) and Fig. (2.6) (2.7), (2.8), (2.9).The 

result predicted by CPT is lower than that of TSDT 

and HSDT. 

1. It is observed that the results by present 

theory are in excellent agreement with other 

refined theories. However, CPT yield lower 

values of this stress as compared to the values 

given by other refined theories. The through 

the thickness variation of this stress given by 

CPT is linear throughout the thickness of 

plate, indicating the effect of neglect of shear 

deformation. 

2. Present and FSDT provide the non-linear 

variations of axial stress across the thickness 

at the built-in end due to heavy stress 

concentration. However, this effect of local 

stress concentration cannot be captured by 

lower order theory like CPT. 

3. There is considerable variation in result for 

a/b ratio, for a/b = 1 the values for transverse 

shear stresses are same for all aspect ratio. 

2.5.4 The in-plane shear stress 𝝉𝒙𝒚 

The In-plane shear stresses 𝜏𝑥𝑦 obtained for isotropic 

plate by present theory are comparable with HSDT 

and CPT, whereas CPT underestimates it compared to 

the results of present theory and HSDT. The in-plane 

shear stresses 𝜏𝑥𝑦   for aspect ratio 5 and 10 is 

presented in Table (2.1), (2.2), (2.3), (2.4), (2.5) and 

(2.6) and Figs. (2.10), (2.11), The result obtained by 

CPT is quite lower than that of TSDT and HSDT. 

4.5.5 The transverse shear stress𝝉𝒚𝒛 and 𝝉𝒛𝒙  :The 

Transverse Shear Stress𝜏𝑦𝑧 and𝜏𝑧𝑥  for aspect ratio 5 

and 10 is presented in Table (2.1), (2.2), (2.3), (2.4), 

(2.5) and (2.6) and Figs. (2.12), (2.13), (2.14) and 

(2.15). The Transverse Shear Stress is obtained by 

equilibrium equation.Here, the realistic variation 

means the variation given by any refined theory which 

resembles to that of elasticity solution. The transverse 

shear stress obtained by both the theories satisfies the 

shear stress free conditions on the top and bottom 

surfaces of the plate. 

1. For simply supported plate maximum 

transverse shear stress obtained by present 

theory is in close agreement with that of other 

higher order theory (HSDT). The values of 

present theory and those of HSDT are in good 

agreement with each other. 

2. The maximum negative value of this stress 

occurs at the neutral axis. 
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There is considerable variation in result for a/b ratio, 

for a/b = 1 . 
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