
 P.C. Harish Padmanaban et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 6, Issue
2, June 2019, pp. 93-98

© 2019 IJRRA All Rights Reserved page - 93 -

Implication of Artificial Intelligence in

Software Development Life Cycle: A state

of the art review

P.C. Harish Padmanaban1, Dr. Yogesh Kumar Sharma2

PH.D. Scholar, CSE & IT Dept. Shri Jagdishprasad Jhabarmal Tibrewala University,
Vidyanagarari, Jhunjhunu, Rajesthan-333001

PH.D. Coordinator, HOD CSE & IT Dept. Shri Jagdishprasad Jhabarmal Tibrewala University,
Vidyanagarari, Jhunjhunu, Rajesthan-333001

Abstract—Artificial Intelligence (AI) is the more youthful field in software engineering prepared to acknowledge

difficulties. Programming designing (SE) is the commanding mechanical field. Man-made brains strategies, for example,

learning based frameworks, neural systems, fluffy rationale and information mining have been upheld by numerous

specialists and engineers asthe approach to improve a large number of the product advancement exercises. Similarly as

with numerous different controls, programming advancement quality improves with the experience, information of the

engineers, past tasks and ability. Programming additionally develops as it works in changing and unpredictable

conditions. Henceforth, there is noteworthy potential for utilizing AI for improving all periods of the product

advancement life cycle. This paper gives a study on the utilization of AI for programming designing that covers the

primary programming advancement stages and AI strategies, for example, common language preparing systems, neural

systems, hereditary calculations, fluffy rationale, insect state enhancement, and arranging techniques. Thus,

mechanizing SE is the most applicable test today. Man-made intelligence has the ability to enable SE in that manner.

Here in this paper we present a best in class writing survey which uncovers the at various times work accomplished for

robotizing Software Development Life Cycle (SDLC) utilizing AI.

Keywords: Artificial Intelligence, Computational Intelligence, SLDC, Review

I. INTRODUCTION

There is a planned dinner at your farmhouse. When you will

start planning for this? What is the approach that you will

follow? Will you be enquiring about the number of guests that

are coming to attend the grand party? And you will prepare a

delicious menu (Let’s say Architecture)? You will start

preparing the food and once it is cooked, you will test it, isn’t

it? (Merely to check if there is a taste in your food). I hope that

we have given you a basic idea of what we are trying to explain

here, let’s jump to our topic. A Software Development Life

Cycle(SDLC) is a defined approach and series of steps that are

followed for developing any software in order to meet or

exceed the set expectation or customer requirements.

Types of Phases in SDLC

There are several phases in a lifecycle of software which is

given below:

Requirement Phase:

This is the first and fundamental step in the Life Cycle of

Software Development. It starts with gathering the

requirements from customers or clients. In most of the

organizations, this role is taken care by Business Analysts. A

Business Analysts interacts with the customer/clients, set up

daily meetings, documents the requirements in Business

Requirement Specifications (or Simple Business

Specification) and handover the final documented requirement

to the development team. It is the responsibility of Business

Analysts that every detail is captured and documented and also

to make sure that everyone clearly understands the client

requirements.

Analysis Phase:

Once the Requirement Gathering phase is completed, the next

task is to analyze the requirements and get it approved from

the customer/clients. This phase is mainly done by Project

Managers, Business Analysts, and Consultants.

Design Phase:

Once the Analysis Phase is over, next comes the need to come

up with the most accurate, robust, efficient and cost-effective

architecture of the product that needs to be developed. Usually,

more than one design is proposed in this phase and the best

one is selected based on different parameters such as

robustness, durability, timeline, cost-effectiveness, and many

more! The different design architecture is generally

documented in Design Document Specification or DDS. This

phase consists of 2 design approaches:

• Low-Level Design: This task is performed by the

Senior Developers where they specify the function of

each module of the product architecture that has to be

developed.

• High-Level Design: This task is performed by

Architects/Senior Architects where they design

 P.C. Harish Padmanaban et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 6, Issue
2, June 2019, pp. 93-98

© 2019 IJRRA All Rights Reserved page - 94 -

different possible architectures of the product that has

to be developed.

Development Phase:

This phase is where the actual implementation of

programming languages and different frameworks is being

utilized for the development of the product. In this phase, all

developers are involved. Developers are expected to follow

certain predefined coding standards and guidelines; they are

expected to complete the project modules within the defined

deadline for the project. This phase is also the longest and one

of the most critical phases in the Software Development Life

Cycle. This phase is documented as a Source Code Document

(SCD).

Testing Phase:

Once the Development phase is completed, the next step is to

test the developed software. The developed software is sent to

the testing team where they conduct different types of testing

thoroughly on the software and look for defects. If any defect

is found, the testing team records and document which is again

sent back to the development team for error removal. This role

is taken care of by Software Testers and Quality Analysts of

the company. The testing team has to make sure that each

component of the software is error free and it works as

expected.

Deployment and Maintenance Phase:

After the testing phase is over, the first version of the software

is deployed and delivered to the customer for their use. Once

the customer starts using the developed software, there is the

scope of bug fixing that was not detected during testing phase

as when a large group of end users starts using the software,

there could be some probability that few boundary cases might

have been missed. There is also scope for upgrading the

software with newer versions and latest security patches and

technologies. And finally, there is also scope for enhancement

of the software by adding more features into the existing

software.

II. POPULAR SDLC MODELS:

There are many different SDLC Models that are designed for

implementing in the software development process. The most

important and popular ones are:

Waterfall Model:

In the waterfall model, the whole process of the Software

Development is divided into phases where the output of one

phase acts as the input to the next phase. The next phase begins

only when the previous phase gets completed.

 Iterative Model:

This model starts with a smaller set of requirements and it does

not need the full context of product specification in order to

start the SDLC process. This process is repetitive and on each

iteration of the SDLC process, a newer version of the software

is made. Each iteration may between 2-6 weeks. Each iteration

develops a separate component in this approach. This model

also requires a mode resource than the waterfall model.

 Spiral Model:

This model is a combination of a Waterfall and Spiral model

and it works in an iterative manner. Based on the risk involved

in the project, this model guides the team to adopt elements of

one or more SDLC models such as a waterfall or Iterative

model. Here the lifecycle of Software is divided into smaller

parts and new functionality can be added to the software even

at the late stages of SDLC.

V-Model:

V model is basically an expansion to the waterfall model

where the testing and the development phases are planned in a

parallel. One side consists of the verification phase while the

other one consists of the validation phase which is finally

joined by coding. The next state starts only when the previous

state gets completed.

The controls of man-made brainpower and programming

building have grown independently. There isn't much trade of

research results between them. Computer based intelligence

inquire about procedures make it conceivable to see, reason

and act. Research in programming designing is worried about

supporting architects to grew better programming in less

period. Rech and Altoff(2008) state "The controls of

computerized brains and programming designing have

numerous shared characteristics. Both arrangement with

demonstrating certifiable articles from this present reality like

business process, master learning, or procedure models."

Today a few research headings of the two controls come nearer

together and are starting to assemble new research zones.

Encompassing knowledge (AmI) another exploration region

for disseminated, non-meddlesome, and smart programming

framework both from the course of how to manufacture these

framework just as how to planned the coordinated effort

between frameworks.

In conclusion computational insight (CI) assumes a significant

job in research about programming investigation or

undertaking the executives just as information revelation in AI

or databases [21].

Man-made brainpower methods, which mean to make

programming frameworks that display some type of human

insight, have been utilized to help or mechanize the exercises

in programming designing. Programming investigations are

been connected with incredible accomplishment to distinguish

abandons in various types of programming reports

III. UTILIZATION OF AI IN PLANNING & PROJECT

EFFORT ESTIMATION

Good undertaking arranging includes numerous viewpoints:

staff should be doled out to errands such that assesses their

experience and capacity, the conditions between assignments

should be resolved, times of undertakings should be evaluated

such that meets the venture consummation date and the task

plan will unavoidably require update as it advances. Simulated

intelligence has been proposed for most periods of arranging

programming improvement ventures, including surveying

plausibility, estimation of expense and asset necessities,

chance appraisal and planning. This segment gives pointers to

a portion of the proposed employments of learning based

 P.C. Harish Padmanaban et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 6, Issue
2, June 2019, pp. 93-98

© 2019 IJRRA All Rights Reserved page - 95 -

frameworks, hereditary calculations, neural systems and case

based thinking, in venture arranging and abridges their

adequacy.

Thus, different proposition that expect to use a KBS approach

for venture the board, for example, the utilization of generation

standards and cooperative systems (Boardman and Marshall,

1990), which appeared to be encouraging at the time have not

been generally embraced. When thinking about whether to

embrace a KBS approach, the expense of speaking to the

learning appears to be high and except if this should be

possible at a degree of deliberation that permits reuse, one can

envision that it is ugly to programming engineers who are

sharp and compelled to begin their activities immediately.

Neural Networks Neural systems (NNs) have been broadly

and effectively utilized for issues that require grouping given

some prescient info highlights. They consequently appear to

be perfect for circumstances in programming building where

one needs to foresee results, for example, the dangers related

with modules in programming support (Khoshgoftaar and

Lanning, 1995), programming hazard examination (Neumann,

2002) and for anticipating flaws utilizing item situated

measurements They recognized a sum of 39 hazard elements

which they assembled into 5 chance classifications: venture

intricacy, participation, cooperation, venture the executives,

and programming building. These were diminished to 19

directly autonomous elements utilizing head segment

investigation (PCA). The reasons for these progressions may

change from the expanding comprehension of the client about

the capacities of a PC framework to some unexpected

hierarchical or natural weights. On the off chance that the

progressions are not obliged, the first necessities set will wind

up fragmented and conflicting with the new circumstance or

in the most pessimistic scenario pointless (Meziane, 1994).

There are correspondence issues between the partners: During

the necessities building stage, engineers need to converse with

a wide scope of partners with various foundations, interests,

and individual objectives (Zave, 1997). Correspondence with

and seeing every one of these partners is an amazingly

troublesome and testing task. Necessities are hard to oversee:

One of the principle issues related with prerequisites is that of

recognizability. Recognizability is the way toward following a

necessity from its elicitation to usage and confirmation and

approval. Connecting the various periods of prerequisites

approval is regularly discarded. Other administration issues

identified with programming the executives are: venture the

executives, programming cost, advancement time, assets the

board and dealing with the evolving condition. The primary

commitment of AI in the prerequisites building stage are in the

accompanying zones:

• Disambiguating characteristic language prerequisites

by creating devices that endeavor to comprehends the

regular language necessities and change them into less

equivocal portrayals.

• Developing information based frameworks and

ontologies to deal with the necessities and model issue

areas.

• The utilization of computational insight to 283

Artificial Intelligence in Software Engineering take

care of a portion of the issues related with prerequisites,

for example, inadequacy and prioritization.

In the accompanying segments, we survey and talk about a

portion of the frameworks created in these territories [22].

Restrictions

The principle constraints of our examination are the single-

case use, little example size of specialists and the likelihood of

assumption in information gathering and investigation from

poll. The way that we utilized a solitary case all encompassing

structure makes us progressively helpless to predisposition

and dispenses with the likelihood of direct replication or the

examination of differentiating circumstances. Accordingly,

the general reactions about singlecase contemplates, for

example, uniqueness and exceptional access to key witnesses,

may likewise apply to our examination. Our objective was not

to give measurable speculations about a populace based on

information gathered from an example of that populace.

Another constraint is that a piece of our assessment depends

on semi-organized poll. The pragmatic assessment from

industry is additionally needs behind for the conceivable proof

of our structure.

IV. DOCUMENTING SOFTWARE REQUIREMENTS

TO AI

And here comes the biggest difference between AI and

traditional algorithmic programming…

On the one hand, in software development traditionally you

documented your data input algorithm that would transform

the input into expected results. An algorithm fed with specific

input would always lead to a precise result with 100%

certainty.

On the other hand, when developing AI you provide data and

expected results. The outcome of software development is a

neural network and its configuration models. Such a couple

with a specific probability shall turn input data into expected

results. That is the classical heuristic approach; providing a

specific data input will result in specific data output, but within

limitations of probability e.g. 80% or 90%.

From the above two approaches we can derive a different

strategy to documenting intended use and software

requirements. You should consider the specifics of an AI

software component and firstly reflect on its intended use.

Using an AI component for “advisory”, “data processing”

services presents no difficulties. Additionally, you can address

the “result probability challenge” with having the outcomes

checked by humans or controlled by deterministic software

component.

Whatever solution you design the software requirements

should reflect this intended use. Never assume 100% accuracy

of the results when specifying your software requirement.

Instead, define the anticipated accuracy of your health

software AI in terms of probability. Please note that humans

quite seldom make diagnosis with 100% probability either so

the regulator should not have any issues with that.

 P.C. Harish Padmanaban et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 6, Issue
2, June 2019, pp. 93-98

© 2019 IJRRA All Rights Reserved page - 96 -

Some other software requirements worth adding at this

moment are, for example: protecting your neural network

models with cryptographic controls, identification of your AI

version used for data processing, always sending the results

together with the AI version from the AI software unit,

monitoring, proper initialization of AI etc.

V. SELECT PROPER TECHNOLOGY STACK FOR

AI

The first thing to do is to correctly select the best Technology

Stack for developing and hosting your AI software unit.

Development Language – you should decide what language

for developing AI’s network topology will be used. For

example, on the one hand, if you decide to select one of

scripting languages your development may be faster but

protecting your AI configuration and models within a

production environment will be trickier. On the other hand,

having the final AI network and configuration working on a

component compiled to a binary executable will make your

solution firstly much safer and secondly more efficient as well.

Training Environment – this is the second decision to consider.

Where are you going to train your neural networks? You have

a wide range of options here starting from cloud provided GPU

units e.g. Amazon EC2 Elastic GPU to dedicated hardware for

that purpose e.g. Razer CORE v2. In Pro4People, we usually

use our own hardware graphical cards for neural network

design, training and optimizing. As a result, we can bring the

initial software development costs down. Additionally, we can

achieve higher security in the software development phase by

limiting that to our inside office perimeter.

Already within that phase you should have brought all the

cryptographic controls into the game to protect your AI

models. Additionally, you can think about patenting your

proprietary network configurations / models.

Production Environment – finally, you have to decide on what

infrastructure your AI will be operating. We usually see here

that the AI is deployed to cloud infrastructure like Amazon

EC2 Elastic GPUs since it offers your solution horizontal

scalability options. As such services usually come at a quite

hefty price, the proper architecture (pay-as-you-go approach)

will help you to keep costs at bay [28].

AI Design Training and Optimizing

The most important part of AI software development is

designing, training, and optimizing. Within that phase you will

have to select or design a neural network which is the most

suitable for the problem you are going to tackle.

Network Topology – What kind of network will work the best

for the problem you want to tackle to offer new value

proposition? Will you go for any of the well-known classes

like e.g. Convolutional Neural Networks (CNN), Recurrent

Neural Networks (RNN) or Long Short-term Memory

Networks (LSTM)? Does your problem require developing

more sophisticated topologies (e.g. ZF Net, VGG, or ResNet),

or even your own proprietary neural network topology? If you

have no idea how to start that, do not worry -check this out:

https://pro4people.com/ai-powered-solutions/

Data Curation – This is even more important as your network

configuration. The goal of this step is to prepare data that will

be used to train your neural network. You should have both the

input data and the expected results prepared. The more reliable

your data set is, the higher the chances of training and

optimizing the AI model that will fit your needs. Please,

protect your data as well. Having your data set and the

expected outcomes a competitor can come up with their own

AI configuration. You will also need that data later for

Verification and Validation of your medical device. It will be

also used in clinical trials.

Training / Optimizing – At this stage you have your chosen

network topology and data ready for training. Now it is time

to train your network, optimize it, and keep repeating this

process over and over again until you fall within the

probability expectations specified in your software

requirements. It takes time, computing power and knowledge

to train your network, polishing learning data, modifying

neural network topology, and re-evaluating learning

processes. In order to cut costs in this phase we usually do the

training on physical HW in our company or in a cloud,

including powerful machines supported by GPUs. Please

remember that not all topologies have a support in GPU

optimization and it also gives you an opportunity to optimize

computation beyond the utilized AI framework.

Integration – The integration is a very important stage of your

development. You have to integrate your AI software unit with

the rest of the system architecture. The interfaces should be

precisely specified, as quite likely your AI will be released

quite often. Thanks to carefully specified interfaces your AI

can be both forward and backward compatible from a product

life cycle perspective. Equally important are the questions of

scalability. Operating a EC2 Elastic GPU comes with a hefty

price tag. If you design and integrate your solution with

horizontal scaling, you can save costs and take advantage of a

pay-as-you-go approach [31].

Software Unit Identification

Well, we all know the identification focus when developing

software for medical devices, don’t we? AI does not differ

here at all. Consider closing the AI component as a separate

Software Unit in your system architecture. This way you can

benefit from its quite likely more frequent releases of new,

better trained neural network in the future. Such a component

should always identify its version and the models applied. It

should be enough to identify the configuration used in making

decision / processing health data in your system. Please,

remember to store this version together with the processing

result so you will always be able to say which version of your

health software turned data into information / result.

Verification & Validation (V&V)

When considering AI software unit verification and validation

approach it does not differ from testing any other software

unit. The typical configuration of test cases could be:

1. AI software Unit Test Level

2. Integration Test level

 P.C. Harish Padmanaban et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 6, Issue
2, June 2019, pp. 93-98

© 2019 IJRRA All Rights Reserved page - 97 -

3. User Acceptance Tests – in the scope specific to

software requirements specific to AI

The verification part of testing shall be covered within your

R&D environment as a part of Software Development Life

Cycle. The validation, as it shall be executed in production

environment, usually can be postponed to version deployment

and its validation. It is a good practice, to separate AI Software

Unit Test Level as a separate automatic testing component.

Then, running this test level can be done on any environment

even in the continuous manner. Please, note that quite likely

your AI may be a subject / part of your clinical studies in case

they are required for your medical device software.

VI. CONCLUSION AND FUTURE WORK

This investigation gives an essential in general incorporating

model that represents the key idea of coordination between AI

procedures and deft programming advancement ventures. It

must be referenced that the model displayed in this paper is as

yet improved in on-going examination contemplates is as yet

subject to assist refinement. In this postulation an incorporated

structure an Agile practice with AI strategy is proposed. The

real zone of commitment in this system is to extend and

upgrade the spry programming improvement life cycle. This

system is increasingly doable for the undertakings in which

necessities and its answer are reused all through the

improvement cycle. It has the ability to manage pretty much

every sort and size of task i.e., little, medium and enormous

size ventures. Fundamental commitments are:

• This will support the engineers and partners to have

clear vision of situations and perspectives on client

necessities.

• This will stick the designers and clients all through the

improvement cycle and this will build the certainty of

clients.

• Stakeholders and uniquely clients can get clear pictures

of what sort of item these prerequisites will shape, so

they can change at any stage.

• This will concentrate more on individuals and

correspondence against procedure and documentation.

Future research will concentrate on progressively explicit to

cross breed models to get top to bottom comprehension and

give total structure. Besides, a study might be directed to

inspire basic data about the manners by which industry tailors

programming practices and strategies, and the similarity and

viability of half breed programming approachs. Moreover, AI

systems alongside the intercommunity between, traditional SE

and dexterous strategies can be significant research course.

VII. REFERENCES

[1]. Zave P(1997) Classification of Research Efforts in

Requirements Engineering. ACM Computing

Surveys 29: 315-321.

[2]. Pressman RS (2001) Software Engineering. McGraw

Hill, USA.

[3]. Cho J(2008) Issues and Challenges of Agile Software

Development with Scrum. Issues in Information

Systems 9: 188-195.

[4]. Cho J (2009) A Hybrid Software Development

Method For Large-Scale Projects: Rational Unified

Process With Scrum. Issues in Information Systems

10: 340-348.

[5]. Rachel H (2012) Report from the first international

workshop on realizing artificial intelligence

synergies in software engineering. ACM SIGSOFT

Software Engineering Notes 35: 34-35.

[6]. Beck K, Beedle M,van Bennekum A, Cockburn A,

Cunningham W,et al. (2001) Manifesto forAgile

Software Development. United States of America.

[7]. Cockburn A (2002) Agile software development.

Addison-Wesley Longman Publishing Co. Inc.,

Boston, MA, USA.

[8]. Pressman RS (2010) Software Engineering. McGraw

Hill, USA.

[9]. Jiang L, Eberlein A (2008)Towards a framework for

understanding the relationships between classical

software engineering and agile methodologies.

International Conference on Software Engineering,

Leipzig, Germany.

[10]. Nuseibeh B, Easterbrook S (2000) Requirements

Engineering: A Roadmap. ICSE '00 Proceedings of

the Conference on the Future of Software

Engineering, Limerick, NY, USA.

[11]. Prince J (2011) Interaction between Software

Engineering and Artificial Intelligence- A Review.

International Journal on Computer Science and

Engineering 3: 3774-3779.

[12]. Al-masum SM, Morshed AM, Mitsuru I (2010)

Object Oriented Hybrid Software Engineering

Process (SEP) model for Small Scale Software

Development Firms.

[13]. Abrahamsson P, Warsta J, Siponen MT (2003) New

Directions on Agile Methods: A Comparative

Analysis. Proceedings of the 25th International

Conference on Software Engineering, Portland, OR,

USA.

[14]. Poppendieck T, Poppendieck M (2003) Lean

Software Development: An Agile Toolkit.Addison-

Wesley, Boston, Massachusetts, United States.

[15]. Jun L, Qiuzhen W, Lin G(2010) Application of Agile

Requirement Engineering in Modest-sized

Information Systems Development. Second WRI

World Congress on Software Engineering, Hubei,

Wuhan, China.

[16]. Paetsch F, Eberlein A, Maurer F (2003)

Requirements Engineering and Agile Software

Development. Twelfth IEEE International workshop,

IEEE Computer Society Washington, DC, USA.

[17]. Zaigham M, Qureshi MRJ (2012)Novel Hybrid

Model: Integrating Scrum and XP. International

 P.C. Harish Padmanaban et al. International Journal of Recent Research Aspects ISSN: 2349-7688, Vol. 6, Issue
2, June 2019, pp. 93-98

© 2019 IJRRA All Rights Reserved page - 98 -

Journal of Information Technology and Computer

Science 6: 39-44.

[18]. Marchesi M, Mannaro K, Uras S, Locci M(2007)

Distributed Scrum in Research Project Management,

Agile Processes in Software Engineering and

Extreme Programming, 8th International Conference,

Italy.

[19]. Dingsøyr T, Hanssen G, Dyba T, Anker G, Nygaard

J (2006) Developing software with scrum in a small

cross-organizational project. European Conference

on Software Process Improvement,13th European

Conference, Finland.

[20]. Meziane F, Vadera S (2012) Artificial Intelligence in

Software Engineering: Current Developments and

Future Prospects. IGI Global Disseminator of

Knowledge.

[21]. Dr. Yogesh Kumar Sharma and Dr. Surender (2013),

“A Comparative Performance Study of Bluetooth and

Zigbee Protocols", “Research Reformer –

International Referred Online Research Journal”,

ISSN-2319-6904, Issue No. XI, Pp. 3-17

[22]. Dr. Yogesh Kumar Sharma (2018), “Framework for

Privacy Preserving Classification in Data Mining",

“Journal of Emerging Technologies and Innovative

Research”, ISSN: 2349-5162, Vol. 5, Issue 9, Pp.

178-183.

[23]. Rech J, Althoff KD (2004) Artificial intelligence (AI)

and software Engineering (SE): Status and future

trends. KI 18: 5-11.

[24]. Jeff S, Anton V, Jack B, Nikolai N (2015) Distributed

Scrum: Agile Project Management with Outsourced

Development Teams. 40th Annual Hawaii

International Conference, Waikoloa, HI, USA.

[25]. Shi Y, Wang H, Tang J (2011) A case-based

reasoning system for fault management in CDMA

network. In Control and Decision Conference, China.

[26]. Ammar H, Abdelmoez W, Hamdi MS (2012)

Software Engineering Using Artificial Intelligence

Techniques: Current State and Open Problems.

Institute of Communication, Culture, Information

and Technology, University of Toronto Mississauga.

[27]. Batool A, Hafeez YM, Hamid B (2013) Comparative

Study of Traditional Requirement Engineering and

Agile Requirement Engineering. 15th International

Conference on Advanced Communications

Technology, SungnamKyunggi-Do, Korea.

[28]. Seth B., Dalal S., Kumar R. (2019) Hybrid

Homomorphic Encryption Scheme for Secure Cloud

Data Storage. In: Kumar R., Wiil U. (eds) Recent

Advances in Computational Intelligence. Studies in

Computational Intelligence, vol 823. Springer, Cham

[29]. Vlaanderen K, Jansen S, Brinkkemper S, Jaspers

E(2011) The agile requirements refinery: Applying

SCRUM principles management. Information

Technology 53: 58-70.

[30].

[31]. Dac-Nhuong Le, Bijeta Seth and Surjeet Dalal, A

Hybrid Approach of Secret Sharing with

Fragmentation and Encryption in Cloud Environment

for Securing Outsourced Medical Database: A

Revolutionary Approach, Journal of Cyber Security

and Mobility Vol: 7 Issue: 4 2018, Page: 379-

408 doi: https://doi.org/10.13052/jcsm2245-
1439.742

[32]. Hayata T, Han J (2009) A hybrid model for IT project

with Scrum.IEEE International Conference

onService Operations, Logistics, and Informatics

(SOLI).

https://doi.org/10.13052/jcsm2245-1439.742
https://doi.org/10.13052/jcsm2245-1439.742

