
 Divanshi Priyadarshni Wangoo et al. International Journal of Recent Research Aspects ISSN: 2349-
7688, Vol. 5, Issue 1, March 2018, pp. 19-23

© 2018 IJRRA All Rights Reserved page - 19-

A Classification based Predictive Cost

Model for Measuring Reusability Level of

Open Source Software

Divanshi Priyadarshni Wangoo1 and Archana Singh2
1Amity University, Noida, Uttar Pradesh, India
2Amity University, Noida, Uttar Pradesh, India

Abstract. Measuring the reusability level of open source software’s is essential for meeting the overall goals of the reuse

business. Mining Software repositories are a great source of knowledge for significant research in the fields of software

reusability, software reliability, software bug prediction and removal, change prediction etc. To measure the reusability

of a software component requires choosing the right measurement goals which would enhance the predictability of a

component or application for reuse. This paper present an architectural model for prediction of component reusability

with the right measurement goals chosen for reusability level. The model is based on classification by decision tree

induction that will enhance the cost, quality, time and reuse level of a component for software reuse process. The pro-

posed model will consider the code and non-code components to determine the size and amounts of reuse usage level.

Keywords: Software Reuse, Data Mining, Reuse Level, Reuse-Driven Software Engineering Business (RSEB).

I. INTRODUCTION

Software reuse is one of the key parts of the software engineer-

ing strategy for improving the performance of the software de-

velopment process. The Reuse-driven Software Engineering

Business (RSEB) includes various dimensions namely, busi-

ness orientation, engineering orientation, technical sequence

and business process reengineering [1]. The dimension of the

technical sequence on RSEB requires component based devel-

opment models for object-oriented programming applications

to allow reusing of code which is useful for maintenance, re-

pairing of software defects, testing of the software, documen-

tation and artifacts available in case of open source projects

etc. The reusability level of an organization depends upon the

components and application systems that are incorporated into

a systematic reuse business cycle. There is a need for Object-

Oriented Business Engineering techniques that would provide

a systematic approach to improve the reusability level of an

organization in a reuse business environment. For effective

management of reuse business in an organization, there is a

need for determining the size and amounts of reuse in non-code

components along with the code components [1]. The non-

code components account for all those components that are the

work products of the stages of the software development life

cycle model like use cases, design models or other work prod-

ucts like documents and artifacts associated with a software

component and application. Washizaki et al., [2] have pro-

posed a metrics suite for measuring the reusability of black-

box components for the development with component reuse

which is based on the limited static information that can be ob-

tained from the outside of components without any source

codes, to identify the best components in terms of their reusa-

bility [2]. B V Prakash et al., [3] have stated a need for new

technologies and techniques that are required to reuse the al-

ready existing knowledge from software historical data and

software repositories such as code bases, execution traces, his-

torical code changes that would help in increasing the reuse

level for open source projects [3]. This paper presents a classi-

fication based predictive cost model that would measure the

reusability of the components available in the open source pro-

jects. The reusability is measured by estimating the size and

cost of the reusable model. The proposed model will consider

both the code and non-code components that are considered for

measuring the cost of reusability and will also consider the

time and effort spend on the task. For empirical validation of

the proposed model the total size of the reuse components in

terms of lines of code are taken from the projects of the open

source code repositories and are analyzed with data mining

tools.

II. MINING OF OPEN SOURCE CODE FOR

REUSABILITY

The open source code data is taken from the software reposi-

tories that will be mined for measuring their reusability level

and estimating their costs along with the time and effort spent

in the task. There are many source code hosts like sourceforge,

github etc that are used for mining the open source code. Soft-

ware reuse is the use of existing software or software

knowledge to construct new software that can be used as reus-

able assets in the form of either software products or software

knowledge [4]. The components available for reuse can be as-

sembled to analyze the component modules and seamlessly in-

tegrate them into industrial information systems to meet vari-

ous application demands [5]. Jangic et al. [6] have described a

large and unabridged data-set of source code gathered and

shared as part of the Merobase Component Finder project of

the Software-Engineering Group at the University of Mann-

heim which consists of the complete index used to drive the

search engine and the vast majority of the source code modules

are accessible through it, also it consists of a tool that enables

researchers to efficiently browse the collected data [6]. Data

from such repositories are taken to evaluate the reusability of

software modules and are a great source for predicting their

reuse level.

 Divanshi Priyadarshni Wangoo et al. International Journal of Recent Research Aspects ISSN: 2349-
7688, Vol. 5, Issue 1, March 2018, pp. 15-19

© 2018 IJRRA All Rights Reserved page - 20-

There are important problems existing in the business-related

reuse research that has helped in identification of organiza-

tional structure to support corporate reuse programs, staged

process models for reuse adoption, and models for estimating

return on investment from a reuse program [4]. There are sev-

eral authors that have modified the cost models such as

COCOMO that are used to estimate time and effort for the de-

velopment of components and of the applications using the

components for reusability [1]. As stated by Anas et al., [7]

potential components are mined based on the analysis of a set

of similar software, some of them may be similar and those

providing mostly the same functionalities and differing in few

ones. For considering the potentiality of reusable and non-re-

usable components the same class of data must be analyzed for

selecting the potential candidates for reuse. For measuring the

code quality, the following attributes can be taken into consid-

eration - functionality, reliability, usability, efficiency, main-

tain-ability and portability [8]. For measuring the reusability

level of a component all the factors can be considered for seek-

ing the quality of reusable level achieved.

III. PREDICTIVE MODEL FOR REUSABILITY

BASED ON CLASSIFICATION

The proposed model is named as CRePT: A Classification

based Reusability Predictive Tree which is based on the clas-

sification by decision tree induction algorithm that will help in

predicting the reusability level of the open source projects. De-

cision tree induction is the learning of decision trees from

class-labeled training tuples in which there is a flowchart-like

tree structure, where each internal node denotes a test on an

attribute, each branch represents an outcome of the test and

each leaf node holds a class label [9]. As data mining is a pro-

cess of knowledge discovery from large amounts of data, the

process usually involves a series of steps. Knowledge discov-

ery as a process consists an iterative sequence of the following

gradations- data cleaning, data integration, data selection, data

transformation, data mining, pattern evaluation and knowledge

presentation [9].

Various models have been proposed for reusability of compo-

nents and applications. Shatwani et al. [7] have mentioned the

greatest obstacle to the wide implementation of CBSE (Com-

ponent based Software Engineering) as lack of component li-

braries and have proposed an approach to mine reusable com-

ponents from a set of similar object-oriented software devel-

oped in the same domain by the same developers [7]. Various

CBSE (Component based Software Engineering) models have

been described in history like Common Object Request Broker

Architecture (CORBA), CORBA Component Model (CCM),

Sun’s Enterprise JavaBeans (EJB), and Microsoft’s Compo-

nent Object Model (COM+) etc. and numerous domain engi-

neering approaches have been reported in various publications

such as Domain Analysis and Reuse Environment (DARE),

Family-Oriented Abstraction, Specification, and Translation

(FAST), Feature-Oriented Reuse Method (FORM), Product

Line UML-Based Software Engineering (PLUS) etc. for reus-

ability models and approaches respectively [4]. The proposed

model in this paper is not associated with domain engineering

but will be using the KNN classification technique for retrieval

of software components and enhancing their reusability level.

It will also classify the components as potentially reusable and

non-reusable. The proposed algorithm can be compared with

the ROMANTIC approach proposed by Anas et al., [7] which

considers the mining process of the reusable components from

a set of similar software only. However, the practical reuse ap-

proaches consider potential reuse candidates from a wide vari-

ety of domain that combine the matching components existing

in different domains and map it as a as a single component

candidate for reuse in the required applications. The model

proposed in this paper will take the components from such spe-

cific domains and can classify the potential candidates for the

reusability process. Also, it will take both the code and the non-

code part of the component systems for determining their re-

usability level which is not significantly considered in the pre-

vious researches of the software reusability. This model will

act as a base to all the available component reusable models

and will help the developers to estimate the reuse level and re-

use costs of large component systems. This will identify the

potential candidates for large-scale reusability purposes. The

model will use the KNN classifier as an input to the CReDT

algorithm that will generate the decision tree to differentiate

between reusable and non-reusable components. The member-

ship to the class is predicted based on the KNN algorithm. The

dataset is selected based on the defect tracking status of various

open source projects. The implementation and analysis is de-

scribed in section 4.

Fig. 1. Proposed model CRePT: A Classification based Re-

usability Predictive Tree

The proposed model named CRePT which is a Classifica-

tion based Reusability Predictive Tree model described in

Fig.1 above consists of the series of steps starting from identi-

fying the open source training data to evaluating the reuse costs

and reuse levels. The purpose of determining the reusability

level is to find out potentiality of the components to be reused

in the applications with the changing technological advance-

ments.

K-Nearest Neighbor Classification for Retrieval of

Software Components

The software components to be reused are retrieved using the

K-NN algorithm. The defect tracking dataset used in the K-NN

is taken from GitHub. The Eclipse and Mozilla Defect Track-

ing Dataset contains the bug reported for 4 popular products

 Divanshi Priyadarshni Wangoo et al. International Journal of Recent Research Aspects ISSN: 2349-
7688, Vol. 5, Issue 1, March 2018, pp. 15-19

© 2018 IJRRA All Rights Reserved page - 21-

retrieved from both Eclipse and Mozilla. [10]. Two similar da-

tasets are used for analysis and includes only selected products

information as per the data available from the site. The defect

tracking dataset 1 and 2 have 4 examples and 3 attributes. The

model is visualized by analyzing the datasets in RapidMiner

studio. It can also be used for building knowledge databases

for test types to be used for reusing in software projects [11].

 The KNN (K-Nearest Neighbor) is a classification technique

which is based on learning by analogy i.e., it compares a given

test tuple with training tuples that are like it and are described

by n attributes. Each tuple represents a point in an n-dimen-

sional space. When given an unknown tuple, a k-nearest-

neighbor classifier searches the pattern space for the k training

tuples that are closest to the unknown tuple and these k training

tuples are the k - nearest neighbors of the unknown tuple [9].

The software components that are used in the CReDT algo-

rithm are retrieved using the KNN classification technique. To

measure the closeness of the component with the available

component training tuples, the Euclidian distance between two

points or tuples is used which is described as follows [9].

For two component training tuples-

C1 = (c11, c12, : : : , c1n) and C2 = (c21, c22, : : : , c2n)

The Euclidian distance is given by

 𝑑𝑖(𝐶1, 𝐶2)

= √∑((𝐶1𝑖 − 𝐶2𝑖)2) (1)

The above equation will measure the relative closeness of

the components in terms of distant metric of their relatedness.

The results and analysis are described in section 4. The next

subsection gives a brief overview of the CReDT algorithm used

for determining the reusability of the open source data.

The standard deviation can be used to measure the variability

of the potential software components for reusability and the

calculation of associated variance is defined in equation 2 as

below:

 R2 = ∑ i= 1 to n
 (Nri − Nri ′) 2

𝑛−1

(2)

Where R2 is the variance for measuring the variability of the

reuse components, 𝑁𝑟𝑖 are the potential components retrieved

from the CReDT algorithm and 𝑁𝑟𝑖 ′ is their standard mean.

The standard deviation R of the potential reusable components

will be calculated by taking the square root of the variance de-

fined in equation 3 as follows:

 R = √ R2 (3)

CReDT: A Classification by Decision Tree Induction

Algorithm for Determining the Reusability of the Open

Source Data

The proposed algorithm for measuring the reusability level of

an open source software is named as CReDT which is a classi-

fication by decision tree induction algorithm that takes the

training tuples of data which consists of the two types of com-

ponents- components with reuse and components with no-re-

use. In open source software projects not all the component

modules are taken for the reusability into the new application

systems therefore the training data will include both the com-

ponents and output will be a decision tree that will help in iden-

tifying the potential of the component to be reused into a new

application system.

CReDT Algorithm: To generate a decision tree predicting

reusability to determine the potential candidates for reuse

Estimating the Reuse Costs and Reuse Level in the

Proposed Model

The cost of reuse and reuse level can be determined by consid-

ering the reusable and non-reusable component modules. As

open source software projects consist of numerous component

modules from which some modules may be required for reus-

ability in the application systems, the cost incurred with them

is difficult to estimate with the availability of non-reusable

modules in the same project. Furthermore, with time changing

the reusability level of the open source software changes with

new technologies. Therefore, a simplified and effective reuse

cost and effort model for reuse measurement as mentioned be-

low will be used for the estimating the reuse cost and reuse

level. It will be considering the cost of no reuse of the compo-

nents in the application systems at a time and measures the

software size in function points or line of code. The formulas

defined below can be used as an enhancement to the formulas

CReDT Algorithm: To generate a decision tree pre-

dicting reusability to determine the potential candi-

dates for reuse

Input: Partitioning of the data, P, to differentiate be-

tween reusable and non-reusable components using KNN

classification

Output: A decision tree predicting reusability

Method:

Step 1- Create a node N

Step 2- If the input training data consists of compo-

nents of the same class, partition them into reusable and

non- reusable components Nr and Nnr respectively

Step 3- If Nr belongs to the class of reusable compo-

nents then

Step 4- Include Nr as a potential candidate for reuse

Step 5- Otherwise consider the next node in the deci-

sion tree

Step 6- Repeat Steps 1-5 and

Return N

 Divanshi Priyadarshni Wangoo et al. International Journal of Recent Research Aspects ISSN: 2349-
7688, Vol. 5, Issue 1, March 2018, pp. 15-19

© 2018 IJRRA All Rights Reserved page - 22-

defined by Jacobson et al., in [1] which does not take the time

as an essential factor for measuring the reusability level of the

components. Time is considered as an important factor for de-

ciding the reusability level as per the technological advance-

ments.

C (T) non-reusable = The cost of developing an application sys-

tem without reusing the component system at a given time T

C (T) reusable = The cost of developing an application system

with reusing the component system at a given time T

Now we will use the formulae for measuring the reuse level

from some set of component systems

Reuse level, RL

=
 𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑟𝑒𝑢𝑠𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑦𝑠𝑡𝑒𝑚𝑠

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

(4)

 D reusable = The cost involved in reusing a component

The overall cost of developing an application with reuse

usually has two parts – one is the (1-RL) part which is devel-

oped without reuse at normal cost and the other part is the RL

part which is developed with reuse at a lower cost as defined

by Jacobson et al. in [1].

The estimation of the costs at a particular time T can be done

as follows-

C (T) component part with- reuse = C (T) reusable * (RL * D reusable)

(5)

C (T) component part with - no-reuse = C (T) non-reusable * (1-RL)

(6)

Therefore the total cost at a particular time T with reuse be-

comes

 C (T) total-with- reuse =C(T) component part with- reuse + C(T) com-

ponent part with - no-reuse (7)

C (T) non-reusable =C non-reusable * (RL* D use + (1-RL))

(8)

At a given time T.

Thus, the reuse level of an open source software can be deter-

mined by including both the reusable components and non-re-

usable components.

From the above equations we can deduce the amount of reuse

level in the components taken as given below-

RL amount =
RL∗(1−𝑅𝐿)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑢𝑠𝑎𝑏𝑙𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

(9)

The above equation from (5) – (9) can be used for measur-

ing the reusability level of the open source data projects. This

will make the task of the software developer easy and time

managed. Also, the cost of the software development can be

reduced along with the enhancement in the quality of the soft-

ware developed in the organization employing Reuse-Driven

Software Engineering Business (RESB) practices.

IV. METHODOLOGY USED AND ANALYSIS

The open source data is mined using the classification algo-

rithm for inputs in the training sets where the data sets are taken

relatively small as compared to large amounts of data sets

taken for the mining process. The algorithm CReDT can be ap-

plied to datasets of the open source software for evaluating

their reusability levels at a particular time. The algorithm de-

signed will enhance the predictive reusability of the data set

taken for the specified components in Reuse-Driven Software

Engineering (RESB). Further it will improve the quality of the

components selected for reusability in open source software

projects.

For implementing the KNN classification technique de-

scribed in section 3.1 above, the datasets taken from github are

used as described in Table 1 and Table 2 below [10]. These

datasets are subjected to the KNN classification technique in

RapidMiner and the results of the model generation are dis-

played in Fig. 1.

Table 1. Defect tracking dataset 1

Product Number of components Number of reports

Platform 22 24.775

JDT 6 10.814

CDT 20 5.64

GEF 5 5.655

Table 2. Defect tracking dataset 2

Product Number of components Number of reports

Core 137 74.292

Firefox 47 69.879

Thunderbird 23 19.237

Bugzilla 21 4.616

 Divanshi Priyadarshni Wangoo et al. International Journal of Recent Research Aspects ISSN: 2349-
7688, Vol. 5, Issue 1, March 2018, pp. 15-19

© 2018 IJRRA All Rights Reserved page - 23-

The reusability level of the defect tracking dataset 1 as per

the equations (5) to (9) is calculated as below-

Reuse level, RL

=
 𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑟𝑒𝑢𝑠𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑠𝑦𝑠𝑡𝑒𝑚𝑠

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

So, the reusability level of the defect tracking dataset 1 can

be defined as below (here the size of the reusable components

as defined in terms of the number of the components used for

all the product and the size of the application components are

taken arbitrary, for this dataset for illustration purpose)

RL= 22+6+20+5 / 75 = 70.66%

Similarly, the reusability level of the defect tracking dataset

2 as per the equations (5) to (9) is calculated as below-

RL= 137+47+23+21 / 275 = 82.9%

Therefore the defect tracking dataset 2 has more reusability

level that the defect tracking dataset 1 as the number of reusa-

ble components are more.

The following figure shows the implementation of the KNN

classifier on the two defect tracking datasets in the RapidMiner

studio. The result are based on 1-KNN where the no of defect

reports is taken as the special attribute that will predict the re-

trieval and classification of the components into reusable and

non-reusable components. The model generation results are

depicted in the figure below-

Fig. 1. The Model for KNN classification on the defect tracking da-

taset 1 and 2 using RapidMiner Studio

V. CONCLUSION AND FUTURE WORK

This paper present an architectural model for prediction of

component reusability with the right measurement goals cho-

sen for reusability level. The goals for the measurement are

based on determining the reuse level and reuse cost that con-

siders both the reuse and non-reuse components. The model is

based on classification by decision tree induction that will en-

hance the cost, quality and time and reuse level of a component

for software reuse process. The proposed model will consider

the code and non-code components to determine the size and

amounts of reuse usage level. The future work includes the ap-

plication of the algorithm to huge datasets of open source soft-

ware for precise estimation of reusability level and costs and

incorporation of the measurement analysis of the reusability

level of the components in the data mining software’s.

References

[1]. Jacobson, I., M. Griss, and P. Johnson. "Software Reuse:

Architecture, Process and organization for Business Suc-

cess–Addison Wesley." Reading, MA, May (1997).

[2]. Washizaki, Hironori, Hirokazu Yamamoto, and Yoshiaki

Fukazawa. "A metrics suite for measuring reusability of

software components." Software Metrics Symposium, 2003.

Proceedings. Ninth International. IEEE, 2003.

[3]. Prakash, BV Ajay, D. V. Ashoka, and VN Manjunath

Aradhya. "Application of data mining techniques for soft-

ware reuse process." Procedia Technology 4 (2012): 384-

389.

[4]. Frakes, William B., and Kyo Kang. "Software reuse re-

search: Status and future." IEEE transactions on Software

Engineering 31.7 (2005): 529-536.

[5]. Frakes, William B., and Kyo Kang. "Software reuse re-

search: Status and future." IEEE transactions on Software

Engineering 31.7 (2005): 529-536.

[6]. Janjic, Werner, et al. "An unabridged source code dataset

for research in software reuse." Proceedings of the 10th

Working Conference on Mining Software Repositories.

IEEE Press, 2013.

[7]. Shatnawi, Anas, and Abdelhak-Djamel Seriai. "Mining re-

usable software components from object-oriented source

code of a set of similar software." Information Reuse and

Integration (IRI), 2013 IEEE 14th International Confer-

ence on. IEEE, 2013.

[8]. Touw, Egbert. "Multi-faceted Reliability Assessment Tech-

niques: An Industrial Case Study." Software Architecture

Workshops (ICSAW), 2017 IEEE International Conference

on. IEEE, 2017.

[9]. Han, Jiawei, Jian Pei, and Micheline Kamber. Data mining:

concepts and techniques. Elsevier, 2011.

[10]. https://github.com/ansymo/msr2013-bug_dataset

[11]. Uetsuki, Keiji, and Mitsuru Yamamoto. "Improvement of

Description for Reusable Test Type by Using Test

Frame." Software Testing, Verification and Validation

Workshops (ICSTW), 2017 IEEE International Conference

on. IEEE, 2017.

https://github.com/ansymo/msr2013-bug_dataset

