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Abstract- A lane departure warning system (LDWS) is an essential part of an intelligent transportation system. This paper 

proposes a novel low-complexity LDWS that detects lane departures in video frames captured by smart phones with various 

lighting conditions and lane types and complicated road surfaces. The car used in the research was assumed to be traveling 

on a mostly straight road or highway signed with lane markings, and left and right lane markings were expected in fixed 

regions of frames. The Canny edge detector detected all the edges, allowing extraction of connected edge components. Left 

and right lane markings were selected from these components according to the position, orientation, and pixel intensity 

pattern. The presence or absence of lane markings in some consecutive frames was used to detect lane departure. This 

algorithm operated in real time and was successfully implemented on a tablet.  
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I. 

INTRODUCTION  

Intelligent transportation systems, or driver assistance systems 

use lane detection to implement lane departure warnings, Lane 

Keeping Assist technology, lateral control, and collision 

warnings in order to decrease vehicle accidents and fatalities. 

A lane departure warning system (LDWS) warns a driver when 

driver inattention causes unintended lane departure. There have 

been many researches based on image processing in 

transportation systems like [1, 2, 3]. For example, [3] uses K-

means clustering and Kalman filtering to classify highway 

lanes. Our application utilizes image processing methods to 

detect lane departure using a mobile phone mounted behind the 

windshield of a car. The next following literature review is 

limited to our application. 

Vision-based lane detection algorithms can be classified as 

feature-based, region-based, or model-based [4]. Feature-based 

methods detect lanes by merging low-level features, such as the 

edge or color of 

lane markings. However, feature-based methods are 

susceptible to existing noise or occlusion. The Generic 

Obstacle and Lane Detection (GOLD) system in [5] is a stereo 

vision-based system that recognizes lane structures. The 

perspective effect of the two stereo images was removed using 

Inverse Perspective Mapping (IPM), and the resulting image 

was used to detect lanes with morphological filtering. Region-

based methods utilize classification methods to detect lanes in 

a road. These methods initially extract proper features and then 

classify image pixels as lane and non-lane. The research in [6] 

used color and texture features to segment images into road and 

non-road groups. 

Model-based methods use a few parameters to represent a 

geometric model (straight or curved, etc.) for lane markings [7]. 

Although these models are less susceptible to noise and 

occlusion than feature-based methods, they contain calculation 

complexity and they utilize only special forms of road [5]. 

Wang et al. proposed a B-snake-based flexible lane model that 

detects complex lane structures, such as S-shape lane markings 

by the setting of control points [8]. A robust algorithm extracted 

a proper initial position needed for the geometric model. The 

suggested method is applicable to any type of marked and 

unmarked roads with shadows and lighting variations. In [9] a 

Catmull-Rom spline was proposed for flexible modeling of 

multilane detection with extended Kalman filter tracking and 

no assumption regarding the form and parallelism of lane 

markings. The research in [10] used the IPM algorithm and a 

bank of steerable filters to separate lane markings with various 

orientations, and then Random Sample Consensus (RANSAC) 

algorithm applied a parabolic model to fit the road. Lane model 

parameters were achieved via Kalman filtering. In [11] the 

algorithm initially applied selective oriented Gaussian filters on 

a top view of the road image, and then Bézier splines were used 

to model lane markings using the RANSAC algorithm. The 

research in [12] proposed use of a geometric model and 

Gabor filter to recognize lane markings.  
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Fig. 1  Flowchart of proposed lane markings detection algorithm. 

This method is robust against problems like shadows on the 

road. An extended edge-linking  

algorithm was used in [13] to select lane-mark candidates with 

features like lane-mark orientation and width; color in YUV 

space was examined to verify these candidates, and a Bayesian 

probability model applied for lane continuity using the lane-

mark color and edge-link length ratio. In [14] a typical weak 

lane model and particle filtering of lane boundary points were 

applied to robustly detect lanes. The study described in [15] 

applied a modified Hough algorithm to detect lanes in real time. 

Some articles implemented algorithms on embedded processors 

with limited computational capacity such as smartphones. One 

study used an iPhone to conduct a simple Hough transform in 

order to detect lanes [16]. The algorithm in [17], which was 

implemented on a smartphone, used color transform, 

segmentation, edge detection, and a Hough transform to detect 
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lane markings. In [18] features such as the intensity value of 

lanes were used to detect lanes within a parabolic polynomial 

lane model. This Windows-based algorithm was implemented 

on a smart phone. The algorithm in [19] utilized color 

transform, color filtering, and edge filters to detect lanes. This 

algorithm was designed based on parallel programming in order 

to reduce execution speed, and the algorithm was implemented 

on a quad-core mobile phone. 

This paper presents a novel lane detection departure system for 

use on embedded processors, such as smart phones, thereby 

reducing computational cost while presenting an algorithm with 

decreased susceptibility to noise. Drowsiness mostly occurs in 

straight roads or highways. Lane markings are often available 

nowadays. Therefore, the target of our research is to detect lane 

departure in such roads. Video frames were captured by mobile 

cameras mounted behind the windshield of a car. The proposed 

method was tested on various roads scenes with dashed or 

continuous white or yellow lane markings. The lanes were 

curved or straight and flat or non-flat. The algorithm exhibited 

robustness and accuracy when run on real conditions. 

II. PROPOSED METHODOLOGY 

Our lane detection and tracking system consists of several 
stages, as illustrated in Fig. 1, and each frame is processed 
separately. Due to fixed camera installation, left and right lane 
markings are located in fixed regions of each frame. Therefore, 
a mask is used to segment regions of interest (ROIs) in order to 
restrict calculations. Edges are extracted by the Canny edge 
detector, and then connected edge components are labeled. Right 
and left lane markings are chosen based on features such as 
orientation, location, and surrounding pixel intensity pattern. 
The presence or absence of left or right lane markings in frames 
is examined in order to detect lane departure. Our method has 
the advantages of simplicity, robustness against noise, and 
applicability in real time.  

A.  PREPROCESSING AND SETTING THE ROI 

Two cameras, both in RGB format with resolutions of 

7201280 and 10801920, were used in this research. The 

images were converted to grayscale and down-sampled by 4 to 

reduce computational complexity. As shown in Fig. 1, the first 

step of our algorithm was to set the ROI, consequently limiting 

all calculations to this region and increasing the processing 

speed. Fig. 2a illustrates a state in which a car moves in just one 

lane, and Fig. 2b shows ROIs as two non-black areas with lane 

markings within the ROIs. Because the ROI mask was 

manually adjusted for each camera installation, a series of video 

frames was initially captured and the lanes in each frame were 

segmented, as described in Section III.B. Then the ROI mask 

was generated by fusing the detected lanes into a separate 

frame. Fig. 2c shows a car departing from its lane, and Fig. 2d 

reveals no lane marking in the ROIs.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 2  Car positions at normal state and lane departure. (a) 

A car moving in a specific lane, (b) Lane markings within 

ROIs, (c) A car departing its lane, and (d) No lane markings 

detected in ROIs. 

B.  EDGE DETECTION 

Our research utilized the Canny edge detector to detect lane 

edges, in which parameters of the detector were set 

experimentally (Variance of Gaussian = 2, High Threshold = 

0.05, Low Threshold = 0.02; for gray levels scaled between 0 

and 1). Fig. 3 shows results from a sample image. Although lane 

marking edges are evident in the figure, additional detected 

edges were removed in later stages.  

 

(a) 

 

(b) 

(a) Original image in ROIs, (b) Edges by the Canny edge 

detector.

C.  EXTRACTING CONNECTED COMPONENTS 

Following application of the Canny edge detector, all connected 

components were extracted and labeled in the resulting binary 

image using an 8-connectivity neighborhood, as shown in Fig. 

4. 

  

 

Fig. 3  Extracted connected components. 

D.  EXTRACTING INTERNAL LANE MARKINGS 

The goal of internal lane marking extraction is to determine the 

internal lines of lane markings. Therefore, because road lane 

markings are typically in a polygon form, a convex polygon was 

circumscribed on each connected component, and apexes of the 

polygon were extracted using the algorithm from [20], allowing 

detection of the corners of the connected component. In 

addition, the sides of lane markings were separated by 

removing the corners and a small neighborhood of corners. Fig. 

5 illustrates application of this procedure to a left-side synthetic 

lane marking.  
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Fig. 4  Removal of corners in each polygon. 

E.  EXTRACTING THE LENGTH AND ORIENTATION OF 

EACH OBJECT 

Four new connected components were created after the corner 

points and neighborhood pixels were removed from previous 

connected components. The new components, which were 

essentially straight lines, were labeled, and the number of pixels 

in each labeled component represented its length. A line was 

fitted through the component pixels; the angle between this line 

and the x-axis represented its orientation. Components with 

lengths less than a threshold were removed. Fig. 6b shows new 

connected components after corners in Fig. 6a were removed. 

Then two features, length, and orientation, were extracted for 

each new object.  

 

(a) 

 

(b) 

Fig. 5  (a) Initial connected components, (b) Subsequent 

connected components after corner removal. 

F.  DETECTING LEFT OR RIGHT INNER LANE 

MARKINGS 

In order to detect inner left and inner right lane markings, a base 

point was initially assumed in the middle of the ROIs, located 

at the centroid of the triangle created by the mask (Fig. 7a) and 

is shown by a red point. Fig. 7b shows a base point on the road 

image, and section III.C describes how to select this point.  

 

 

(a) 

 

(b) 

Fig. 6  (a) Base point on the mask image, (b) Base point on 

the road image. 

The perpendicular distance from the base point to each object 
was used as the feature to determine internal lane markings, as 
shown in Fig. 8 and computed as 

𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖) =
|𝑦1 − 𝑚𝑖𝑥1 − 𝑏𝑖|

√𝑚𝑖
2 + 1

                               (1) 

where (x1, y1) is the base point coordinate and mi and bi are 
parameters that represent the line y1 = mix1 + bi passing 
through pixels in i-th component. 

 

 

Fig. 7  Distance between the base point and the line passing 

through each object. 

Objects were then partitioned into two groups. Objects with 

centroid coordinates in the left half of the frame were considered 

candidates for left lane marking; all other objects were 

categorized as right lane marking. The object nearest to the base 

point in each group was assumed to be the left or right inner 

marking according to three conditions. If any of these conditions 

was not satisfied, the next nearest object in each group was 

considered. 

The first condition verified orientation validity. As shown in the 

video frames, the left and right lanes were expected to have 

positive or negative orientation, respectively. Therefore, if the 

slope of the inner lane marking did not match its left or right 

group, it was not considered to be an inner lane marking and was 

removed from the list. Lane marking orientations had to range 

from 25 to 90 degrees with respect to the horizontal direction. 

Objects out of this range were not considered to be inner lane 

markings. 

The second condition verified the horizontal intensity pattern 

around the object. The Canny edge detector, however, could 

potentially detect shadows, road cracks, or skid marks, as shown 

in Fig. 9, which may be nearest to the base point. If a horizontal 

profile of these objects was considered, a bright-dark-bright 

profile was created on each horizontal line of the frame; in 

contrast, a profile for a lane marking was dark-bright-dark. This 

pattern was considered to be a feature in order to remove the 

listed, non-desired objects.   

 

 

(a) 

 

(b) 
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(c) 

Fig. 8  (a) Cracks on road surface, (b) Skid marks on road 

surface, and (c) Shadows on road surface. 

While examining the intensity pattern for component i (Ci), the 

following formula was used to estimate the intensity difference 

around this component: 

𝐴𝑣𝑔𝐷𝑖𝑓(𝐶𝑖)

= ∑   ∑
[𝐼(𝑥, 𝑦 + 𝑗) − 𝐼(𝑥, 𝑦 − 𝑗)] 

𝑀𝑁
        (2)

𝑁

𝑗=1(𝑥,𝑦)∈𝐶𝑖

 

        where M is the number of pixels in this component, I(x, y) 
is the edge image, and N is the window width. If AvgDif(Ci) was 
greater than a positive threshold (set to 0.07), this component 
was considered to be a right lane marking; if AvgDif(Ci)  was 
less than a negative threshold (set to -0.07), the component was 
considered to be a left lane marking. If the above conditions 
were not satisfied, the component was determined to be a road 
crack or skid mark instead of a lane marking. The threshold 
values were set experimentally using various video frames. The 
value of N (set to 5 in the calibration process) depended on 
camera resolution and lens magnification. Therefore, the 
maximum number of pixels that represented the width of lane 
markings was determined, and N was chosen a bit above it. 
Shadows did not alter this process, however, because intensities 
of the lane marking and its surrounding area on the road 
decreased identically in shadowy regions.  
The third condition removed arrow markings since these 
markings can erroneously be detected as lane markings (Fig. 
10). As shown in Fig. 10, arrow markings are generally much 
wider than lane markings and can be identified using a threshold 
on the marking width. Because of perspective effects, the width 
of both arrows and lane markings decreased when transitioning 
from the bottom of Fig. 10b to the top. If the width of the lane 
marking nearest to the camera was above the threshold 
(threshold = 7), the lane marking was determined to be an arrow. 
 

 

(a) 

 

(b) 

Fig. 9  (a) Incorrect detection of lane departure due to arrow 

markings on the road far from the camera, (b) Incorrect 

detection of lane departure due to arrow markings on the road 

near to the camera. 

G.  LANE DEPARTURE IDENTIFICATION SYSTEM 

A lane departure identification system consists of lane marking 

detection and proper criterion for lane departure detection. Lane 

markings previously were detected in single video frames: If a 

lane marking was found, the driver was assumed to be driving 

within the lane; if no lane marking was found, the driver was 

assumed to have experienced a lane departure. However, use of 

results from a single frame often results in an inflated number 

of false alarms because some frames do not contain lane 

markings in the specific ROI. Because our system must be able 

to operate for extended periods of time, the rate of false alarms 

must be minimal. Therefore, a lane departure was declared only 

if no lane marking was found on some reasonable consecutive 

frames. This number of previous consecutive frames was 

referred to as Ksum. 

Fig. 11 illustrates a lane departure between lane markings, 

where D is width of the road, V is speed of the car, and  is the 

angle of car departure from its path. As shown, departure of the 

car decreased the distance between the car wheels and left lane 

marking at a speed of  Vsin(θ). Therefore, Ksum  depends on 

vehicle speed and the departure angle from the driver's path, as 

detailed in Section III.A. 
 

 

Fig. 10  Geomtery of a car in lane departure. 

III. EXPERIMENTAL RESULTS 

The proposed departure identification system was evaluated 

with images captured by mobile phone cameras mounted 

behind the windshield of a car. Apple iPhone 4s and Nokia N8 

cell phones were used with 8 and 12-megapixel resolution 

cameras, respectively. The resolution of each video frame in the 

iPhone 4s was 10801920 and 7201280 pixels in the Nokia 

N8. Both cameras were in RGB format with frame frequencies 

of 30 frames per second. In order to run the algorithm in real 

time, only 4 out of 30 frames were passed to the algorithm and 

the captured frames were down-sampled by a factor of 4. As a 

result, 4 frames were processed per second, allowing the 

algorithm to run in real time. For the sake of generality, the 

proposed algorithm was tested using six road video clips that 

included many city roads with various lighting conditions and 

lane types and complicated road surfaces, such as surfaces 

containing cracks and shadows. A total of 7828 frames were 

processed. 

The red lines in all subfigures of Fig. 12 illustrate results of lane 

marking detection on challenging frames. Although arrow lane 

marking signs are evident in Fig. 12a, the lane markings are 

properly detected. In addition, lane markings are properly 

detected with road curvature in Fig. 12b and accurately detected 
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in shadowy frames such as Figs. 12c, d, e, and f. Also Fig. 12g 

shows a patch lane marking, and Fig. 12h identifies lane 

markings adjacent to light traffic. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig. 11  Results of lane marking detection in challenging 

frames. (a) Road with arrow lane marking signs, (b) Road with 

curvature, (c,d) Roads with simple shadows, (e,f) Roads with 

complex shadows, (g) Road with patch lane marking, and (h) 

Presence of nearby light traffic. 

Results of our algorithm on various videos are shown in Table 
1, where Ksum  was set to 7. In this research, a false alarm 
referred to activation of an alarm when no lane departure was 
evident. False alarms occurred due to failure to see lane 
markings as a result of conditions such as improper lighting 
while the car was correctly moving on its path. 

Table 1 Results of lane departure detection algorithm on 
different videos. 

Video Number 

frames 

Number of lane 

departure 

Number of 

detected lane 

departures 

False 

alarms 

1 820 3 3 0 

2 2750 5 6 1 

3 480 2 2 0 

4 1729 8 8 0 

5 1636 7 7 0 

6 413 3 3 0 

Total 7828 28 29 1 

 

A.  THE EFFECT OF 𝐊𝐬𝐮𝐦 ON FALSE ALARMS 

If a car deviated from the center of the lane at a speed of 
Vsin(θ), then Ksum  depended on vehicle speed and departure 
angle from the driver’s path. Six videos were used to evaluate 
the effect of this parameter, and the detection accuracy and 
number of false alarms were obtained for each video by 
changing the number of Ksum from 2 to 9 frames, as shown in 
Fig. 13. Car speed ranged between 70 and 100 kilometers per 
hour, and the deviation angle of the car steering wheel was 
approximately 20-30 degrees. According to evaluation results, 
setting Ksum  as greater than 6 decreased false alarms, while 
making Ksum equal to 7 resulted in correct detection of all lane 
departures. Increasing Ksum  was proven to decrease false 
alarms. 

 

Fig. 12  Results of the lane departure false alarms versus 

𝐾𝑠𝑢𝑚 for six videos. 

As mentioned in Section II.G, car speed and deviation angle of 
the car steering wheel were necessary in order to select the 
number of previous frames for detecting lane departures with 
minimum false alarms. According to experimental limitations, 
detailed effects of these parameters cannot be investigated, but 
as discussed in this section, the system is robust to speed 
variations. However, if car speed or deviation angle increase, the 
system must be able to quickly warn the driver. Therefore, in 
order to simulate various car speeds, frames used in the 
algorithm may be reduced. For example, if only every other 
frame is used, the speed would be considered twice as fast. 
Consequently, six previous videos were used, but only odd 
frames were applied in order to double the speed.  
Fig. 14 shows the number of false alarms in new simulation. As 
expected, the results in Fig. 14 are similar to the first experiment. 
The number of false alarms reduced to zero even when Ksum 
was equal to 7. If the time duration for a departure was 2 seconds 
(corresponding to 60 frames) when considering speed and 
departure angle, then lane departures were correctly detected for 
K_sum equal to 7. Therefore, the system is robust against 
variations of car speed (by a factor of 2), and Ksum equal to 7 
warns drivers in the least amount of time. 
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Fig. 13  Results of the lane departure false alarms versus 

𝐾𝑠𝑢𝑚 with double speed. 

B.  CAMERA CALIBRATION 

Camera calibration is essential in many image and video 

processing systems, so the calibration procedure must be as 

simple as possible in consumer applications. In the proposed 

algorithm, the mobile camera was positioned on a mobile 

holder underneath the front mirror. At the beginning of camera 

calibration, the car was assumed to move in correct lane 

position in order to provide calibration frames. In addition, the 

ROI mask and base point were determined in this phase. 

Appropriate frames were selected in order to create the ROI 

mask. Then the lane markings of these frames were overlaid 

onto one frame, and the ROI mask was chosen as a polygon 

surrounding all overlaid lane markings, as shown in Fig. 15. If 

the camera installation did not change, the above ROI mask was 

valid for the algorithm. The base point was introduced in 

Section II.F. Selection of this point did not significantly affect 

algorithm accuracy, as discussed in the next section. 
 

Fig. 14  Overlaid lane markings to create the ROI mask. 

C.  INVESTIGATING DISPLACEMENT OF BASE POINT IN 

ROIS 

This section investigates the robustness of the algorithm to base 

point position, in which the base point of Fig. 16a was partially 

displaced in horizontal and vertical directions, as shown in Figs. 

16b, c, d, and e.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Fig. 15  Base point position. (a) Original position, (b,c) 

Horizontal displacement, and (d,e) Vertical displacement. 

Results of base point displacement showed that base point 
position did not significantly affect the results. In order to 
investigate the effect of base point position, even with K_sum 
less than 7 (resulting in more false alarms), Ksum was chosen to 
be 3, and variations of the base point were evaluated. Fig. 17 
shows the number of false alarms on six videos with various base 
point positions and Ksum equal to 3. 

 

Fig. 16  Number of false alarms with different base point 

positions and 𝐾𝑠𝑢𝑚=3. 

As shown in Fig. 17, variation of base point did not severely alter 
false alarms. Results also showed that all departures in these 
positions were detected. In fact, because camera displacement 
can be considered base point displacement, the algorithm can 
also be considered to be robust against partial displacement of 
the camera. 

IV. CONCLUSION 

This paper proposed a robust, novel, real-time lane departure 

detection algorithm that was tested on real, challenging video 

sequences with shadows, road cracks, and skid marks. The 

algorithm was implemented in real-time on an android tablet, 

P7500 Galaxy Tab 10.1 3G with Dual-core 1 GHz Cortex-A9 

Processor CPU and 1 GB RAM. Results indicated detection of 

all lane departures under the mentioned conditions, as shown in 

Table 1, and an acceptable false alarm rate. Results also showed 
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that the algorithm was robust against partial camera position 

and displacement. 
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