
Suresh Kumar Mukhiya et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol.
5, Issue 4, Dec 2018, pp. 6-13

 © 2018 IJRAA All Rights Reserved page - 6-

An Architectural Style for Single Page

Scalable Modern Web Application

Suresh Kumar Mukhiya1 Hoang Khac Hung2
1(skmu@hvl.no) Ph.D. candidate at Western Norway University of Applied Sciences, Bergen, Norway

https://www. hvl.no
2(hunghk.it@gmail.com), Ho Chi Minh City University of Information Technology

https://en.uit.edu.vn/

Abstract- The increasing complexity and popularity of web application and the movement of enterprise applications

from desktop based to web based architecture have created sophisticated challenges yet the need for scalable modern

web applications architecture. One way to manage this complexity is to design and develop the web application using

single page architecture. The paper describes a single page web application architecture suitable for modern web

application development using React JS for building the complex interactive user interfaces, Redux for handling state

management, Redux Saga for handling side effects, Node JS as server-site scripting language, Immutable JS to handle

immutability and Webpack for module bundling. It is aimed at facilitating the developers and business stakeholders to

comprehend the need and importance of making application scalable and maintainable over time.

Keywords— Singe Page Application, ReactJS, Redux, Redux Saga, Client-Server, Immutable JS, Webpack, Node JS

I. INTRODUCTION

The attention and acceptance of the movement from desktop

applications towards web applications are massive and

increasing over time. The web (WWW) belongs to a large

class of networks adhering to a distributed principle of

knowledge representation and provides user-friendly access

to stored knowledge [24]. This knowledge affects the

behaviour of people around the world. The behaviour of the

people has a significant impact on business, commerce,

industry, banking and finance, education, entertainment,

government, and other personal and working life. Hence,

enterprises invest resources to structure this knowledge so

that it can be accessible and available to end users in most

accurate and efficient way. Web applications have suffered

from poor interactivity and responsiveness towards the end

users despite its enormous popularity. Web applications are

still based on the classical multi-page interface model, in

which for every request entire page is refreshed [26], [30],

[33], [29]. These architectures are based on a page sequence

diagram and have many limitations in terms of user friendly

human-computer interactions and responsiveness [29].

The need for better representation of knowledge and the

problems with multi-page architecture are the motivation to

optimize the web application architecture in a better way to

adhere to scalability, availability, security, performance, and

maintainability. In this context, a web application

architecture defines the interactions between applications,

middleware systems and databases to ensure multiple

applications can work in a harmony. Moreover, the

architecture is the blueprint for supporting growth which

may come from increased demands, future interoperability

and enhanced reliability requirements. The main question

addressed in this paper is how to appropriately structure a

single page web application that provides scalability,

availability, security, performance, and maintainability. The

architecture follows the client-server paradigm. The client-

server architecture is the most general web application

architecture where server-side components are configured on

a network [10]. A web browser works as the client where no

special configuration is required. We investigate a single

page architecture for development of scalable modern web

application using ReactJS for creating interactive user

interfaces, Redux JS for state management, Redux Saga for

handling side effects, immutable JS for immutability. A

single-page architecture application works inside a web

client without a requirement of page reloading. This

architecture can be visible in the instance of Gmail, Google

Maps, Instagram, Facebook, Netflix or GitHub.

We next introduce the architecture (Section II), architecture

properties (Section III), then related works (section IV), and

discussion (Section V).

II. ARCHITECTURE STYLE

With the growing popularity and complexity of web

applications and the openness of web application

architecture, the design, development, and maintenance of

enterprise applications are becoming complex. One way to

mitigate this complexity is following common web

architecture that addresses scalability, maintainability and

other quality attributes. In this paper, we present single page

architecture using ReactJS and Redux. The architecture

consists of the following major components:

A. Architectural components

Below we present some the major components of the web

application architecture. In each subsection, we present why

Suresh Kumar Mukhiya et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol.
5, Issue 4, Dec 2018, pp. 6-13

 © 2018 IJRAA All Rights Reserved page - 7-

these components are essential in promoting scalability of

the architecture.

1) ReactJS: ReactJS is a component-based JavaScript

library that follows the declarative programming paradigm.

The declarative views can be utilized to create complex

interactive UI which serves as the presentational component

of the web. The library is easy to learn, promotes code

reusability, offers lightweight DOM for better performance,

enforces unidirectional data flow, ensures Search Engine

Optimizations (SEO), forms the views of Model View

Controller(MVC) architecture and supports virtual DOM [3],

[18], [22], [31]. Virtual DOM is managed by the

reconciliation process [19], [20] where an idea or virtual

representation of a UI is stored in memory and synced with

the real DOM by the library such as ReactDOM [3], [18],

[13]. Because of these features and benefits, the enterprises

like Facebook, Netflix, Yahoo, Atlassian, Khan Academy,

Pinterest, Dropbox, and others have successfully migrated to

the usage of ReactJS.

2) Redux: Facebook was encountering difficulties with the

MVC structure. The Model and View relationships can

become complicated especially when an application

commences scaling. Increase in Model and Views in an

application can result in infinite loops. To surmount this

problem, Facebook launched Flux which is an unidirectional

way of updating views and handling user actions. Redux JS

is a remodelled implementation of the Flux architecture. The

most prominent distinction in Flux and Redux is that Flux

has several stores but Redux has just one root store. Redux

practices this theory of unidirectional data flow [36] and

grew into a de-facto pattern as a state management

technology for ReactJS applications. It is a convenient and

straightforward method of structuring data in an application

and presenting it on the client. The application has a central

root state. A state change triggers view updates. Only special

functions can modify the state. A user interaction triggers

these special, state changing functions. Only one change

takes place at a time. This means that the central state cannot

trigger any further actions. Only a user input can trigger

another action. This makes the state much more manageable.

It also makes it difficult to introduce infinite loops provided

single source of state management is followed like Redux.

3) Redux-saga: Redux-saga [37] library facilitates easier

management and efficient execution of side effects in a web

application. In addition to that, the library shines at failure

handling. In this context, side effects refer to asynchronous

things like data fetching and impure things like locating the

browser cache or cookies. Two of the most well-known

techniques of dealing with side effects in Redux apps are

Redux Thunk [38] and Redux Saga [37]. There are several

blogs comparing differences between saga and Thunk where

developers present their subjective opinions and contextual

benefits. Redux Saga allows writing a complex sequence of

synchronous and asynchronous events in a clear and

declarative style without call backs.

4) NodeJS: Node.js has gained popularity in the server side

scripting language and offers client-server development

integration, aiding code reusability in web applications, and

is the perfect tool for developing fast, scalable network

applications [9]. NodeJS is a framework for developing

high-performance, concurrent programs that don’t rely on

the mainstream multithreading approach but use

asynchronous Input/output with an event-driven

programming model [39]. Kai Lei and et. al performed a

study to compare the performance of Node.js, Python-Web,

and PHP using benchmark tests and scenario tests. The

experimental results yield some valuable performance data,

showing that PHP and Python-Web handle much fewer

requests than that of Node.js in a certain time. The study

demonstrates that Node.js is quite lightweight and efficient,

which is an ideal fit for I/O intensive websites among the

three, while PHP is only suitable for small and middle scale

applications, and Python-Web is developer friendly and

good for large web architectures [23].

5) Immutable JS: Immutable JS [15] for handling

immutability in the states. Immutable data is a core idea in

the functional programming. Immutable data helps to adhere

to the principle that if the app state has not changed, the

DOM should not change. Immutable JS is an open-source

JavaScript library from Facebook which helps in data flow

simplification, optimization of data change detection,

performance enhancement through memoization.

Memoization is one of the techniques to store values of a

function instead of recomputing them each time the function

is called. A couple of important aspects with regards to

immutability are it increases predictability, performance and

allows for mutation tracking. In addition to that, Immutable

JS provides a convenient way to modify deeply nested

properties. Two major need for Immutable JS are:

Data Reference Problem: React is not just about building

interactive UI/UX interfaces, it is about performance. The

purpose of its development was to be performant and only

update the DOM when required and only update the portion

which is required to be updated. An optimized react app

should contain the simple stateless functional components

and can have shouldComponentUpdate returning false.

shouldComponentUpdate(nextProps, nextState) {
 return false;
}

The most notable function in the React component lifecycle

is shouldComponentUpdate and is expected to return false

whenever possible. This ensures that the component having

shouldComponentUpdate returning false would never re-

render thus making the React app extremely performant.

When building a React app, our goal is to compare old props

with new props and states and if they are not changed, the

component should never re-render. However, the equality

checks in JavaScript is very sophisticated. Consider equality

on complex objects and arrays:

const object1 = { prop: 'simple value' };
const object2 = { prop: 'simple value' };

Suresh Kumar Mukhiya et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol.
5, Issue 4, Dec 2018, pp. 6-13

 © 2018 IJRAA All Rights Reserved page - 8-

console.log(object1 === object2); // false

The object1 and object2 appear to be the same but their

reference is different. As these two objects are judged to be

different, equalling them naively within the

shouldComponentUpdate function will make our component

re-render needlessly. Data comes from Redux reducers. If

these reducers are not set correctly, they will be presented

with a different reference which will cause the component to

re-render every time. This will be one of the major problems

with respect to performance.

Reference Handling Problem: When we start working on a

real application, sooner or later we come across deeply

nested objects. Assuming, the need to compare the object

with the previous values, one way to achieve this is looping

through each object recursively. We can visualize this

computation can be expensive and would require some other

solution. One way to solve them is by inspecting the

reference. However, it requires us to preserve the reference if

nothing has changed, as well as change reference if any of

the nested object/array prop values changed. This task is

very complicated. Although there are some of the libraries

that help in deep comparing the objects, and if we want to do

them in a clean, optimized and nice way, Immutable JS is

one of the most popular solution. The Facebook developers

had faced these obstacles at their very early stage of

development and hence developed Immutable JS to

overcome this issue.

In addition to these major components, the architecture

utilizes other libraries. Webpack is preferred to be used as

module bundler [41]. Express is a minimal web framework

for Node JS [12]. There are several libraries that facilitate

the development of presentational component including

Redux form [35] for building forms, Material UI [28], Ant

Design [11], and Bootstrap [5] for building interactive UI

components.

B. Client-Server Architecture

In general, single page application follows multi-layer client-

server architecture. Browsers act as the client and

communicate with a server using REST API over HTTP [42]

protocol. Figure 1 shows different layers of the single-page

web application. As illustrated in figure 1, the API layer

communicates with several application layers (for example

Watcher, Webhooks, Notifiers) which in turn communicates

with the database layer. To ensure interoperability, the

database layer is likely to communicate with other external

services through a secured firewall.

C. Architecture of the React App with Redux and Saga

As aforementioned, the single-page architecture with React

and Redux follows the client-server paradigm. In this

section, we present the conceptual model and the logical

model of the architecture.

1) Conceptual Model: Figure 2 shows the conceptual model

of the architecture. The architecture has four layers - view

layer, application services layer, store layer, and domain

layer.

The presentational and container components constitute the

view layer. Presentational components are concerned with

how things appear while container components are

concerned with how things operate. Interactive UI

components like Ant design, Bootstrap, Redux-form, and

Material designs can be used to construct these components.

These components are independent and promote code-

reusability. A button component can be used several times in

the same application. In addition to this, these components

can be exported to be used for independent applications.

Application services layer is beneficial for preparing all

kinds of operations which are near to the data flow like Ajax

calls to retrieve data from the server or state projections.

This layer is optional based on a developers’ preferences.

The store layer contains the data which results from CRUD

(Create, Read, Update, Delete) operations on the application.

The store holds all these data in the state. As mentioned in

section Redux, there is only one global store where is

responsible for data flow in the entire application. The

domain layer explains the state and holds the business logic

which is the core of the application. Since we are presenting

immutable structure, our domain layer will of entities and

domain services.

2) Logical Model: Figure 3 shows the logical model of the

single page architecture. The diagram shows an application

structure with async-based action that is triggered using

Redux Saga. In this section, we try to explain the logical

model of the architecture taking an example of a simple

Hospital Management System. Having to display the list of

doctors in our application, the first thing we do is to model

Doctor entity. All the object type of the entity doctor needs

to be immutable. React is used to create UI/UX elements

which form the virtual DOM. The UI parts are referred to as

Component. Each component has a constructor which

initializes the component with required attributes. These UI

components trigger events which are captured by action

creators. Action creators dispatch action. For example, if a

user wants to delete a doctor record from the application, an

event of delete is triggered by pressing a link or a button.

Actions are payloads of information that send data from an

application to the store. In this case, action has type and

payload. Action type can be DELETE and data could be the

identifier of the doctor that needs to be deleted. In principle,

we never change state manually, we trigger change by

dispatching actions.

Redux Saga provides us with the async dispatch which

ensures HTTP requests will not clutter up the execution

flow. Saga allows creating all the logic of event stream

processing. Saga runs in the background right after the app is

launched and observe all actions that store dispatches. Once

it finds correct actions dispatched, it listens to it and

performs required asynchronous activities like fetching data

or deleting the data from backend by calling the API layer.

For example, in this case, once saga observers DELETE

action been dispatched, it will call the API with correct

Suresh Kumar Mukhiya et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol.
5, Issue 4, Dec 2018, pp. 6-13

 © 2018 IJRAA All Rights Reserved page - 9-

payload to delete the doctor. The reducers get the type of

actions and update the store data which in turn are reflected

in the actional DOM.

Figure 1. Client-server architecture of the web application

III. ARCHITECTURAL PROPERTIES

In this section, we discuss several architectural properties of

single page architecture with respect to ReactJS, Redux, and

Redux-saga. These properties can be regarded as the

evaluation of the system in terms of usability, accessibility,

testability, and maintainability.

A. User Interactivity

Software architecture term usability is closely related to user

interactivity [14] whereas human-computer interaction

defines user interactivity as the degree to which end users

can proactively participate in the communication process and

exchange roles in their mutual discourse [8]. ReactJS holds

strong ground on building interactive user interface as

aforementioned in the previous section. The browser is an

event driven application and everything that an end user does

in the browser fires an event including from dragging the

mouse to even hovering over an element. ReactJS

documentation provides various supported events including

focus events, mouse events, pointer events, selection events,

touch events, wheel events, media events and many more

[21]. These events driven support can be used in building a

complex user interactive interfaces for user engagement on

the web. As suggested by the study done by Teo and et al.

[1], a higher level of user interactivity has positive effects on

the users perceived satisfaction, efficiency, attitude and

effectiveness towards a website.

B. Accessibility

Web accessibility is also referred to as a11y which refers to

the facilitation of web content for assistive technology.

ReactJS fully promotes constructions of a web-accessible

application using standard HTML techniques and provides

full support for it [16]. Web accessibility of an application

made using the single page architecture can also be

evaluated by different methods, including subjective

assessments, standards review, user testing, and barrier

walkthrough [6], [40].

C. Network Performance

The network performance of a web application is highly

influenced by the rate of data transmitted on the network and

bandwidth. It is also dependent on how the application

updates DOM when a user moves from one UI to another.

As mentioned in [3], [18], [22], [31], [19], [20], ReactJS

maintains the virtual DOM which updates by the

reconciliation process which means only the DOM elements

which have updates will be re-rendered. This makes the

application network performance compared to other multi-

page architectures. Redux is heavily optimized to reduce

unnecessary re-renders. However, the work done by Redux

JS is affected by processing actions in the middleware’s,

reducers, and subscribers. An application developed using

this architecture must be optimized to avoid unnecessary

reconciliation. This can heavily enhance network

performance of the application [17].

D. Readability

Readability refers to as a human judgment of how easy a

piece of code is to understand. The readability of a program

Suresh Kumar Mukhiya et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol.
5, Issue 4, Dec 2018, pp. 6-13

 © 2018 IJRAA All Rights Reserved page - 10-

is highly related maintainability and are regarded as the key

factor in overall software quality [7], [2]. ReactJS and Redux

code can be organized to have a higher level of readability.

The readability matrix is very subjective to the developer’s

competence. However, ReactJS promotes code readability in

its own implementation. For example, lifecycle method

name shouldComponentUpdate [18]. The name suggests the

function will return boolean value by indicating the

component should update or not. The libraries proposed in

this architecture in this paper promotes readability in terms

of naming variables, naming methods, organizing code,

keeping component smaller, making a small and reusable

component, standard indentation, comments, using a

common vocabulary for naming function and variables, and

single responsibility principle [27].

Figure 2. Conceptual Model of the single page architecture

E. Simplicity

The effort that is required to comprehend, plan, analyse,

design, implement and maintain a web application is referred

to as simplicity. Single-page architecture offers simplicity in

terms of implementation. In addition to that, as

aforementioned, ReactJS follows the declarative paradigm in

which the developers tell React what state they want the UI

to be in, and make sure the DOM matches the state. This

provides abstraction from the attribute manipulation, event

handling, and manual DOM updating that developers have to

think about when building an app using another

technological stack. The abstraction provides simplicity in

development of web and allows the developers to focus on

the business logic of the application rather than internal

implementation details.

F. Scalability

The ability of a system to grow in terms of components can

be viewed as scalability. In a web application scalability

refers to the number of clients a web application can handle

without deteriorating its quality and results. Single-page

architecture can be easily configured to serve a growing

number of client requests and has been already proven by its

use in enterprise application like Facebook, Netflix, Yahoo,

Atlassian, Khan Academy, Pinterest, Dropbox, and others.

G. Maintainability

Maintainability refers to the ease with which a software

system can be modified to correct faults, improve

performance, or adapt in a new environment or scale with

respect to resources [36]. Fred Brooks claimed the total cost

of maintaining software is typically 40 percent or more of

the cost of developing it [37]. A lot of other studies has been

done that accepts software maintainability as one of the

major challenges [38]. Single-page architecture follows a

flexible structure where each component has a single

responsibility. In addition to that, it separates the

presentational component, container component, states, and

business logic separately. This makes easier to maintain the

application. In a well-structured web application, a developer

knows where to start debugging if there is any bug in the

application. For example, if there is an issue in the display of

a button on the browser, a developer is likely to check the

presentational component and correct Cascading Style Sheet

(CSS). Moreover, one of the strongest maintainability

aspects that can be argued is the Separation of Concerns

(SoC). SoC is a design principle for separating a software

program into distinct sections where each section addresses a

distinct and separated concern. This separation facilitates in

making the app maintainable, extensible, flexible as well as

reusable. The architecture illustrated in figure 3 promotes

separation of concerns where React component and Redux

components interact to scalable web applications. In this

architecture, ReactJS component is responsible for UI design

by rendering HTML contents, dispatch actions on user

interactions or lifecycle events and performs the animation.

The second component Redux maintains the data in a store

and provides unidirectional data flow. This helps to manage

and organize data better and make the debugging process

very smooth.

H. Testability

There are several tactics used to make the system easier to

test. For example, limiting the complexity of the structure or

of the modules and limiting randomness as much as possible

should help the tester achieve his goals. Moreover, adding

special interfaces and the function that the player can play

his own created maze, should make testing easier, faster and

less expensive.

IV. RELATED WORK

Jakob Nielsen [32] explores various usability techniques and

their importance to the modern web application in his book.

He supports his idea by various principles and experiments

Suresh Kumar Mukhiya et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol.
5, Issue 4, Dec 2018, pp. 6-13

 © 2018 IJRAA All Rights Reserved page - 11-

in the book. Jim Conallen [10] illustrates how object- oriented

Figure 3. The logical model of the single page architecture

skills can be consumed in the web application development

through different web modeling paradigm like UML. The

author demonstrates how Model Driven Software

Engineering can be used in the improvement of quality,

portability, productivity, and maintainability. Recently, a

number of technical books have appeared on the subject of

web application development. Asleson and Schutta [4] focus

on client-side technology. A handful of research has been

published using AJAX for web programming [10], [29], [4].

One of the recent development in the software-architecture is

service-oriented architecture (S0A). The architecture has

transformed the way software engineers and developers

today design the application [25]. This paper [34] explains

some of the benefits and challenges of using Enterprise

Software Oriented Architecture. SOA promotes scalability,

better user response, low latency, organized programming

model, and interoperability. However, this architecture needs

to ensure all the web services [25] standards adopt the same

technical standards. Moreover, in order to achieve the

benefits of reusability, responsiveness, and extendibility,

services must be specified at the correct level of abstraction

and granularity [34]. In multi-page applications, any change

in the frontend requests rendering of a new page from the

server in the browser. These applications ender each page

due to the amount of data. The multi-page applications are

good and easy for Search Engine Optimization (SEO)

management as it gives increased chances to rank different

keywords of an application. In addition to this, a multi-page

application can be scalable but it requires more development

time and has slow speed, update, and performance.

V. DISCUSSION AND CONCLUSION

In this paper, we have discussed using single page

architecture for developing a scalable system. The main

contribution of this paper is the field of web application

development and software architecture. From a software

architecture perspective, we investigated the quality

attributes of the single page architecture. The paper provides

an abstract view of setting React application. From the web

application development perspective, we presented a unified

single page architecture for building the scalable web

application that enhances modifiability. Single page

architecture is fast and responsive, has caching capabilities

with linear user experience, are scalable, secure, and

maintainable. Use of Redux for state management depends

on the complexity of the application and need of the data

management. If an application is not data-driven, use of

Redux will be overkill. To summarize, Redux was created to

manage and debug application states in very sophisticated

web application systems. Developers argue with the

perspective that, for even small changes in functionality,

redux requires an excessive amount of code. However,

provided the large application scenario Redux is extremely

useful. Use of Immutable JS is often questioned by the

developers’ community. Immutable data is the core concept

in the functional programming and its use justifies one of the

core principles of React and Redux: if the app state has not

changed, the DOM should not change as well. Other than

that it doesn’t quite follow the ES6/7/8 pattern and there are

Suresh Kumar Mukhiya et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol.
5, Issue 4, Dec 2018, pp. 6-13

 © 2018 IJRAA All Rights Reserved page - 12-

several discussions in the online community about difficulty

documentation and debugging. Moreover, any fetches to a

server for JSON requires conversion from Immutable JS

format to readable JSON object using toJS function. In

addition to this, developers’ community also believe there is

nothing wrong with mutating objects and there are other

libraries that help with specialized data structures.

Immutable JS is not the only way to prevent immutability

which is the core principle of functional programming. There

are other libraries. Immutable JS is one of the libraries

recommended by the React team. However, the use of the

library must be studied in the web application before using

it. Considering the size of the application, and flow of data,

use of Redux, Redux Saga and Immutable JS is

recommended. It is very important to understand the

functional requirements of the application, number of

requests need, flow of data before choosing the architecture

and its component. Further research encompasses the use of

the architecture in a developing an application and

evaluation of each component. One of the possible branch to

explore beyond this work is the application of the model-

driven approach in the construction of a single page

application.

REFERENCES

[1]. An empirical study of the effects of interactivity on web

user attitude. International Journal of Human Computer

Studies (2003).

[2]. AGGARWAL, K. K., SINGH, Y., AND CHHABRA, J.

K. An integrated measure of software maintainability. In

Annual Reliability and Maintainability Symposium. 2002

Proceedings (Cat. No.02CH37318) (Jan 2002), pp. 235–

241.

[3]. AGGARWAL, S. Modern Web-Development using

ReactJS. International Journal of Recent Research

Aspects (2018).

[4]. ASLESON, R., AND SCHUTTA, N. T. Foundations of

Ajax. 2006.

[5]. BOOTSTRAP. Bootstrap, https://getbootstrap.com. last

accessed on 2018.8.12.

[6]. BRAJNIK, G. A comparative test of web accessibility

evaluation methods. In Proceedings of the 10th

international ACM SIGACCESS conference on

Computers and accessibility - Assets ’08 (2008).

[7]. BUSE, R. P., AND WEIMER, W. R. Learning a metric

for code readability. IEEE Transactions on Software

Engineering (2010).

[8]. CARROLL, J. M. Human-computer interaction:

Psychology as a science of design. International Journal

of Human Computer Studies (1997).

[9]. CHANIOTIS, I. K., KYRIAKOU, K. I. D., AND

TSELIKAS, N. D. Is Node.js a viable option for building

modern web applications? A performance evaluation

study. Computing (2015).

[10]. CONALLEN, J. Modeling Web application architectures

with UML. Communications of the ACM (1999).

[11]. DESIGN, A. Ant design, https://pro.ant.design. last

accessed on 2018.10.12.

[12]. EXPRESSJS. Expressjs, https://expressjs.com/. last

accessed on 2018.10.12.

[13]. FACEBOOK. React dom - a javascript library for

building user interfaces, https://reactjs.org/docs/react-

dom.html. last accessed on 2018.11.10.

[14]. FOLMER, E. Software Architecture Analysis of

Usability. Current (2005).

[15]. IMMUTABLE. Immutable js,

https://facebook.github.io/immutable-js/. last accessed on

2018.11.10.

[16]. INC., F. Accessibility,

https://reactjs.org/docs/accessibility.html/. last accessed

on 2018.8.9.

[17]. INC., F. Avoid reconciliation,

https://reactjs.org/docs/optimizingperformance.html#avoi

d-reconciliation/. last accessed on 2018.8.19.

[18]. INC., F. React - a javascript library for building user

interfaces, https: //reactjs.org/, 2018. last accessed on

2018.10.10.

[19]. INC., F. React fiber architecture,

https://github.com/acdlite/react-fiberarchitecture/, 2018.

last accessed on 2018.9.22.

[20]. INC., F. Reconciliation,

https://reactjs.org/docs/reconciliation.html, 2018. last

accessed on 2018.10.18.

[21]. INC., F. Syntheticevent,

https://reactjs.org/docs/events.html/, 2018. last accessed

on 2018.11.9.

[22]. KHUAT, T. Developing a frontend application using

reactjs and redux. Master’s thesis, Laurea University of

Applied Sciences, 2018.

[23]. LEI, K., MA, Y., AND TAN, Z. Performance comparison

and evaluation of web development technologies in PHP,

Python and Node.js. In Proceedings - 17th IEEE

International Conference on Computational Science and

Engineering, CSE 2014, Jointly with 13th IEEE

International Conference on Ubiquitous Computing and

Communications, IUCC 2014, 13th International

Symposium on Pervasive Systems, Algorithms, and

Networks, I-SPAN 2014 and 8th International

Conference on Frontier of Computer Science and

Technology, FCST 2014 (2015).

[24]. LI, D., BROWNE, G., AND WETHERBE, J. Why Do

Internet Users Stick with a Specific Web Site? A

Relationship Perspective. International Journal of

Electronic Commerce (2006).

[25]. MAAMAR, Z., HACID, H., AND HUHNS, M. N. Why

web services need social networks. IEEE Internet

Computing (2011).

[26]. MARCHETTO, A., TONELLA, P., AND RICCA, F.

State-based testing of Ajax Web applications. In

Proceedings of the 1st International Conference on

Software Testing, Verification and Validation, ICST

2008 (2008).

[27]. MARTIN, R. C., NEWKIRK, J. W., AND KOSS, R. S.

Agile Software Development, Principles, Patterns, and

Practices. 1998.

Suresh Kumar Mukhiya et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol.
5, Issue 4, Dec 2018, pp. 6-13

 © 2018 IJRAA All Rights Reserved page - 13-

[28]. MATERIAL UI. Material ui, https://material-ui.com. last

accessed on 2018.10.14.

[29]. MESBAH, A., AND VAN DEURSEN, A. An

architectural style for ajax. In 2007 Working IEEE/IFIP

Conference on Software Architecture (WICSA’07)

(2007).

[30]. MESBAH, A., AND VAN DEURSEN, A. Migrating

multi-page web applications to single-page AJAX

interfaces. In Proceedings of the European Conference on

Software Maintenance and Reengineering, CSMR (2007).

[31]. MOUSAVI, S. A. Maintainability Evaluation of Single

Page Application Frameworks- Angular2 vs. React. PhD

thesis, Linnaeus University Vxj, Sweden, 2016.

[32]. NEILSEN, J. Designing Web Usability: The practice of

simplicity. Interactive Marketing (2000).

[33]. PAULSON, L. D. Building rich Web applications with

Ajax. Computer (2005).

[34]. PEUERLICHT, G. Enterprise SOA: What are the benefits

and challenges? . University of Technology, Sydney

(2007).

[35]. RASMUSSEN, E. Redux form, https://redux-

form.com/7.4.2/. last accessed on 2018.10.11.

[36]. REDUX. Redux, https://redux.js.org/. last accessed on

2018.7.19.

[37]. REDUX-SAGA. Redux saga, https://redux-saga.js.org/.

last accessed on 2018.7.20.

[38]. REDUX-THUNK. Redux thunk,

https://github.com/reduxjs/redux-thunk/. last accessed on

2018.8.20.

[39]. TILKOV, S., AND VINOSKI, S. Node.js: Using

JavaScript to build highperformance network programs.

IEEE Internet Computing (2010).

[40]. VIGO, M., BROWN, J., AND CONWAY, V.

Benchmarking web accessibility evaluation tools. In

Proceedings of the 10th International CrossDisciplinary

Conference on Web Accessibility - W4A ’13 (2013).

[41]. WEBPACK. Immutable js, https://webpack.js.org/. last

accessed on 2018.7.10.

[42]. Internet Engineering Task Force. RFC 6749. Hypertext

Transfer Protocol -- HTTP/1.1.

https://tools.ietf.org/html/rfc2616#section-5. Accessed

December 10, 2018.

