

# Waste Management and Circular Economy

<sup>1</sup>Bhumi Sharma, <sup>2</sup>Shrejal Agrahari, <sup>3</sup>Deepti Kushwaha

Trinity Institute of Innovations in Professional Studies, Greater Noida, Uttar Pradesh, India  
bhumisharma1624@gmail.com, shrejalagub@gmail.com, deeptiritu@gmail.com

**ABSTRACT-** Increase in urbanization, fast industrial growth and consumer demand have made the global issue of waste generation more critical. Traditional waste management systems mainly follow a linear model where they extract the resources, produce goods, consume them and then throw away the leftovers. The circular economy (CE) suggests a different approach. It treats the waste as a resource and support the systems where materials are reused and reintegrated into production cycles.

- **Recycling:** Converting used materials into new products for use.
- **Waste-to-energy:** Converting non-recyclable waste into usable forms of energy.
- **Industrial symbiosis:** Fostering collaborations between industries to exchange by-products and minimize resources.

## I. INTRODUCTION

The problem of waste generation has become one of the drastic environmental issues of twenty-first century [4][5]. The World Bank projects that global municipal solid waste could rise up to about 3.4 billion tons each year by 2050 if current practices will continue. This increase is mainly driven by the growth of population, urban development, and consumer lifestyles which all lead to the unsustainable resource usage and disposal.[2][3]

Traditional waste management mostly focused on collecting and disposing of the waste with little attention given to prevention, recovering resources, or reusing materials [1][6]. Due to which many areas will face overflowing landfills, increased in the greenhouse gas emissions and widespread the pollution. In contrast, the circular economy (CE) shows a new approach to the traditional "take, make, dispose" model. Where it views waste as a resource that still holds the value and promote

which guide the move towards sustainable development[7][8].

## II. OBJECTIVE OF STUDY

The objective of this study is to determine that how waste management systems can be strengthened through circular economy (CE).

- **Analyze current challenges:** Evaluate the limitations of conventional waste management approaches, which follow a linear sequence of resource extraction, production, consumption, and disposal.
- **Draw insights from practice:** Review case studies from different countries and industries that have successfully used circular practices.
- **Assess outcomes and future directions:** Look at the benefits and challenges of circular economy in waste management, while finding opportunities for further growth .

## III. METHODOLOGY

This study examines the existing data to analyze like how waste management systems can be improved by using the

the strategies that allow materials to be reintegrated into the production systems[9][10]. Within this model, effective waste management plays a crucial role by promoting practices like recycling, reusing, and recovering resources

circular economy ideas. It gathers the data from various sources including research articles, reports from organizations like the United Nations Environment Programme (UNEP) and the Ellen MacArthur Foundation and government documents from countries with effective waste management practices. The research also includes real-life examples to explore how CE works in a practice. To compare traditional waste management methods with circular ones the study deploys a framework that highlights the successful strategies, new policies that support the transition and the challenges that inhibit the adoption of these practices. By gathering all this information, the study aims to demonstrate how waste management systems can change to better support a circular economy.

#### IV. WASTE MANAGEMENT IN LINEAR ECONOMY

The waste management model involves taking raw materials, making products, using them, and then throwing away the waste, usually by sending it to landfills or burning it. While it may seem simple but it is very unsustainable.



Fig 1. Waste Dumped

Landfills take up vast areas and release methane, a powerful greenhouse gas resulting in climate change. They also pollute the soil and groundwater. On the other hand, burning the waste results in air pollution and increases carbon emissions.

Developing countries face even more challenges with waste management. They sometimes do not have useful waste collection systems. For example, India produces over 62 million tonnes of municipal solid waste each year, but only around 30% of this waste is treated properly. The rest ends up in open areas, which harms the environment and wastes valuable resources that could be recycled or reused.



Fig 2. Difference Between CE and LE

#### V. CIRCULAR ECONOMY FRAMEWORK

The **circular economy (CE)** is based on three important ideas:

- Designing out waste and pollution:** Making products in a way that reduces waste and harmful emissions.
- Keeping products and materials in use:** Reusing, repairing, or recycling items instead of throwing them away.
- Regenerating natural systems:** Helping the environment by restoring and improving natural resources.

Unlike the traditional linear model, which goes from making products to throwing them away, the circular economy encourages a closed-loop system.

Full Circular Economy: 1,000 kg Waste Flow

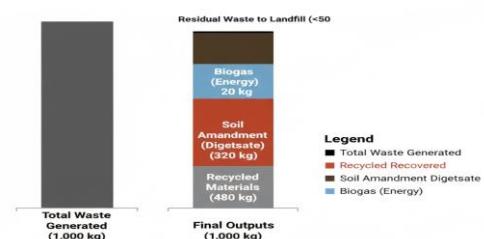



Fig 3. Flow of CE

In waste management, CE includes different strategies, like:

- **Waste minimization at the source:** Reducing waste before it is created.
- **Recycling:** Turning waste materials into new products or improving their value.
- **Energy recovery from waste:** Converting waste into energy.

## VI. CASE STUDY

Many countries and companies use the circular economy in their waste management. For example, the **European Union (EU)** has started a Circular Economy Action Plan. One goal is to recycle 65% of waste from cities and towns by 2035.

In **Japan**, people are working to build a “Sound Material-Cycle Society.” This means they focus on recycling and saving energy. The country now recycles more than 20% of plastic waste.

In **India**, the Swachh Bharat Mission and the Plastic Waste Management Rules (2016) promote waste separation at the source, recycling, and the development of waste-to-energy plants.



Fig 4. Swachh Bharat Mission



Fig 5. Coco cola

Coca-Cola is committed to recovering and recycling bottles and cans that are till sold by 2030. This shows how CE practices can work across different industries, providing ways to create more sustainable waste management systems.

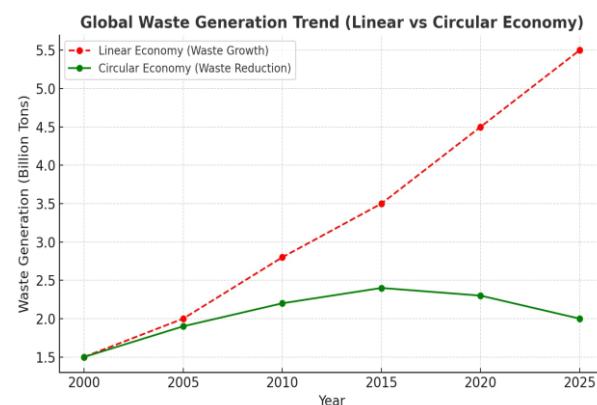



Fig 6. Graph of Global waste generation and reduction

## VII. BENEFITS OF CIRCULAR ECONOMY-BASED WASTE MANAGEMENT

Integrating circular economy (CE) principles into waste management provides many benefits for the environment, economy, and society.

From an environmental point of view, it reduces pollution, conserves resources, and lowers greenhouse gas emissions..

For example, recycling aluminum can save up to 95% of the energy needed to produce it from raw materials.

Economically, the circular economy (CE) encourages innovation, cuts production and resource costs, and creates jobs across different sectors. The Ellen MacArthur Foundation estimates that using circular practices could unlock about \$4.5 trillion in global economic value by 2030.[14][15]

### VIII. CHALLENGES AND BARRIERS

One major issue is the lack of proper framework for recycling, material recovery, and waste processing. This problem is especially clear in many developing countries, where limited investment, outdated facilities, and weak logistics make it hard to manage increasing amounts of waste effectively.[16][17]

Financial hurdles also slow down the progress. As moving to circular practices often demand a large number of investments in technology, product design and to create reverse logistics systems. Getting access to funding options that support circular enterprises is also limited.

There are some additional challenges created by regulatory and policy issues. In several countries, waste management laws are shattered or poorly enforced which will lead to lack of responsibility results in slows down the necessary changes.

Cultural and behavioral obstacles further confuse the transition. Nowadays, Industries that are used to linear production may resist changing their traditional practices. At the same time, consumers sometimes do not recognize the value of reducing waste, reusing items or follow the practices responsible for consumption. For example, in urban areas households may not separate their waste at the source because they do not see any benefit in doing it.

### IX. RECOMMENDATION

Governments are required to take several actions to promote circular economy (CE) based waste management. First, they need to make rules stronger and ensures that they are followed while also giving rewards for creating and making things in a way that are beneficial for the environment.[18][19]

We also need to invest in things like material recovery facilities, composting centers and waste-to-energy plants. Working together through public-private partnerships can

help us to get the money and to understand that how we need to make these projects happen more easily.[20][21]

Additionally, conducting educational and awareness campaigns are crucial for encouraging behavioral changes among the consumers. People need to understand the importance of sustainable practices so that they can make the right choices.

And last but not least, international cooperation is necessary to launch global standards and share the best practices with others. By combining effective policies, technology and community actions, societies can speed up their transition from traditional to circular waste management systems.

### X. CONCLUSION

Today, waste management is more than just about throwing the things away. In this manner, the circular economy (CE) helps people to see waste as a resource that can be used again. It is all about keeping the materials same moving in a cycle so they can be used and made new things again to reuse.

The way this change works is about people doing things together. Governments have to set up good rules and make sure they follow them. Businesses should try new ways to make things and recycle them. Citizens need to have good habits when they buy and use things. Smart tools like AI, smart sorting systems, and blockchain make it easy, clear, and quick to get back and use the things we have. To reach these goals, there need to be people from around the world working together all the time. If governments, companies, and groups in the community come together and have the same aim, then waste can stop being a problem for the world and start doing good for everyone. This can help make life better, cleaner, and include all people going forward.

### REFERENCE

- [1] I. Aiguabarueghian, U. M. Adanma, E. O. Ogunbiyi, N. O. Solomon, "Waste management and circular economy: A review of sustainable practices and economic benefits," *World Journal of Advanced Research and Reviews*, 2024.
- [2] Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. *Resources, Conservation & Recycling*, 127, 221–232.
- [3] Ellen MacArthur Foundation. (2020). *The Circular Economy in Detail*.
- [4] United Nations Environment Programme (UNEP). (2021). *Global Waste Management Outlook 2*. Nairobi: UNEP.
- [5] European Commission. (2020). *A new Circular Economy Action Plan: For a cleaner and more competitive Europe*.

[6] World Bank. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: World Bank.

[7] Central Pollution Control Board (CPCB). (2021). Annual Report on Solid Waste Management in India. New Delhi: Ministry of Environment, Forest and Climate Change.

[8] Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems.

[9] Chaturvedi, R. P., Mishra, A., Asthana, S., Parashar, M., & Nayyar, P. Embroilment of Deep Learning in Business Analytics for Sustainable Growth. *Intelligent Business Analytics*, 191-211.

[10] Kirchgeorg & Wenzel (2019), "Circular economy in the waste sector: A systematic literature review"

[11] Chaturvedi, R. P., Mishra, A., Ansari, M. D., Kushwaha, A. S., Mittal, P., & Singh, R. K. (2025). A new local tetra pattern in composite planes (LTcP) technique for classifying brain tumors using partial least squares and super-pixel segmentation. *International Journal on Smart Sensing and Intelligent Systems*, 18(1).

[12] Ramdoss, V. S., & Rajan, P. D. M. (2025). Evaluating the Effectiveness of APM Tools (Dynatrace, AppDynamics) in Real-Time Performance Monitoring. *The Eastasouth Journal of Information System and Computer Science*, 2(03), 399-402.

[13] Ramdoss, V. S. (2025). AI-ENHANCED GRPC LOAD TESTING AND BENCHMARKING. *International journal of data science and machine learning*, 5(01), 7-10.

[14] Naphtali JH, Misra S, Wejin J, Agrawal A, Oluranti J. An intelligent hydroponic farm monitoring system using IoT. InData, Engineering and Applications: Select Proceedings of IDEA 2021 2022 Oct 12 (pp. 409-420). Singapore: Springer Nature Singapore.

[15] Dalal S, Lilhore UK, Faujdar N, Simaiya S, Agrawal A, Rani U, Mohan A. Enhancing thyroid disease prediction with improved XGBoost model and bias management techniques. *Multimedia Tools and Applications*. 2025 May;84(16):16757-88.

[16] Dalal S, Jaglan V, Agrawal A, Kumar A, Joshi SJ, Dahiya M. Navigating urban congestion: Optimizing LSTM with RNN in traffic prediction. InAIP Conference Proceedings 2024 Dec 20 (Vol. 3217, No. 1, p. 030005). AIP Publishing LLC.

[17] Agrawal A, Arora R, Arora R, Agrawal P. Applications of artificial intelligence and internet of things for detection and future directions to fight against COVID-19. InEmerging Technologies for Battling Covid-19: Applications and Innovations 2021 Feb 16 (pp. 107-119). Cham: Springer International Publishing.

[18] Singh A, Prakash N, Jain A. Chronic Diseases Prediction using two different pipelines TPOT and Genetic Algorithm based models: A Comparative analysis. InProceedings of the 2024 9th International Conference on Machine Learning Technologies 2024 May 24 (pp. 175-180).

[19] Singh A, Prakash N, Jain A. A comparative study of metaheuristic-based machine learning classifiers using non-parametric tests for the detection of COPD severity grade.

[20] Singh A, Payal A. CAD diagnosis by predicting stenosis in arteries using data mining process. *Intelligent Decision Technologies*. 2021 Feb;15(1):59-68.

[21] Singh A, Prakash N, Jain A. A review on prevalence of worldwide COPD situation. *Proceedings of Data Analytics and Management: ICDAM 2022*. 2023 Mar 25:391-405.

[22] Bhutani, M., Dalal, S., Alhussein, M., Lilhore, U. K., Aurangzeb, K., & Hussain, A. (2025). SAD-GAN: A Novel Secure Anomaly Detection Framework for Enhancing the Resilience of Cyber-Physical Systems. *Cognitive Computation*, 17.0(4), 127.

[23] Dalal, S., Dahiya, N., Kundu, S., Verma, A., Devi, G., Ayadi, M., Dubale, M., & Hashmi, A. (2025). GAN-CSA: Enhanced Generative Adversarial Networks for Accurate Detection and Surgical Guidance in Skull Base Brain Metastases. *International Journal of Computational Intelligence Systems*, 18.0(1), 310.

[24] Dalal, S., Lilhore, U. K., Faujdar, N., Simaiya, S., Agrawal, A., Rani, U., & Mohan, A. (2025). Enhancing thyroid disease prediction with improved XGBoost model and bias management techniques. *Multimedia Tools and Applications*, 84.0(16), 16757-16788.

[25] Dalal, S., Lilhore, U. K., Seth, B., Radulescu, M., & Hamrioui, S. (2025). A Hybrid Model for Short-Term Energy Load Prediction Based on Transfer Learning with LightGBM for Smart Grids in Smart Energy Systems. *Journal of Urban Technology*, 32.0(1), 49-75.

[26] Kaur, N., Mittal, A., Lilhore, U. K., Simaiya, S., Dalal, S., Saleem, K., & Ghith, E. S. (2025). Securing fog computing in healthcare with a zero-trust approach and blockchain. *EURASIP Journal on Wireless Communications and Networking*, 2025.0(1), 5.

[27] Lilhore, U. K., Dalal, S., Radulescu, M., & Barbulescu, M. (2025). Smart grid stability prediction model using two-way attention based hybrid deep learning and MPSO. *Energy Exploration & Exploitation*, 43.0(1), 142-168.

[28] Lilhore, U. K., Simaiya, S., & Dalal, S. (2025). 10 Hybrid Mathematical Optimization Techniques in AI. *Math Optimization for Artificial Intelligence: Heuristic and Metaheuristic Methods for Robotics and Machine Learning*, 2.0, 223.

[29] Lilhore, U. K., Simaiya, S., Alhussein, M., Dalal, S., Aurangzeb, K., & Hussain, A. (2025). An Attention-Driven Hybrid Deep Neural Network for Enhanced Heart Disease Classification. *Expert Systems*, 42.0(2), e13791.

[30] Arora, S., Dalal, S., & Sethi, M. N. (2024). Interpretable features of YOLO v8 for Weapon Detection-Performance driven approach. 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP), 87-93.

[31] Arpna, Nikhil, & Dalal, S. (2024). Optimizing Linear Regression model in Water Hardness Prediction for Industry 4.0. *Trends in Mechatronics Systems: Industry 4.0 Perspectives*, 73-91.

[32] Dalal, S., Jaglan, V., Agrawal, A., Kumar, A., Joshi, S. J., & Dahiya, M. (2024). Navigating urban congestion: Optimizing LSTM with RNN in traffic prediction. *AIP Conference Proceedings*, 3217.0(1), 030005.

[33] Dalal, S., Kumar, A., Lilhore, U. K., Dahiya, N., Jaglan, V., & Rani, U. (2024). Optimizing cloud service provider selection with firefly-guided fuzzy decision support system for smart cities. *Measurement: Sensors*, 35.0, 101294.

[34] Dalal, S., Lilhore, U. K., Faujdar, N., Samiya, S., Jaglan, V., Alroobaea, R., Shaheen, M., & Ahmad, F. (2024). Optimising air quality prediction in smart cities with hybrid particle swarm optimization-long-short term memory-recurrent neural network model. *IET Smart Cities*, 6.0(3), 156-179.

[35] Dalal, S., Lilhore, U. K., Radulescu, M., Simaiya, S., Jaglan, V., & Sharma, A. (2024). A hybrid LBP-CNN with YOLO-v5-based fire and smoke detection model in various environmental conditions for environmental sustainability in smart city. *Environmental Science and Pollution Research*, 1-18.

[36] Dalal, S., Lilhore, U. K., Sharma, N., Arora, S., Simaiya, S., Ayadi, M., Almujally, N. A., & Ksibi, A. (2024). Improving smart home surveillance through YOLO model with transfer learning and quantization for enhanced accuracy and efficiency. *PeerJ Computer Science*, 10.0, e1939.

[37] Dalal, S., Lilhore, U. K., Simaiya, S., Radulescu, M., & Belascu, L. (2024). Improving efficiency and sustainability via supply chain optimization through CNNs and BiLSTM. *Technological Forecasting and Social Change*, 209.0, 123841.

[38] Dalal, S., Poongodi, M., & Lilhore, U. (2024). Optimized LightGBM Model for Security and Privacy Issues in Cyber-Physical Systems (vol 34, e4771, 2023). *TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES*, 35.0(11).

[39] Dalal, S., Rani, U., Lilhore, U. K., Dahiya, N., Batra, R., Nuristani, N., & Le, D. N. (2024). Optimized XGBoost Model with Whale Optimization Algorithm for Detecting Anomalies in Manufacturing. *Journal of Computational and Cognitive Engineering*.

[40] Dalal, S., Seth, B., Jaglan, V., Malik, M., Surbhi, Dahiya, N., Rani, U., Le, D. N., & Hu, Y. C. (2024). An adaptive traffic routing approach toward load balancing and congestion control in Cloud-MANET ad hoc networks. *Springer Berlin Heidelberg*.