Product Cordial Labeling Of Product Graphs

K. Palani¹ and A. Niranjana²

¹PG & Research Department of Mathematics

²M.Phil Scholar

A.P.C.Mahalaxmi College for Women, Thoothukudi

Manonmaniam Sundaranar University, Tirunelveli

Abstract: Let G = (V,E) be a graph. A binary vertex labeling f: V(G) \rightarrow {0,1} of a graph G with induced edge labeling f*: E(G) \rightarrow {0,1} defined by f*(e=uv) = f(u)f(v) is said to be product cordial if $|v_f(0) - v_f(1)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$ where $v_f(i)$ and $e_f(i)$ represents the number of vertices and edges labeled i for i = 0,1. A graph G is product cordial if it admits a product cordial labeling. In this paper, we analyse some special and product graphs for the existence of product cordial labeling.

Keywords: Product cordial labeling, Cartesian product, Weak product.

AMS Subject classification: 05C78

I INTRODUCTION

Let G = (V(G), E(G)) be a finite, undirected simple graph. A graph labeling [3] is an assignment of values to the vertices of the graph satisfying certain conditions. A *binary vertex labeling* of G is simply a function f: V(G) \rightarrow {0,1}. Here, f(v) is said to be the label of v. Let the *induced edge labeling* f*: $\{0,1\}$ be defined $E(G) \rightarrow$ by Let $v_f(i)$ and $e_f(i)$ be $f^*(e=uv) = |f(u) - f(v)|.$ the number of vertices and edges labeled i for i = 0, 1. A binary vertex labeling is called a *cordial labeling* of G if $|v_f(0) - v_f(1)| \le 1$ $|e_f(0) - e_f(1)| \le 1$. A graph G is cordial if it admits a cordial labeling. The concept of cordial labeling was introducted by I.Cahit[2]. A binary vertex labeling of a graph G with induced edge labeling f*: $E(G) \rightarrow \{0,1\}$ defined by $f^*(e=uv) = f(u)f(v)$ is called a product cordial labeling if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \leq 1$ where $v_f(i)$ and $e_f(i)$ are as earlier. A graph G is product cordial if it admits a product cordial labeling[6].Ladder graph L_n[7] is a planar undirected graph with 2n vertices and 3n-2edges which is actually the Cartesian product of P_2 and P_n . Ladder rung graph $LR_n[7]$ is the graph union of n copies of P_2 .Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. The *middle graph*

M(G) [5] of a graph G is the graph whose vertex set is V(G)UE(G) and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is vertex of G and the other is an edge incident with it. The *cartesian product*[1] of G₁ and G₂ denoted by G₁×G₂ has $V = V_1 \times V_2$ as its vertex set $E = \{ (u_1, v_1), (u_2, v_2)/u_1 = u_2 and v_1 v_2 \in E_2 \}$. The *weak (or kronecker) product*[4] of G₁ and G₂ denoted by G₁ \odot G has $V = V_1 \times V_2$ as its vertex set and $E = \{ \{(u_1, v_1), (u_2, v_2)\}/(u_1, u_2) \in E_1 \text{ and } (v_1, v_2) \in E_2 \}$ as its edge set. In this paper, we analyse some special and product graphs for the existence of product cordial labeling.

1.1 Theorem:[6] P_n is product cordial.

II PRODUCT CORDIAL LABELING OF SOME SPECIAL GRAPHS

2.1 Theorem: LR_n is product cordial.

Proof: $LR_n \cong nP_2$

Let $V(LR_n) = \{u_i, v_i / i = 1, ..., n\}$ where u_i, v_i are the end vertices of i^{th} copy of P_2 .

Now, label n vertices with 0 and n vertices with 1 as in figure 2.1

Therefore, $v_f(0) = v_f(1) = n$.

Thus, $|v_f(0) - v_f(1)| = 0 < 1 \rightarrow (1)$

Case i) n is odd

Here, f: V(LR_n)
$$\rightarrow$$
 {0,1}isdefined by
f(u_i) =
$$\begin{cases} 0 & if \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil \\ 1 & if \ \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n \end{cases}$$
 and
f(v_i) =
$$\begin{cases} 0 & if \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil \\ 1 & if \ \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n \end{cases}$$

Correspondingly, the edges of $\left|\frac{n}{2}\right|$ copies of P₂ get the label 1 and the edges of $\left[\frac{n}{2}\right]$ copies of P₂ get the label 0.

Therefore, $e_f(0) = \begin{bmatrix} n \\ 2 \end{bmatrix}$ and $e_f(1) = \begin{bmatrix} n \\ 2 \end{bmatrix}$ Thus, $|e_f(0) - e_f(1)| = \left[\frac{n}{2}\right] - \left|\frac{n}{2}\right| = 1 \rightarrow (2)$ By (1) and (2), LR_n is product cordial. Case ii) n is even Here, $f: V(LR_n) \rightarrow \{0,1\}$ is defined by $f(u_i) = f(v_i) = \begin{cases} 0 & if \ 1 \le i \le (n/2) \\ 1 & if \ \left(\frac{n}{2}\right) + 1 \le i \le n \end{cases}$

Correspondingly, the edges of (n/2) copies of P_2 get the label 0 and the edges of (n/2) copies of P₂ get the label 1.

Therefore, $e_f(0) = e_f(1) = (n/2)$.

Thus,
$$|e_f(0) - e_f(1)| = e_f(0) \sim e_f(1) = 0 < 1 \rightarrow (3)$$

By (1) and (3), LR_n is product cordial.

2.2 Theorem: L_n is product cordial iff n = 1.

 L_n has 2n vertices. **Proof:** Let $V(L_n) =$ $\{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$ with u_i, v_i representing the corresponding column elements.

Now, label n vertices with 0 and n vertices with 1 as in figure 2.2

Therefore, $v_f(0) = v_f(1) = n$. Thus, $|v_f(0) - v_f(0)| = v_f(0) - v_f(0)$ $v_f(1) \big| = 0 < 1 \quad \rightarrow \quad (1)$

Case i) n is odd

When n = 1, $L_n \cong P_2$.

By 1.1, $L_n(n=1)$ is product cordial.

Let n = 2k + 1, k = 1, 2, 3, ...

Let f be a vertex labeling satisfying (1).

Equation (2) defines one such f which gives maximum value for $e_f(1)$

$$f(\mathbf{u}_{i}) = \begin{cases} 0 & if \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil \\ 1 & if \ \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n \end{cases}$$

$$f(\mathbf{v}_{i}) = \begin{cases} 0 & if \ 1 \le i \le \left\lceil \frac{n}{2} \right\rceil \\ 1 & if \ \left\lceil \frac{n}{2} \right\rceil + 1 \le i \le n \end{cases} \rightarrow (2)$$
Therefore, $e_{f}(1) \le n + k-2$ and $\operatorname{soe}_{f}(0) \ge$

(3n-2) - (n+k-2) = 2n - k.

Thus,
$$|e_f(0) - e_f(1)| = e_f(0) \sim e_f(1)$$

 $\geq |2n - k - (n + k - 2)|$
 $= |n - 2k + 2|$
 $= |2k + 1 - 2k + 2| = 3.$

Therefore, $|e_f(0) - e_f(1)| \leq 1$.

Since f assigns maximum value for $e_f(1)$, there is no other function which is a product cordial labeling of L_n when n is odd.

Case ii) n is even

Let $n = 2k, k = 1, 2, 3, \dots$

Let f be a vertex labeling satisfying (1).

Equation (3) defines one such f which gives maximum value for $e_f(1)$

© 2019 IJRRA All Rights Reserved

page-2

$$\begin{split} \mathrm{f}(\mathrm{u}_{\mathrm{i}}) &= \mathrm{f}(\mathrm{v}_{\mathrm{i}}) = \begin{cases} 0 & if \ 1 \leq i \leq (n/2) \\ 1 & if \ \left(\frac{n}{2}\right) + 1 \leq i \leq n \\ \end{cases} \xrightarrow{(3)} \end{split}$$
 $\begin{aligned} & \text{Therefore, } e_f(1) \leq \mathrm{n} + \mathrm{k} - 2 \quad \text{and so } e_f(0) \geq (3\mathrm{n} - 2) \\ & -(\mathrm{n} + \mathrm{k} - 2) = 2\mathrm{n} - \mathrm{k}. \\ & \text{Thus,} \left| e_f(0) - e_f(1) \right| = e_f(0) \sim e_f(1) \\ & \geq |2\mathrm{n} - \mathrm{k} - (\mathrm{n} + \mathrm{k} - 2)| \\ &= |\mathrm{n} - 2\mathrm{k} + 2| \\ &= |2\mathrm{k} - 2\mathrm{k} + 2| = 2. \end{aligned}$ $\begin{aligned} & \text{Therefore, } \left| e_f(0) - e_f(1) \right| \leq 1. \end{aligned}$

Hereice, $e_{f}(c_{f}) = e_{f}(c_{f}) + e_{f}(c_{f}) + e_{f}(c_{f})$ Hence, as in case (i), there is no other function which is a product cordial labeling of L_n when n is even. By cases (i) & (ii), L_n is product cordial iff n = 1. **2.3 Theorem:** M(C_n) is not product cordial. **Proof:** M(C_n) has 2n vertices. Let V(M(C_n))={v_i,u_i/ i=1,...,n} where V(C_n) = {v_i / i=1,...,n} and E(C_n) = {u_i / i=1,...,n}

Correspondingly,
$$E(M(C_n)) = \{u_i u_{i+1} / i = 1, ..., n-1\}$$

 $\begin{array}{l} \cup \{u_nu_1\} \cup \{v_iu_i,v_iu_{i+1}/i=1,\ldots,n-1\} \cup \{v_nu_n,v_nu_1\} \\ \text{The following figure 2.3 represents } M(C_n) \text{ for general } n. \end{array}$

Now, label n vertices with 0 and n vertices with 1, so that $|v_f(0) - v_f(1)| \le 1 \rightarrow (1)$ **Case i)** n is odd Let n = 2k+1, k=1,2,3,...Equation (2) defines a vertex labeling f satisfying (1) & gives maximum value forg (1)

$$f(u_i) = \begin{cases} 1 & if \ 1 \le i \le [n/2] \\ 0 & if \ [n/2] + 1 \le i \le n \end{cases} \text{ and} \\ f(v_i) = \begin{cases} 1 & if \ 1 \le i \le [n/2] \\ 0 & if \ [n/2] + 1 \le i \le n \end{cases}$$
(2)
Therefore, $e_f(1) \le n + k - 1$ and so
 $e_f(0) \ge (3n) - (n + k - 1) = 2n - k + 1$.
Thus,
 $|e_f(0) - e_f(1)| \ge 2n - k + 1 - (n + k - 1) = n - 2k + 2 = 2k + 1 - 2k + n = 3 \end{cases}$

Therefore, $|e_f(0) - e_f(1)| \leq 1$. Since f assigns maximum value for $e_f(1)$, there is no other function which is a product cordial labeling of

 $M(C_n)$ when n is odd.

Case ii) n is even

Let n = 2k, k = 2, 3, ...

Equation (3) defines a vertex labeling f satisfying (1) &gives maximum value for $e_f(1)$.

$$f(\mathbf{u}_{i}) = f(\mathbf{v}_{i}) = \begin{cases} 0 & if \ 1 \le i \le \left(\frac{n}{2}\right) \\ 1 & if \ \left(\frac{n}{2}\right) + 1 \le i \le n \end{cases}$$
(3)

Therefore, $e_f(1) \le n + k - 2$ and so $e_f(0) \ge (3n) - (n + k - 2) = 2n - k + 2$. Thus,

$$|e_f(0) - e_f(1)| \ge 2n - k + 2 - (n + k - 2)$$

= $n + 4 - 2k$
= $2k + 4 - 2k = 4$.

Therefore, $|e_f(0) - e_f(1)| \leq 1$. Hence, as in case (i), there is no other function which

is a product cordial labeling of $M(C_n)$ when n is even. By cases (i) & (ii), $M(C_n)$ is not product cordial.

II PRODUCT CORDIAL LABELING OF CARTESIAN PRODUCT GRAPHS

We restate the definition of **Cartesian Product**[4] as follows: Let $G_1 = (U,E)$ and $G_2 = (V,E')$ be two graphs. Let $U = \{u_1, u_2, ..., u_m\}$ and $V = \{v_1, v_2, ..., v_m\}$. The Cartesian product of G_1 and G_2 is the graph $G_1 \times G_2$ with vertex set $W = U \times V$ and edge set $E'' = \{\{(u_i, v_j), (u_k, v_s)\}/u_i = u_k \text{ and } v_j \text{ is adjacent to } v_s \text{ or } v_j = v_s \text{ and } u_i \text{ is adjacent to } u_k\}$.

3.1 Theorem: $P_2 \times P_n$ is product cordial iff n=1.

Proof: $P_2 \times P_n$ has 2n vertices.

 $P_2 \times P_n$ looks as in figure 3.1

Let $V(P_2 \times P_n) = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n\}$ with u_i, v_i representing 1st and 2nd row elements respectively.

n is even

2

n is odd

Figure 3.1 Now, label n vertices with 0 and n vertices with 1, so that $|v_f(0) - v_f(1)| = 0 < 1 \rightarrow (1)$ Case i) n is odd When n=1, $P_2 \times P_n \cong P_2$ By 1.1, $P_2 \times P_n$ is product cordial Let n = 2k+1, k = 1, 2, 3, ...Equation (2) defines a vertex labeling f satisfying (1) & gives maximum value for $e_f(1)$. $if \ 1 \le i \le \lceil n/2 \rceil$ $f(u_i) =$ and 1 *if* $[n/2] + 1 \le i \le n$ $f(v_i) = \begin{cases} 0 \\ 1 \end{cases}$ $if \ 1 \le i \le \lfloor n/2 \rfloor$ *if* $|n/2| + 1 \le i \le n$ Therefore, $e_f(1) \leq n + k - 2$ and so $e_f(0) \ge (3n-2) - (n+k-2)$ =3n-n-2-k+2=2n-k.

Thus,

$$|e_f(0) - e_f(1)| \ge 2n - k - (n + k - 2)$$

= $2k + 1 - 2k + 2 = 3$

Therefore, $|e_f(0) - e_f(1)| \leq 1$.

Since f assigns maximum value for $e_f(1)$, there is no other function which is a product cordial labeling of $P_2 \times P_n$ when n is odd.

Case ii) n is even

Let n = 2k, k = 1, 2, 3, ...

Equation (3) defines a vertex labeling f satisfying (1) & gives maximum value for $e_f(1)$.

$$f(\mathbf{u}_{i}) = f(\mathbf{v}_{i}) = \begin{cases} 0 & if \ 1 \le i \le \left(\frac{n}{2}\right) \\ 1 & if \ \left(\frac{n}{2}\right) + 1 \le i \le n \end{cases} \to (3)$$

Therefore, $e_f(1) \le n + k - 2$ and so $e_f(0) \ge (3n - 2) - (n + k - 2)$

= 3n - n - 2 - k + 2 = 2n - k.

Thus, $|e_f(0) - e_f(1)| \ge 2n - k - (n + k - 2) = 2k - 2k + 2 = 2.$

Therefore, $|e_f(0) - e_f(1)| \leq 1$.

Hence, as in case (i), there is no other function which is a product cordial labeling of $P_2 \times P_n$ when n is even. By cases (i) & (ii), $P_2 \times P_n$ is product cordial iff n =1. **3.2 Theorem:** $P_3 \times P_n$ is product cordial iff n=1.

Proof: $P_3 \times P_n$ has 3n vertices.

 $P_3 \times P_n$ looks as in figure 3.2

Let $V(P_3 \times P_n) = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n, w_1, w_2, ..., w_n\}$ with u_i, v_i, w_i representing the 1st, 2nd 3rdrow elements respectively.

Case i) n is odd When n=1, $P_3 \times P_n \cong P_3$ By 1.1, $P_3 \times P_n$ is product cordial Let n = 2k+1, k = 1, 2, 3, ...Now, label [3n/2] vertices with 0 and |3n/ 2 vertices with that 1, so $|v_f(0) - v_f(1)| = 1 \rightarrow (1)$ Equation (2) defines a vertex labeling f satisfying (1)& gives maximum value for $e_f(1)$. if $1 \le i \le \lfloor n/2 \rfloor$ 1 *if* $[n/2] + 1 \le i \le n$ and $f(u_i) =$ $f(v_i) = f(w_i) = \begin{cases} 0 & if \ 1 \le i \le \lfloor n/2 \rfloor \\ 1 & if \ \lfloor n/2 \rfloor + 1 \le i \le n \end{cases}$ (2)Therefore, $e_f(1) \le 2n + k - 2$ and $e_f(0) \geq$ (5n-3) - (2n+k-2) = 3n-k-1.

Thus, $|e_f(0) - e_f(1)| \ge 3n - k - 1 - (2n + k + 2)$ = n - 2k + 1 = 2k + 1 - 2k + 1 = 2

Therefore, $|e_f(0) - e_f(1)| \leq 1$.

Since f assigns maximum value for $e_f(1)$, there is no other function which is a product cordial labeling of $P_3 \times P_n$ when n is odd.

Case ii) n is even

Let n = 2k, k = 1, 2, 3, ...

Now, label 3n/2 vertices with 0 and 3n/2 vertices with 1, so that $|n| = 0 \le 1 \Rightarrow (3)$

 $|v_f(0) - v_f(1)| = 0 < 1 \to (3)$

Equation (4) defines a vertex labeling f satisfying (1) & gives maximum value for $e_f(1)$.

$$f(\mathbf{u}_i) = f(\mathbf{v}_i) = f(\mathbf{w}_i) = \begin{cases} 0 & if \ 1 \le i \le \left(\frac{n}{2}\right) \\ 1 & if \ \left(\frac{n}{2}\right) + 1 \le i \le n \end{cases} \to (4)$$

Therefore, $e_f(1) \le n + 3k - 3$ and so

 $e_f(0) \ge (5n-3) - (n+3k-3)$ = 5n - n - 3 - 3k + 3 = 4n - 3k

Thus, $|e_f(0) - e_f(1)| \ge 4n - 3k - (n + 3k - 3)$ = 3n - 3 - 6k = 3(2k) - 3 - 6k = 3.

Therefore, $|e_f(0) - e_f(1)| \leq 1$.

Hence, as in case (i), there is no other function which is a product cordial labeling of $P_3 \times P_n$ when n is even.

By cases (i) & (ii), $P_3 \times P_n$ is product cordial iff n =1. **3.3Theorem:** $C_3 \times C_n$ is not product cordial. **Proof:** $C_3 \times C_n$ has 3n vertices. $C_3 \times C_n$ looks as in figure 3.3

Let

 $V(C_3 \times C_n) = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n, w_1, w_2, ..., w_n\}$ with u_i, v_i, w_i representing the $1^{st}, 2^{nd}$ and 3^{rd} row elements respectively.

n is even

n is odd

n 15 0ac

Case i) n is odd

Let n = 2k+1, k=1,2,3,...

Now, label [3n/2] vertices with 0 and

|3n/2| vertices with 1, so that $|v_f(0) - v_f(1)| = 1.$

Figure 3.3

Equation (2) defines a vertex labeling f satisfying (1) &gives maximum value for $e_f(1)$.

© 2019 IJRRA All Rights Reserved

$$\begin{split} \mathrm{f}(\mathrm{u}_{\mathrm{i}}) &= \left\{ \begin{array}{ll} 0 & if \ 1 \leq i \leq \lceil n/2 \rceil \\ 1 & if \ \lceil n/2 \rceil + 1 \leq i \leq n \end{array} \right. \mathrm{and} \\ \mathrm{f}(\mathrm{v}_{\mathrm{i}}) &= \mathrm{f}(\mathrm{w}_{\mathrm{i}}) = \left\{ \begin{array}{ll} 0 & if \ 1 \leq i \leq \lfloor n/2 \rfloor \\ 1 & if \ \lfloor n/2 \rfloor + 1 \leq i \leq n \end{array} \right. \\ \mathrm{Therefore}, \ e_f(1) \leq 2n + k - 2 \ \mathrm{and} \ e_f(0) \geq (5n) - \\ (2n + k - 2) = 3n - k + 2. \\ \mathrm{Thus}, \ \left| e_f(0) - e_f(1) \right| \geq 3n - k + 2 - (2n + k - 2) \\ &= n - 2k + 4 \\ &= 2k + 1 - 2k + 4 = 5 \\ \mathrm{Therefore}, \ \left| e_f(0) - e_f(1) \right| \leq 1. \end{split} \end{split}$$

Since f assigns maximum value for $e_f(1)$, there is no other function which is a product cordial labeling of $C_3 \times C_n$ when n is odd.

Case ii) n is even

Let n = 2k, k = 2, 3, ...

Now, label 3n/2 vertices with 0 and 3n/2 vertices with 1, so that $|v_f(0) - v_f(1)| = 0 < 1$.

Equation (4) defines a vertex labeling f satisfying (3) & gives maximum value for $e_f(1)$.

$$f(\mathbf{u}_i) = f(\mathbf{v}_i) = \begin{cases} 0 & if \ 1 \le i \le \left(\frac{n}{2}\right) \\ 1 & if \ \left(\frac{n}{2}\right) + 1 \le i \le n \end{cases}$$
(4)

Therefore, $e_f(1) \le n + 3k - 3$ and so $e_f(0) \ge (5n) - (n + 3k - 3) = 4n - 3k + 3$. Thus,

 $|e_f(0) - e_f(1)| \ge 4n - 3k + 3(n + 3k - 3)$ = 3n + 6 - 6k = 3(2k) + 6 - 6k = 6.

Therefore, $|e_f(0) - e_f(1)| \leq 1$ Hence, as in case (i), there is no other function which is a product cordial labeling of C₃× C_nwhen n is even.

By cases (i) &(ii), $C_3 \times C_n$ is not product cordial.

III PRODUCT CORDIAL LABELING OF WEAK PRODUCT GRAPHS

We restate the definition of **Weak(or Kronecker) Product**[4]as follows: Let $G_1 = (U,E)$ and $G_2 = (V,E')$ be two graphs. Let $U = \{u_1,u_2,...,u_n\}$ and $V = \{v_1,v_2,...,v_m\}$. The weak product of G_1 and G_2 is the graph $G_1 \bigcirc G_2$ with vertex set $W = U \times V$ and edge set $E'' = \{\{(u_i,v_j),(u_k,v_s)\}/u_i \text{ is adjacent to } u_k \text{ and } v_j \text{ is adjacent to } v_s\}$.

4.1 Theoem: $P_2 \odot P_n$ is product cordial.

Proof: $P_2 \odot P_n$ has 2n vertices.

Let $V(P_2) = \{u,v\}$ and $V(P_n) = \{w_1,w_2,\ldots w_n\}$. Then, $V(P_2 \odot P_n) = \{(u,w_i),(v,w_i)/i = 1,2,\ldots n\}$. Now, name the vertices (u,w_i) as u_i and (v,w_i) as v_i as in figure 4.1

Therefore, $V(P_2 \odot P_n) = \{u_i, v_i / i = 1, 2, ..., n\}$

Here, f:
$$V(P_2 \odot P_n) \rightarrow \{0,1\}$$
 is defined by

 $f(u_i) = \begin{cases} 0 & if \ i \ is \ odd \\ 1 & if \ i \ is \ even \end{cases}, \quad f(v_i) = \begin{cases} 0 & if \ i \ is \ even \\ 1 & if \ i \ is \ odd \end{cases}$

Figure 4.1

From figure 4.1, $P_2 \odot P_n$ is the union of two disjoint paths of length n.ie, $P_2 \odot P_n = P_n \cup P_n$ '. Now, label n vertices of P_n with 0 and label n vertices of P_n ' with 1, so that

 $\begin{vmatrix} v_f(0) - v_f(1) \end{vmatrix} = 0 < 1 \rightarrow (2)$ Correspondingly, $e_f(0) = e_f(1) = n-1$. Therefore, $|e_f(0) - e_f(1)| = 0 < 1 \rightarrow (2)$ By (1) and (2), $P_2 \odot P_n$ is product cordial. **4.2 Theorem:** $P_3 \odot P_n$ is product cordial. **Proof:** $P_3 \odot P_n$ has 3n vertices. $P_3 \odot P_n$ looks as in figure 4.2

Let $V(P_3 \odot P_n) = \{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n, w_1, w_2, \ldots, w_n\}$ with u_i, v_i, w_i representing the 1^{st} , 2^{nd} and 3^{rd} row elements respectively.

n is even n is odd Figure 4.2

Here, f: $V(P_3 \odot P_n) \rightarrow \{0,1\}$ is defined by $f(u_i) = \begin{cases} 0 & if \ i \ is \ odd \\ 1 & if \ i \ is \ even \end{cases}$, $f(v_i) = \begin{cases} 0 & if \ i \ is \ even \\ 1 & if \ i \ is \ odd \end{cases}$ and $f(w_i) = \begin{cases} 0 & if \ i \ is \ odd \\ 1 & if \ i \ is \ even \end{cases}$ **Case i)** n is odd

Now, $v_f(0) = \left\lfloor \frac{3n}{2} \right\rfloor$ and $v_f(1) = \left\lfloor \frac{3n}{2} \right\rfloor$ so that $|v_f(0) - v_f(1)| = 1 \rightarrow (1)$

Correspondingly, all the edges incident with u_i , w_i for i = 2, 4, ..., n-1 get the label 1.

From figure 4.2, it is clear that two edges are incident with u_i, w_i for i = 2, 4, ..., n-1.

Therefore,
$$e_f(1) = 2\{(2+2+..., \frac{n-1}{2} \text{ times})\}$$

= $2\{2(\frac{n-1}{2})\} = 2(n-1) = 2n-2.$
Further, $e_f(0) = q - e_f(1) = (4n-4) - (2n-2)$
= $2n-2.$
Thus, $|e_f(0) - e_f(1)| = 0 < 1 \rightarrow (2)$

By (1) and (2), $P_3 \odot P_n$ is product cordial.

Case ii)n is even

Now, $v_f(0) = 3n/2$ and $v_f(1) = 3n/2$ so that $|v_f(0) - v_f(1)| = 0 < 1 \rightarrow (3)$

Correspondingly, all the edges incident with u_i , w_i for i = 2, 4, ..., n get the label 1.

From figure 4.2, it is clear that two edges are incident with u_i, w_i for i = 2, 4, ..., n-2 and exactly one edge with u_n and w_n and these edges are all independent.

Therefore,
$$e_f(1) = 2\{(2+2+...\frac{n-2}{2} \text{ times}) + 1\}$$

= $2\{2(\frac{n-2}{2}) + 1\} = 2(n-2) + 2$
= $2n-2$.
Further, $e_f(0) = q - e_f(1) = (4n-4) - (2n-2)$
= $2n-2$.

Thus, $|e_f(0) - e_f(1)| = 0 < 1 \rightarrow (4)$ By (3) and (4), $P_3 \odot P_n$ is product cordial. **4.3 Theorem:** $P_4 \odot P_n$ is product cordial. **Proof:** $P_4 \odot P_n$ has 4n vertices. $P_4 \odot P_n$ looks as in figure 4.3 Let $V(P_4 \odot P_n) = \{u_1, u_2, ..., u_n, v_1, v_2, ..., v_n, w_1, w_2, ..., w_n\}$

 $z_1, z_2,..., z_n$ with u_i, v_i, w_i, z_i representing the 1st, 2nd, 3rd and 4th row elements respectively.

Here, f: $V(P_4 \odot P_n) \rightarrow \{0.1\}$ is defined by

$$\begin{split} f(u_i) &= \begin{cases} 0 & if \ i \ is \ odd \\ 1 & if \ i \ is \ even \end{cases}, \\ f(v_i) &= \begin{cases} 0 & if \ i \ is \ even \\ 1 & if \ i \ is \ odd \end{cases}, \\ f(w_i) &= \begin{cases} 0 & if \ i \ is \ odd \\ 1 & if \ i \ is \ even \end{cases}, \\ f(w_i) &= \begin{cases} 0 & if \ i \ is \ even \\ 1 & if \ i \ is \ even \end{cases}, \end{split}$$

$$f(z_i) = \begin{cases} 0 & ij \ i \ s \ odd \\ 1 & if \ i \ s \ odd \end{cases}$$

For any n, we can label 2n vertices with 0 and 2n vertices with 1, so that

Case i) n is odd

Correspondingly, the edges incident with u_i , w_i for $i = 2, 4, \dots, n-1$ get the label 1.

From figure 4.3, it is clear that two edges are incident with u_i for i = 2, 4, ..., n-1 and four edges

incident with w_i for i = 2, 4, ..., n-1. Further, these edges are all distinct.

Therefore,

$$e_f(1) = \{(2+2+\dots\frac{n-1}{2}\text{times}) + (4+4+\dots\frac{n-1}{2}\text{times})\} \\ = 2(\frac{n-1}{2}) + 4(\frac{n-1}{2}) = (n-1) + 2(n-1) \\ = 3n-3.$$

Further, $e_f(0) = q - e_f(1)$

$$= (6n-6) - (3n-3) = 3n-3.$$

Hence, $|e_f(0) - e_f(1)| = 0 < 1 \rightarrow (2)$

By (1) and (2), $P_4 \odot P_n$ is product cordial.

Case ii) n is even

Correspondingly, all the edges incident with u_i , w_i for i = 2, 4, ..., n get the label 1.

From figure 4.3, it is clear that two edges are incident with u_i for i = 2, 4, ..., n-2.

Four edges incident with w_i for i = 2, 4, ..., n-2 and two edges incident with w_n and one edge is incident with u_n .Further, these edges are all distinct. Therefore,

 $e_f(1) = (2+2+\dots,\frac{n-2}{2}\text{ times}) + (4+4+\dots,\frac{n-2}{2}\text{ times}) + 2 + 1$

 $= 2(\frac{n-2}{2}) + 4(\frac{n-2}{2}) + 3 = (n-2) + 2(n-2) = 3n-3.$ Further, $e_f(0) = q - e_f(1) = (6n-6) - (3n-3) = 3n-3.$ Hence, $|e_f(0) - e_f(1)| = 0 < 1 \rightarrow (3)$

By (1) and (3), $P_4 \odot P_n$ is product cordial.

4.4 Theorem: $C_3 \odot C_n$ is not product cordial for $n \ge 3$.

Proof: Let $V(C_3) = \{a_1, a_2, a_3\} \& V(C_n) = \{b_1, b_2, ..., b_n\}$ Then, $V(C_3 \odot C_n) = \{(a_1, b_j), (a_2, b_j), (a_3, b_j)/j = 1, ..., n\}$ Label the vertices $(a_1, b_j), (a_2, b_j)$ and (a_3, b_j) with u_j, v_j, w_j for j = 1, ..., n respectively.

Therefore, $V(C_3 \odot C_n) = \{u_i, v_i, w_i/i=1, ..., n\}$.

Correspondingly,

$$\begin{split} E(C_3 \odot C_n) = & \{u_i v_{i+1}, u_i w_{i+1} / i = 1, \dots, n-1\} \cup \{u_n v_1, u_n w_1\} \\ \cup & \{u_i v_{i-1}, u_i w_{i-1} / i = 2, \dots, n\} \cup \{u_1 v_n, u_1 w_n\} \end{split}$$

$$\bigcup \{v_i w_{i+1}, w_i v_{i+1}/i=1, \dots, n-1\} \bigcup \{v_1 w_n, v_n w_1\}.$$

Here, $|V(C_3 \odot C_n)| = 3n$ and $|E(C_3 \odot C_n)| = 6n$.

Figure 4.4. C₃OC_n

 $\begin{aligned} \text{Definef:} V(C_3 \odot C_n) &\longrightarrow \{0, 1\} \text{ is } \\ \text{by } f(u_i) &= \begin{cases} 0 & \text{if } i \text{ is odd} \\ 1 & \text{if } i \text{ is even} \end{cases} \\ f(v_i) &= f(w_i) = \begin{cases} 0 & \text{if } i \text{ is even} \\ 1 & \text{if } i \text{ is odd} \end{cases} \rightarrow \end{aligned}$

Case i) n (\geq 3) is odd Now, label [3n/2] vertices with 1 and [3n/2]vertices with 0, so that $|v_f(0) - v_f(1)| = 1 \rightarrow (2)$

Equation (1) defines a function f satisfying (1)&gives maximum value for $e_f(1)$.

By the above labeling, $u_2, u_4, \ldots, u_{n-1}$ get the label 1. Corresponding to each of these u_i 's4 edges get the label 1 and are distinct.

Also, the vertices $v_1, v_3, v_5, \ldots, v_n \& w_1, w_3, w_5, \ldots, w_n$ get the label 1. Corresponding to these vertices there are exactly twoedges $v_n w_1 \& v_1 w_n$ get label 1.

Therefore, $e_f(1) \leq \sum_{\substack{i=1\\i=even}}^{n} 4+2$ where the summation runs over for even i.

$$= \left\lfloor \frac{n}{2} \right\rfloor \times 4 + 2 = 2n.$$

= $\left(\frac{n-1}{2} \times 4\right) + 2 = 2n - 2 + 2 = 2n.$

Therefore, $e_f(0) \ge (6n) - (2n) = 4n$.

Thus, $|e_f(0) - e_f(1)| \ge |4n - 2n| = 2n > 1.$

Therefore, $|e_f(0) - e_f(1)| \leq 1$.

Since f assigns maximum value for $e_f(1)$, there is no other function which is a product cordial labeling of $C_3 \odot C_n$ when n is odd.

Case ii) n (\geq 4)is even

Now, label 3n/2 vertices with 0 and 3n/2 vertices with 1, so that

 $|v_f(0) - v_f(1)| = 0 < 1 \rightarrow (3)$

Equation (1) defines a function f satisfying (1) &gives maximum value for $e_f(1)$.

By the above labeling, u_2, u_4, \ldots, u_n get the label 1. Corresponding to each of these u_i 's4 edges get the label 1 and are distinct.

Also, the vertices $v_1, v_3, v_5, \ldots, v_{n-1}$ & $w_1, w_3, w_5, \ldots, w_{n-1}$ get the label 1. Corresponding to these vertices there are no edges $v_n w_1$ & $v_1 w_n$ get label 1. All other edges get the label 0.

Therefore, $e_f(1) \leq \sum_{i=1}^{n} 4$

$$=\left(\frac{n}{2}\right)\times 4=2n$$

Therefore, $e_f(0) \ge (6n) - (2n) = 4n$.

Thus, $|e_f(0) - e_f(1)| \ge |4n - 2n| = 2n > 1.$

Therefore, $|e_f(0) - e_f(1)| \leq 1$.

Hence, as in case (i), there is no other function which is a product cordial labeling of $C_3 \odot C_n$ when n is even.

By cases (i) &(ii), $C_3 \odot C_n$ is not product cordial.

REFERENCES:

[1]. Arumugam, S. & Ramachandran, S. Invitation to Graph Theory, Scitech Publications(India) Pvt. Ltd.

- [2]. Cahit, I.(1987), Cordial Graphs: A weaker version of graceful and harmonious graphs, Ars Combin.,23,201-207.
- [3]. Gallian, J.A.(2010)A dynamic survey of graph , The Electronics Journal of Combinatorics,17(#DS6).
- [4]. Niranjana, A., Palani, K. & Kalavathi, S. (G,D) – Number of weak product and composition of graphs, International Journal of Recent Research Aspects, April 2018, pp.537-543.
- [5]. Palani, K., Mahalakshmi, M. & Sony, A., Strong (G,D) – Number of Middle graphs, International Journal of Recent Research Aspects, April 2018.
- [6]. Sundaram, M., Ponraj, R. & Somasundaram, S.(2004). Product cordial labeling of graphs,
- [7]. Bull. Pure and Applied Sciences(Mathematics and Statistics),23E, 155-163.Weisstein, Eric W. Mathworld-A Wolfram Web Resource. <u>http://mathworld.wolfram.com</u>