
Manisha Malik et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 5, Issue 
1, March 2018, pp. 479-484 

   © 2018 IJRAA All Rights Reserved                                                                                        page   - 479- 

Modeling, Analysis and Simulation of 

Homogenization Methods for Partial 

Differential Equations 

Manisha Malik 

M.Sc. (H.S.) Mathematics, Panjab University 

Email: malikmanisha1995@gmail.com 

Abstract- The main interest is on Aysmptotic Analysis of partial differential equations. This is a technique to understand 

the macroscopic behaviour of a composite medium through its microscopic properties. The technique is commonly used 

for PDE with highly oscillating coefficients. The idea is to replace a given heterogeneous medium by a fictitious 

homogeneous one (the ̀ homogenized' material) for numerical computations. The technique is also known as ̀ `Multi scale 

analysis''. The known and unknown quantities in the study of physical or mechanical processes in a medium with micro 

structure depend on a small parameter $\varepsilon$. The study of the limit as $ \varepsilon \rightarrow0 $, is the aim 

of the mathematical theory of homogenization. The notion of $G$-convergence, $H$-convergence, two-scale convergence 

are some examples of the techniques employed for specific cases. The variational characterization of the technique for 

problems in calculus of variations is given by $\Gamma$-convergence. This paper presents a few examples. Given the 

complexity of these processes, the key to reliably simulate some relevant classes of such processes involves the 

construction of appropriate macroscopic (homogenized or effective) models. This is illustrated by studying a one-

dimensional model problem of oscillatory diffusion 
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I. INTRODUCTION 

Heterogeneous micro-structures on many non-separable 

scales and high contrast in physical properties of the 

constituents are key features for the superior behaviour of 

modern composite and multi-functional materials. However, 

these features cause major difficulties for their computer 

simulation. The resolution of all characteristic length scales is 

prohibitively expensive while the naive disregard of relevant 

microscopic information leads to questionable results, even 

on macroscopic scales of interest. Homogenization methods 

try to remedy this dilemma. They account for the relevant 

microscopic information in a hierarchical, concurrent and 

adaptive fashion so that a reliable simulation of multiscale 

problems eventually becomes feasible in state-of-the-art 

computing environments. This lecture concerns the design of 

the related numerical algorithms and, equally important, the 

mathematics behind them to foresee and assess their 

reliability and efficiency in engineering and scientific 

applications. Among the target applications of this lecture is 

the mechanical analysis of multiphase materials such as 

composite and multifunctional materials. The manipulation of 

characteristics and relative volumes of its constituents allows 

one to equip engineered multiphase materials with some 

targeted portfolio of physical properties (e.g. light-weight, 

stiffness, strong electric and magnetic order, energy 

conversion). The development of novel multifunctional 

materials for the next-generation of performance-tailored 

structures requires the topological optimisation of the 

microstructures and, hence, the understanding how certain 

material properties (conductivity, permeability, etc.) depend 

on controllable variables (thermal conductivities of the 

constituents, relative volumes, particles shapes, coating and 

size). Transport processes in porous media, e.g. groundwater 

flow in unsaturated soils [16, 18], share the previous 

challenges in that the occurring permeabilities and hydraulic 

conductivities have rapidly changing features due to different 

types of soil, microscopic inclusions in the bottom or porous 

subsurface rock formations. Any meaningful numerical 

simulation of relevant physical effects has to account for these 

highly heterogeneous fine scale structures in the whole 

computational domain. If pore scale effects become relevant 

or if domains spread over kilometers, the computational load 

easily exceeds computer capacity when standard finite 

element or finite volume methods are used. 

 
Fig. 1 Modeling 

Numerical homogenization methods are techniques for 

finding numerical solutions of partial differential equations 

(PDEs) with rapidly oscillating coefficients (multiple scales) 

[26]. In mathematical analysis, homogenization can be 

defined as a theory for replacing a PDE with rapidly 

oscillating coefficients by a PDE with averaged coefficients 

(an effective PDE), that describes the macroscopic behavior 
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of the original equation. Numerical techniques that are able to 

approximate the solution of an effective PDE (often unknown 

in closed form) and local fluctuation of the oscillatory solution 

without resolving the full oscillatory equation by direct 

discretization are coined “numerical homogenization 

methods” [27]. These methods are also called multiscale 

methods as they typically combine numerical solvers on 

different scales. 

II. MOTIVATION  

The modeling of the physical processes in strongly 

heterogeneous medium motivates the study of partial 

differential equations with oscillating coefficients. The basic 

problem is this: a family of physical processes are assumed to 

solve Aεuε = fε (1.1) with appropriate initial and/or boundary 

conditions [28].  

Here, Aε is a differential operator, and the parameter ε stands 

for the period of oscillation. If the knowledge of small scale 

variation of the heterogeneous medium is only known to 

statistical extent, the medium is modeled as a random field. 

We are interested in deriving a homogenized equation that 

captures the effective properties of the heterogeneous 

medium, as the computational cost of solving the multi-scaled 

equation (1.1) is prohibitive [29]. Specifically, we would like 

to understand the following issues:  

EXAMPLE  

(1) Does the solution uε converge? If the limiting solution u 

solve the equation Au = f, (1.2) we call (1.2) a homogenized 

equation. (2) Which type of convergence do we have in (1)? 

Is it a L 2 convergence to a deterministic PDE, or is it a weak 

convergence to a stochastic PDE? (3) What is the rate of 

convergence? In other words, can we prove kuε − uk ≤ Cεγ 

(1.3) for some γ > 0. 1.2 Example Let us see an example of 

the random homogenization problem:  

(1.4)  

This equation can be seen as a continuous version of the 

parabolic Anderson model. The asymptotic behavior of this 

equation depends on the dimension d. For simplicity, we 

assume V to be a Gaussian field.  

For d = 1 and α = 1/2, uε converges weakly to the stochastic 

PDE  

 (1.5)  

where W˙ denotes spatial white noise, 

 ◦ denotes Stratonovich product, and  

 (1.6)  

For d = 2 and ε α := ε| log ε|, or d > 2 and α = 1,  

uε converges in L 2 (Ω × R d ) to the deterministic PDE  

 (1.7)  

where  

 (1.8)  

Here, cd is the volume of unit sphere on (d−1)-dimensional 

hyperplane. Rˆ(ξ) is the Fourier transform of the covariance 

function  

R(x) = E{V (y)V (x + y)}. 

 
Fig. 2 Modeling and Simulation 

Homogenization Consider a general family of PDEs Lε(uε) = 

f with oscillating coefficients depending on a small parameter 

ε > 0 with solution uε : Ω −→ R, where Ω is an open subset 

of R d , 1 ≤ d ≤ 3. The parameter ε emphasizes the multiscale 

nature of the above family of PDEs, and represents a typical 

microscopic length scale of a heterogeneity in the system 

(multiple microscopic length scales could be considered as 

well) [30]. One can think of the solution as containing low 

O(1) frequency components and high O(1/ε) frequency 

components. Solving numerically a given PDE of the above 

family using classical numerical approximations such as the 

finite element method (FEM) [31], the finite difference 

method (FDM) or the finite volume method (FVM), would 

usually amount in a number of degrees of freedom (DOF) (or 

unknowns of the discrete system) proportional to O(ε −d ), 

which can be prohibitive for small ε. If the family of solutions 

converges (in some appropriate sense) to a limit denoted u0 

when the size of the heterogeneity ε → 0 and if that limit is 

the solution of an averaged (homogenized) equation L0(u0) = 

f, we then have an effective (upscaled, averaged) model that 

can be treated with a classical method at a cost independent of 

ε. The rigorous study of these questions is the core of the 

mathematical homogenization theory [10; 26; 28].  

III. NUMERICAL APPROACHES 

In most practical situations, the averaged equation described 

in the previous section is not known in explicit form. 

Furthermore, even if known, the data of the averaged equation 

are usually not known explicitly but rely for each x ∈ Ω on 

yet another PDE. Numerical approaches for homogenization 

problems were pioneered by Babuˇska [8] and have since then 

enjoyed considerable developments. In what follows we 

explain the main ideas of a few numerical homogenization 

strategies that have been developed in the applied 

mathematics community. There is also an abundant related 

literature on multiscale computational methods in the field of 

material sciences, that share similar ideas as the ones 

described below (unit cell methods, continuous/discontinuous 



Manisha Malik et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 5, Issue 
1, March 2018, pp. 479-484 

   © 2018 IJRAA All Rights Reserved                                                                                        page   - 481- 

computational homogenization methods). The emphasis there 

is rather on applications (bulk modeling, crack modeling, 

failure) and we refer to recent reviews for references [27; 21]. 

Among the computational methods that we will describe, we 

will focus on techniques based on finite element methods 

(FEMs), but the main ideas are also applicable to other type 

of discretizations.  

We choose for Lε(uε) = f an elliptic multiscale problem that 

reads in weak form: Find uε ∈ V (Ω) such that  

B(uε, v) = Z Ω a ε∇uε · ∇vdx = (f, v) ∀v ∈ V (Ω), (1)  

where (f, v) = R Ω fvdx and V (Ω) is a Sobolev space that we 

choose to be H1 0 (Ω) (the space of square-integrable 

functions that vanishes on ∂Ω with square-integrable 

derivatives).  

Here a ε is an oscillating tensor with fast O(1/ε) and slow 

frequencies. The homogenized problem corresponding to the 

above equation reads: Find u0 ∈ V (Ω) such that  

B0(u0, v) = Z Ω a 0∇u0 · ∇vdx = (f, v) ∀v ∈ V (Ω). (2)  

The solution uε can be expected to behave as u0 + εu1, with 

ku1kL2(Ω) = O(1) but k∇u1kL2(Ω) = O(1/ε). A standard 

finite element (FE) approximation of (1) consists in 4 a 

solution uh of (1) in a finite dimensional space spanned by 

piecewise polynomials on a partition Th of Ω with mesh size 

h (see below). However, a good approximation of uε by uh 

(the FE solution) is usually obtained only if h  ε in which case 

the complexity (DOF) scales as O(ε −d ). Two main classes 

of numerical homogenization methods have been developed 

to address this issue: 1. methods based on a reduced model 

generated from the original fine scale problem, 2. methods 

that sample the original fine scale problem on patches to 

recover effective data of a macroscopic model and use 

correctors to reconstruct the fine scale solution. Notations In 

what follows we will consider for simplicity Ω to be both 

polygonal and convex and we restrict ourselves to simplicial 

FEs. We consider a family of macroscopic (conformal, shape 

regular) triangulations TH of Ω = ∪K∈TH K, with elements 

K of diameter HK and H = maxK∈TH the size of the 

triangulation (mesh size).  

For a macroscopic triangulation, H > ε is allowed.  

On a (polygonal) subset D of Ω we also consider a 

microscopic triangulation  

D = ∪T ∈Th T,  

with elements T of diameter hT and a meshsize h that satisfies 

h < ε. We then consider the following FE spaces  

VH(Ω) = {vH ∈ V (Ω); vH|K ∈ P1 (K), ∀K ∈ Th}, (3)  

Vh(D) = {vh ∈ V (D); vh|T ∈ P1 (T), ∀T ∈ Th}, (4)  

where P 1 (K) is the space of piecewise linear polynomials on 

K (resp. T).  

For a cubic domain D = Y we also consider  

Wh(D) = {vh ∈ W1 per(D);  

vh|T ∈ P1 (T), ∀T ∈ Th}, (5) 

where W1 per(D) is a Sobolev space of periodic functions (the 

closure of smooth periodic functions on D for the H1 norm, 

where functions differing by a constant are identified). We 

consider here piecewise linear polynomials and conformal 

meshes for simplicity but 5 emphasize that the methods 

described below have been generalized to higher order 

piecewise polynomial spaces and other types of FEs. 

IV. HOMOGENIZATION OF PDES WITH GAUSSIAN 

COEFFICIENTS 

Gaussian fields are unique among all random fields in that the 

first and second order moments (mean and covariance) 

completely determines the distribution. Without loss of 

generality, we assume Gaussian fields to have zero mean 

hereafter. For Gaussian fields, moments of all orders can be 

calculated in terms of the second order moments. 

Definition 2.6. A Gaussian field is a random field involving 

only Gaussian distributed random variables.  

Theorem 2.7. If (Z1, · · · , Zn) is a zero mean multivariate 

Gaussian random vector, then. 

 
where the notation P Q means summing over all distinct ways 

of partitioning Z1, · · · , Zn into pairs. 

V. SETTING OF THE PROBLEM 

We consider a model problem of diffusion or conductivity in 

a periodic medium (for example, an heterogeneous domain 

obtained by mixing periodically two different phases, one 

being the matrix and the other the inclusions; see Figure 1.1). 

To fix ideas, the periodic domain is called Ω (a bounded open 

set in R N with N ≥ 1 the space dimension), its period ǫ (a 

positive number which is assumed to be very small in 

comparison with the size of the domain), and the rescaled unit 

periodic cell Y = (0, 1)N . The conductivity in Ω is not 

constant, but varies periodically with period ǫ in each 

direction. It is a matrix (a second order tensor) A(y), where y 

= x/ǫ ∈ Y is the fast periodic variable, while x ∈ Ω is the slow 

variable.  

Equivalently, x is also called the macroscopic variable, and y 

the microscopic variable. Since the component conductors do 

not need to be isotropic, the matrix A can be any second order 

tensor that is bounded and positive definite, i.e., there exist 

two positive constants β ≤ α > 0 such that, for any vector ξ ∈ 

R N and at any point  

 (1.1)  

At this point, the matrix A is not necessarily symmetric (such 

is the case when some drift is taken into account in the 

diffusion process). The matrix A(y) is a periodic function of 

y, with period Y , and it may be discontinuous in y (to model 

the discontinuity of conductivities from one phase to the 

other). Denoting by f(x) the source term (a scalar function 

defined in Ω), and enforcing a Dirichlet boundary condition 

(for simplicity), our model problem of conductivity reads  

 
A periodic domain. where uǫ(x) is the unknown function, 

modeling the electrical potential or the temperature. Remark 

1.1.1 From a mathematical point of view, problem (1.2) is 

well posed in the sense that, if the source term f(x) belongs to 

the space L 2 (Ω) of square integrable functions on Ω, then 

the Lax-Milgram lemma implies existence and uniqueness of 

the solution uǫ in the Sobolev space H1 0 (Ω) of functions 

which belong to L 2 (Ω) along with their first derivatives. 

Furthermore, the following energy estimate holds kuǫkL2(Ω) 
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+ k∇uǫkL2(Ω) ≤ C, where the constant C does not depend on 

ǫ. The domain Ω, with its conductivity A x ǫ  , is highly 

heterogeneous with periodic heterogeneities of lengthscale ǫ. 

Usually one does not need the full details of the variations of 

the potential or temperature uǫ, but rather some global of 

averaged behavior of the domain Ω considered as an 

homogeneous domain. In other words, an effective or 

equivalent macroscopic conductivity of Ω is sought. From a 

numerical point of view, solving equation (1.2) by any method 

will require too much effort if ǫ is small since the number of 

elements (or degrees of freedom) for a fixed level of accuracy 

grows like 1/ǫN . It is thus preferable to average or 

homogenize the properties of Ω and compute an 

approximation of uǫ on a coarse mesh.  

Averaging the solution of (1.2) and finding the effective 

properties of the domain Ω is what we call homogenization. 

There is a difference of methodology between the traditional 

physical approach of homogenization and the mathematical 

theory of homogenization. In the mechanical literature, the so-

called representative volume element (RVE) method is often 

used (see [8], or section 1 in [17]). medium, and averaging 

over it the gradient ∇uǫ and the flux A x ǫ  ∇uǫ. Denoting by 

ξ the average of the gradient and by σ that of the flux, the 

effective tensor of conductivity A∗ of this sample is defined 

by the linear relationship σ = A∗ ξ. It turns out that the 

averaged stored energy A x ǫ  ∇uǫ · ∇uǫ is also equal to the 

effective energy A∗ ξ · ξ. Although this type of definition is 

very intuitive, it is not clear whether it defines correctly an 

effective tensor A∗ . In particular, it may depend on the choice 

of source term f, sample size, or boundary conditions. The 

mathematical theory of homogenization works completely 

differently.  

Rather than considering a single heterogeneous medium with 

a fixed lengthscale, the problem is first embedded in a 

sequence of similar problems for which the lengthscale ǫ, 

becoming increasingly small, goes to zero. Then, an 

asymptotic analysis is performed as ǫ tends to zero, and the 

conductivity tensor of the limit problem is said to be the 

effective or homogenized conductivity. This seemingly more 

complex approach has the advantage of defining uniquely the 

homogenized properties. Further, the approximation made by 

using effective properties instead of the true microscopic 

coefficients can be rigorously justified by quantifying the 

resulting error.  

In the case of a periodic medium Ω, this asymptotic analysis 

of equation (1.2), as the period ǫ goes to zero, is especially 

simple. The solution uǫ is written as a power series in ǫ uǫ = 

X +∞ i=0 ǫ iui . The first term u0 of this series will be 

identified with the solution of the so-called homogenized 

equation whose effective conductivity A∗ can be exactly 

computed. It turns out that A∗ is a constant tensor, describing 

a homogeneous medium, which is independent of f and of the 

boundary conditions.  

Therefore, numerical computations on the homogenized 

equation do not require a fine mesh since the heterogeneities 

of size ǫ have been averaged out. This homogenized tensor 

A∗ is almost never a usual average (arithmetic or harmonic) 

of A(y). Various estimates will confirm this asymptotic 

analysis by telling in which sense uǫ is close to u0 as ǫ tends 

to zero. Remark 1.1.2 From a more theoretical point of view, 

homogenization can be interpreted as follows. Rather than 

studying a single problem (1.2) for the physically relevant 

value of ǫ, we consider a sequence of such problems indexed 

by the period ǫ, which is now regarded as a small parameter 

going to zero.  

The question is to find the limit of this sequence of problems. 

The notion of limit problem is defined by considering the 

convergence of the sequence (uǫ)ǫ>0 of solutions of (1.2): 

Denoting by u its limit, the limit problem is defined as the 

problem for which u is a solution. Of course, u will turn out 

to coincide with u0, the first term in the series defined above, 

and it is therefore the solution of the homogenized equation. 

Clearly the mathematical difficulty is to define an adequate 

topology for this notion of convergence of problems as ǫ goes 

to zero. 

VI. IMPLEMENTATION OF PHYSICAL-

STATISTICAL MODEL WITH HOMOGENIZATION 

In terms of implementation, one can proceed as described in 

Section 1.2 where, depending on the type of observations that 

are made, a suitable statistical data model can be chosen along 

with an error distribution for the process model and prior for 

the parameters. Assuming that the data consist of observations 

of animal abundance (i.e., N(x,t), counts of animals; discussed 

in more detail in the following section) and we make the 

appropriate homogenization transformations, we can treat the 

harmonic mean as an operator using vector notation (i.e., ¯ δ 

≡ ¯ δ(δ)) in the following general hierarchical statistical 

model: 

 
where the function fh represents the plain diffusion solver as 

a difference equation. Note that the process stage (2.9) of the 

hierarchical model could either be stochastic or a degenerate 

distribution implying no additional process uncertainty 

beyond that provided through the data model (2.8). Though 

perhaps possible, it would not be trivial to fit such a model 

and obtain uncertainty estimates for model parameters using 

maximum likelihood. Therefore, we describe a Bayesian 

approach to fit the model that uses an MCMC algorithm as 

described in recent literature pertaining to physical-statistical 

modeling (e.g., Wikle and Hooten 2010). The posterior 

distribution corresponding to the model specified in (1.8)–

(1.10) can be expressed as 

 
It involves a product over the homogenized process 

distribution rather than the non-homogenized process. This 

model is completely non-conjugate, implying that full-

conditional distributions cannot be found analytically, thus, a 

Metropolis–Hastings approach must be used to sample from 

the full-conditionals sequentially. The portion of an MCMC 

algorithm where the homogenization technique helps the most 

is when sampling the diffusion coefficients δ. 

VII. RESULT AND DISCUSSION 

Statistical models using partial differential equations 

(PDEs) to describe dynamically evolving natural systems are 

appearing in the scientific literature with some regularity in 
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recent years. Often such studies seek to characterize the 

dynamics of temporal or spatio-temporal phenomena such as 

invasive species, consumer-resource interactions, community 

evolution, and resource selection. Specifically, in the spatial 

setting, data are often available at varying spatial and temporal 

scales. Additionally, the necessary numerical integration of a 

PDE may be computationally infeasible over the spatial 

support of interest. We present an approach to impose 

computationally advantageous changes of support in statistical 

implementations of PDE models and demonstrate its utility 

through simulation using a form of PDE known as “ecological 

diffusion.” We also apply a statistical ecological diffusion 

model to a data set involving the spread of mountain pine 

beetle (Dendroctonus ponderosae). 
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