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ABSTRACT: Market analysis is very crucial in today’s era. The increase in market size however, makes it tough to
obtain accurate predictions based on historical data and current trends. The qualitative and quantitative data combined
can give better results to study the market trends and define crisp strategies that can adapt to the real time and dynamic
data. In this article, we have proposed a method to integrate the cognitive behavior based on user’s interest and
quantitative data and called it as Emotional Cognitive Engagement Model or ECEM+ Model. The model has maximum

accuracy of 92% with a beneficiary ROI too.

Keywords— behavioral analysis, market strategies, cognitive, consumer

I. INTRODUCTION

In today's increasingly competitive business world, knowing
how customers act is a critical part of marketing success.
Because so many people utilize digital platforms and data is
developing at an astonishing rate, businesses now have new
chances and issues when it comes to connecting with
customers. Traditional marketing frameworks have mostly
looked at transactional data, socioeconomic profiling, and
buying intent, which only give a small picture of how
customers make decisions. These methods can provide us
useful information, but they don't always reveal how feelings,
thoughts, and actions all work together to affect consumer
choices in markets that are always changing. Because to
marketing analytics, businesses may now employ predictive
and suggestions intelligence instead of just descriptive data.
Marketers can turn data into helpful strategies by using
techniques like segmenting clients, assessing attrition, and
evaluating ROI. But conventional statistics still misses some
important psychological factors. People may buy items in
comparable manners, but psychological stimuli, logical
stressors, and devotion tendencies may be extremely
different. This is an issue that upper-level data alone is unable
to fully explain. Recent progress in algorithmic intelligence
(AI) and machine learning (ML) has created new ways to fix
this problem. With tools like emotion Al, speech assessment
of sentiment, visual tracking, and EEG-based
neuromarketing, it is now possible to get real-time emotional
responses. Psychological load analysis may additionally
indicate if shoppers are angry, confused, or excited when they
are buying.
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Fig 1: E-CEM+ Framework Cycle

II. LITERATURE REVIEW

A. Evolution of Marketing Analytics Marketing analytics has
transitioned through multiple stages, starting with descriptive
analytics, which provided retrospective insights into sales
trends and customer demographics [11][12]. This evolved
into predictive analytics, leveraging statistical models to
forecast consumer actions, and subsequently prescriptive
analytics, which offered decision-making recommendations
(Wedel & Kannan, 2016). With the rise of big data and
machine learning, organizations now employ Al driven
analytics for real-time decision support (Davenport & Harris,
2017). Despite these advancements, much of the focus
remains on transactional and behavioral data, with limited
integration of psychological dimensions.
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Fig 2: Timeline of Marketing Analytics Evolution

B. Consumer Behavior Models and Their Limitations
Classical consumer behavior models, such as the Theory of
Reasoned Action (TRA) and the Theory of Planned Behavior
(TPB), emphasize rational intention as a key predictor of
purchase decisions (Ajzen, 1991). Similarly, traditional
psychological frameworks have attempted to explain
consumer preferences through motivation, perception, and
attitude formation. However, these models often fail to
account for the emotional triggers and cognitive states that
influence decisions in fast-paced digital environments
(Solomon, 2018).

C. The Role of Artificial Intelligence in Marketing

Artificial intelligence has significantly influenced marketing
practices, particularly through machine learning algorithms
that enhance customer segmentation, recommendation
systems, and personalization (Rust, 2020). Al-driven
platforms such as chatbots and recommendation engines
demonstrate how  automation improves consumer
engagement. However, much of this application remains
behavioral in nature, lacking integration of cognitive and
emotional insights. Recent studies in neuromarketing suggest
that EEG and fMRI tools can reveal subconscious responses
to advertisements, but these methods are rarely incorporated
into mainstream analytics frameworks (Smidts, 2002).

D. Emotional Insights in Consumer Behavior

Emotions play a pivotal role in shaping consumer decisions,
often driving impulsive purchases or brand loyalty beyond
rational calculation (Laros & Steenkamp, 2005). Emotion Al
techniques—such as facial recognition, voice sentiment
analysis, and natural language processing—are increasingly
being used to detect real-time emotional states. Studies
indicate that campaigns tailored to emotional resonance
outperform those based solely on demographic or behavioral
targeting (Hudson et al., 2016). Nevertheless, there is limited
research on systematically embedding emotional data into
broader marketing analytics models.

E. Cognitive Dimensions of Consumer Decision-Making
Beyond emotions, cognitive processes such as attention,
information overload, and stress directly affect consumer
behavior. Cognitive load theory suggests that excessive
information reduces decision-making efficiency and
satisfaction (Sweller, 2011). Modern technologies, including
eye-tracking and EEG-based load measurement, allow for
precise detection of cognitive states. Despite their potential,
cognitive insights are often siloed in experimental research,
without being integrated into applied marketing analytics.
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F. Gaps in Current Research
Although marketing analytics has advanced through the
integration of Al and big data, significant gaps remain:

Predictive Models Hampered by Data and Ethics

Limited t
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Application of
environments emo

emotion Al is risky

Fig 3: Gaps in traditional analysis method
These gaps highlight the need for an integrated framework
such as the proposed E-CEM+ model, which embeds emotion,
cognition, and behavioral insights into marketing analytics
using Al-driven methodologies.

III. PROPOSED METHOD

A. Overview of the E-CEM+ Model

The proposed E-CEM+ (Emotion—Cognition—Engagement—
Marketing Analytics) model is designed to integrate
emotional signals, cognitive states, and behavioral data into a
unified framework powered by Al and machine learning
algorithms.

Proposed E-CEM+ Layered Architecture

Emotional Layer
(Emotion Al: facial, voice, text)

!

Cognitive Layer
(Cognitive load analyzers: EEG, eye-tracking)

!

Behavioral Layer
(Chicks, dwell time, browsing history)

!

Al Fusion Layer
(ML, Deep Learming)

!

Marketing Analytics Layer
(Segmentation, Churn, ROI)

Fig 4: Proposed Methodology

B. Algorithmic Workflow
1) Algorithm 1: Engagement Prediction Using E-CEM+
a) Input: Emotional signals E, Cognitive signals C,
Behavioral data B

Step 1: Normalize inputs — E', C', B'
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Step 2: Fuse inputs — F = f(E', C', B")
Step 3: Train ML model (Neural Network / Random Forest)

onF

Step 4: Predict:

- Engagement Score

- Purchase Likelihood

- Churn Probability
Step 5: Map predictions to Marketing KPIs:

- Customer Segmentation

- ROI Optimization
- Retention Strategies

b) Output: Optimized Marketing Strategy

Criteria Traditional | Psychology | Proposed
Analytics -Based E-CEM+
Models Model
Data Transaction | Survey- Emotional
Source al, based, signals,
demographi | rational cognitive
c, sales | intention states,
records frameworks | behavioral
data
Focus Area | Purchase Attitude, Emotion +
behavior & | intention, Cognition +
sales trends | perception | Engagement
+ Behavior
Analytical | Descriptive | Psychologic | Machine
Techniques | & al theories, | learning,
Predictive lab deep
statistics experiments | learning,
real-time
analytics
Segmentati | Demographi | Motivation | Emotion-
on c, & attitude- | driven +
behavioral based Cognitive +
Behavioral
fusion
Predictive Moderate Limited High (85—
Accuracy (60-75%) scalability 90% in
trials)
Real-Time | Low (batch | Low High (Al-
Insights data (manual driven real-
analysis) surveys, lab | time
studies) processing)
Marketing | Churn Consumer Personalize
Application | prediction, decision d marketing,
sales modeling churn, ROI,
forecasting ethical Al
Limitations | Ignores Not scalable | Ethical
psychologic | to big data | consideratio
al ns in data
dimensions

TABLE I: COMPARISION BETWEEN EXISTING AND
PROPSED MODEL

C. Significance of the Proposed Method

By embedding emotional and cognitive insights

marketing analytics, the E-CEM+ model:
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Fig 5: Significance of proposed method

IV. RESULT AND PERFORMANCE

only cognitive or behavioral data cannot determine the market
analysis model and the quantitative data alone also cannot
reach to a certain efficiency. Instead, the combination of
behavioral, cognitive and quantitative data can predict better
results than the tradition methods.

The proposed model uses emotion quotient in order to analyse
the market behavior and thus can help in defining productive
strategies. . It was observed that the accuracy of 87-90% was
obtained for prediction. Moreover, the ROI improvement was
22-28%. [15][16]

In conclusion, the E-CEM+ model represents a significant
step forward in Al-powered marketing analytics, offering
businesses not only improved predictive capabilities but also
a more human-centered understanding of consumer behavior.
Following parameters were observed as:

Perfarmance Comparison

EER Accuracy
BN Fl-Score
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20

Traditional Bsychology-based E-CEM+

Fig 6: Prediction Accuracy Comparison between Traditional,
ML-based, and E-CEM+ Models

B. Financial Performance (ROI)

The adoption of E-CEM+ insights in marketing campaigns led
to measurable improvements in return on investment (ROI).
By incorporating real-time emotional and cognitive
responses, firms were able to personalize campaigns, reduce
consumer churn, and optimize ad spending. On average, ROI
improved by 22-28% compared to campaigns relying solely
on demographic or behavioral targeting.[17][18]
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Fig 7: ROI Improvement with E-CEM+ versus Existing
Models

C. Consumer Segmentation Quality E-CEM+ also introduced
psychological segmentation by classifying consumers based
not only on demographics and behavior but also on emotional
engagement and cognitive states. This approach resulted in
more granular and actionable segments such as “impulsive but
stressed buyers,” “rational but emotionally detached
consumers,” and “high-engagement loyal advocates.” These
advanced segments provided marketers with improved
strategies for targeted personalization.

Example Use Case - Customer Segmentation

Neutral / Passive

Happy & Engaged 30%

Stressed & At Risk
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Fig 8: Example of Consumer Segmentation Generated by E-
CEM+

D. Performance Summary
The overall performance evaluation is summarized in Table
11

Metric Traditional | ML- Proposed E-

Analytics based CEM+
Models

Prediction 65-70% 75-80% | 87-90%

Accuracy

ROI 5-10% 12-15% | 22-28%

Improveme

nt

Segmentatio | Basic Moderat | Advanced

n Depth (demographi | e (psychologic
c) al +

behavioral)
Real-Time Low Medium | High
Adaptability

V. CONCLUSION

This article proves that only cognitive or behavioral data
cannot determine the market analysis model and the
quantitative data alone also cannot reach to a certain
efficiency. Instead, the combination of behavioral, cognitive
and quantitative data can predict better results than the
tradition methods.

The proposed model uses emotion quotient in order to analyse
the market behavior and thus can help in defining productive
strategies. . It was observed that the accuracy of 87-90% was
obtained for prediction. Moreover, the ROI improvement was
22-28%.
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