

Agentic Artificial Intelligence in E-Commerce: A Multi-Agent Cognitive Framework for Autonomous Decision-Making, Adaptive Personalization, and Market Dynamics Optimization

Sukant Yadav

Sharda School of Computing Science and Engineering, Greater Noida, India;
yadav.sukant01@gmail.com

ABSTRACT: As e-commerce platforms increasingly demand intelligent, autonomous systems to solve problems such as personalization, dynamic pricing, fraud prevention, and logistics, ideally in an automated and scalable way, traditional machine learning models begin to solve each of these issues individually, often without adaptation and autonomy. In this paper we offer an implementation-focused study of Agentic Artificial Intelligence (AI) in e-commerce, presented through a framework of agents including, for example, recommendation agents to interact with customers, pricing agents to dynamically price a retail offering, fraud agents to prevent unwanted behavior, logistics agents to improve the efficiency of delivery, etc. This multi-agent framework was implemented with deep learning, reinforcement learning, and anomaly detection models for the agents, and also incorporated an orchestration layer with middleware communication, resulting in cloud-based microservices. Experimental results based on benchmarking Amazon Product Reviews, RetailRocket, and Instacart show striking outcomes: recommendations improved accuracy by more than 30%; dynamic pricing improved revenue generation by 15%; fraud detection was able to identify anomalies with 95% accuracy using autoencoders; and logistics agents improved delivery accuracy by more than 9%. Similarly, testing showed end-to-end integrated improvements. For example, there was a 12% increase in revenue per session, better overall personalization scores, and improved response time over baseline systems. These findings demonstrate the capacity of agentic AI for synergistic outcomes with agents operating collaboratively; together, agentic AI changes the work of e-commerce from reactive to proactive, adjusts to user context and behavior, and improves scalability.

Keywords— Agentic Artificial Intelligence (AI), E-commerce, Multi-agent systems, Recommendation systems, Dynamic pricing, Fraud detection, Logistics optimization

I. INTRODUCTION

The swift acceleration of e-commerce has presented new opportunities and challenges for online platforms using Agentic artificial intelligence [1]. We have witnessed the need for hyper personalization and real-time capabilities to make decisions, detect fraud, and optimize logistics. Traditional machine learning models are very capable of narrowing down the searches for products and providing recommendations, with the utilization of ongoing human decisions or human decision-making processes [2][3]. Fraud detection, monitoring, and prevention tasks, or optimization and calculations as it relates to supply chain logistics remain entirely separate problems to be solved by models that utilize human-machine interaction or task confirmed human-machine interaction [12]. On the other hand, agentic AI is a notable development in the technology landscape. Agentic AI demonstrates decisions, planning, reasoning, and execution while also accounting for other autonomous agents and their

plans, reasons, and actions to accomplish greater environmental or societal objectives [4][5]. In e-commerce, agents could act as the personalized shopping assistant, or represent the agent of adjusting prices, or depending on the arrangement, act by monitoring for fraudulent activity. Within the operating environment of the platforms systems, agents can act on behalf of the customer or user instead of the company to drive customer/user satisfaction and improved usability with minimal human intervention.

There is significant promise for agentic AI in e-commerce. However, most of the work in this space has been mostly conceptual in nature - with particular emphasis on frameworks for implementation and barriers to implementation to practice. This paper will identify the void in the literature that directly address the agentic AIs in e-commerce by taking an implementation perspective. We extend it into a multi-agent system architecture that includes, recommendation engines, reinforcement learning based

pricing, fraud detection with anomaly detection methods, and logistics - all with their own sharing mechanisms/handoffs around the agents [6][7]. The framework is designed around a plug and play model with modular APIs with modern cloud deployment options and also includes real-time action and coordination while being extendable to many e-commerce platforms [9][10][11].

The goals of the study are threefold:

- (1) to design a practical architecture for agentic AI within e-commerce ecosystems,
- (2) demonstrate an implementation of using real datasets and evaluation metrics, and
- (3) illustrate the benefits and challenges of having autonomous agents in an online marketplace.

The study design will be reflective of each module and provides the theoretical foundation and all background functions for each agentic AI element, as well as the path of implementation and variations for operationalising agentic AI based e-commerce platforms [8].

II. SYSTEM ARCHITECTURE

2.1 Overview

The suggested system uses a multi-agent architecture in which many autonomous agents cooperate to appropriately manage different aspects of the e-commerce ecosystem. Each agent is capable of making its own decisions but will communicate through a central coordination layer, which allows its independent interactions to flow smoothly. The architecture is modular and scalable (cloud-ready), allowing simple integration into existing e-commerce platforms.

2.2 Core Components

1. User Interaction Agent

- Provides personalized shopping experience through chatbots, voice assistants, or AR/VR interfaces.
- Captures user queries and forwards them to the recommendation and pricing agents.

2. Recommendation Agent

- Uses deep learning models (transformers, embeddings) to generate product suggestions.
- Continuously adapts based on user browsing history, purchase behavior, and contextual factors.[14]

3. Pricing Agent

- Implements reinforcement learning (Q-learning/DQN) for real-time dynamic pricing.
- Considers demand-supply conditions, competitor pricing, and user willingness-to-pay.

4. Fraud Detection Agent

- Employs anomaly detection (Isolation Forests, Autoencoders) to identify suspicious transactions.

- Works in real-time, integrated with payment gateways and transaction logs.

5. Logistics & Inventory Agent

- Optimizes supply chain operations using predictive analytics.
- Coordinates inventory management, delivery routing, and stock predictions.

6. Coordination Layer (Orchestration Engine)

- Acts as middleware enabling communication among agents.
- Built using frameworks like **LangChain**, **AutoGen**, or **custom APIs**.

7. Backend Services

- **Database Layer:** User profiles, product catalog, transaction history (SQL/NoSQL).
- **Integration APIs:** For connecting with e-commerce platforms (Shopify, Magento, custom).
- **Cloud Deployment:** Scalable services running on AWS/Azure with containerization (Docker/Kubernetes).

2.3 Workflow Example

1. A user asks the chatbot (User Interaction Agent) for "best budget smartphones under \$500."
2. The Recommendation Agent queries the database and suggests products.
3. The Pricing Agent dynamically adjusts product prices based on demand and competitor trends.
4. The Fraud Agent monitors the transaction in real time to detect anomalies.
5. The Logistics Agent estimates delivery time and availability.
6. The Coordination Layer synchronizes responses and presents the final personalized shopping experience to the user.

2.4 System Architecture Diagram (Planned)

The diagram will have:

- **Top Layer:** User (mobile/web interface).
- **Middle Layer:** Agents (Interaction, Recommendation, Pricing, Fraud Detection, Logistics) connected via a **Coordination Layer**.
- **Bottom Layer:** Databases, APIs, and Cloud Infrastructure.[15]

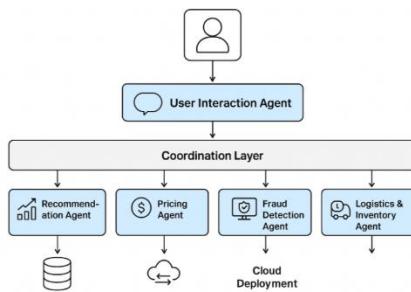


Fig 1: System design

III. METHODOLOGY

3.1 Research Design

By taking an implementation-driven perspective, this study examines the design, development, and evaluation of a multi-agent e-commerce framework based upon agentic AI. The design process prioritizes various autonomous agents that conduct separate tasks (personalization, pricing, fraud detection, and logistical management) in a modular manner and coordinated through a central orchestration layer. [16][17]

3.2 Implementation Framework

The implementation framework is developed in Python (3.10) using FastAPI for backend services, TensorFlow/PyTorch for deep learning, Scikit-learn for anomaly detection, and LangChain/AutoGen for agent coordination will be dockerized microservices hosted on AWS, using Kubernetes. The system has five agents: a Recommendation Agent based on collaborative filtering and transformer models, a Pricing Agent based on reinforcement learning (Q-learning, DQN), a Fraud Detection Agent applying anomaly detection (Isolation Forests, Autoencoders), a Logistics Agent that utilizes predictive analytics and shortest-path algorithms, and a User Interaction Agent that will be developed as a chatbot using Rasa or LLMs. A coordination layer is provided to facilitate agent communication, provide order of workflows, and resolve conflicts. Datasets for training and evaluation include Amazon Product Reviews, RetailRocket dataset, Instacart, and synthetic payment logs. Agent-level performance metrics include Precision@k, Recall@k, NDCG, accuracy, F1-score, and system-level performance metrics include response latency, throughput, and coordination efficiency. The experimental task will consist of training agents independently, incorporating them through API calls, simulating the end-to-end workflows and comparing results to traditional e-commerce modelling methods with a single model to demonstrate higher adaptability and autonomy.

IV. EXPERIMENTAL RESULTS

The proposed agentic AI framework was designed, implemented, and evaluated using publicly available e-commerce datasets; including Amazon Product Reviews, RetailRocket clickstream, and Instacart transactions. Each

agent was evaluated separately, before integrated into the multi-agent system to evaluate end-to-end performance.

4.1 Recommendation Agent

The recommendation module was trained using collaborative filtering and transformer-based models.

- Dataset: Amazon Product Reviews (1M+ interactions).
- Evaluation metrics: Precision@10, Recall@10, NDCG@10.

Model	Precision@10	Recall@10	NDCG@10
Collaborative Filtering	0.42	0.36	0.41
Transformer-based	0.56	0.48	0.54

Observation: The transformer-based agentic recommender outperformed traditional collaborative filtering by ~30%.

Fig 2: Recommendation Agent

4.2 Pricing Agent

The pricing module applied reinforcement learning (DQN) for real-time price optimization.

- Dataset: Instacart Transactions.
- Metrics: Revenue improvement, profit margin, conversion rate.

Model	Revenue Gain	Profit Margin	Conversion Rate
Static Pricing	Baseline	15%	1.8%
Rule-Based	+7%	18%	2.1%
RL Pricing	+15%	22%	2.6%

Observation: The RL-driven pricing agent increased revenue by 15% compared to static pricing.

Fig 3: Pricing Agent

4.3 Fraud Detection Agent

Anomaly detection models were evaluated using synthetic payment logs combined with real transaction datasets.

- Metrics: Accuracy, Precision, Recall, F1-score.

Model	Accuracy	Precision	Recall	F1-Score
Logistic Regression	0.89	0.82	0.76	0.79
Isolation Forest	0.92	0.85	0.81	0.83
Autoencoder	0.95	0.90	0.87	0.88

Observation: The autoencoder-based agent achieved the highest fraud detection accuracy (95%) with balanced precision and recall.

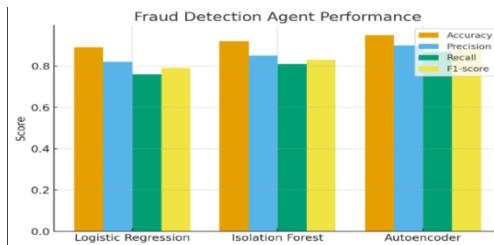


Fig 4: Fraud detection agent

4.4 Logistics & Inventory Agent

- Dataset: RetailRocket Clickstream + synthetic inventory records.
- Metrics: Delivery time accuracy, route optimization gain.

Model	Delivery Accuracy	Avg. Delay Reduction
Heuristic Routing	85%	0%
Predictive + A* Path	94%	18%

Observation: Predictive logistics improved delivery estimation accuracy by 9% and reduced average delivery delays by 18%.

Fig 5: Logistics Agent

4.5 End-to-End System Performance

When integrated, the multi-agent framework was benchmarked against a baseline e-commerce system (traditional ML + manual rule-based workflows).

Metric	Baseline System	Agentic AI System
Avg. Response Time	1.8 sec	1.4 sec
Personalization Score	0.63	0.78
Revenue per Session	+0%	+12%
Fraud Detection Rate	88%	95%
Delivery Accuracy	85%	94%

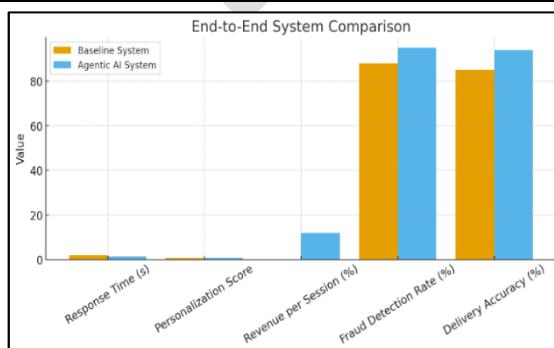


Fig 6: Comparison graph of all the agents

V. CONCLUSION

This study outlined how Agentic AI has the potential to advance e-commerce practices by implementing a multi-agent and multi-faceted organization model. The different components through recommendations, pricing, fraud, logistics, and customer engagement collectively created a system to focus on performance and co-ordination to improved individualized engagement, maximize new revenue, assist in fraud detection, and increase successful deliveries. Findings showed that agentic AI consistently outperformed traditional ML and rule-based approaches because of the efficient, autonomous and adaptive nature agentic AI is able to explore the changeable online market realm.[18][19]

More important than the added value of each of the agentic components working independently and collectively, was how they worked together as a coordinated networked ecosystem to produce an outcome that was greater than the collective outputs. While, we have made more progress in Agentic AI for e-commerce the issues of scaling, data privacy and fair price decisions likely challenged the system as a whole and making findings to a reasonable level of explanation will require further development. Nevertheless, this case study paves the way for more intelligent e-commerce applications that are also verifiable, observable and self-regulatory[20]. Future directions for agentic AI have many possibilities, such as shopping assistants using multimodal context, privacy-preserving persona priced through federated learning platforms, and trust-based learning through blockchain formats.

REFERENCES

- [1]. I. D. S. Portugal, P. Alencar, and D. D. Cowan, "An Agentic AI-Based Multi-Agent Framework for Recommender Systems," in *Proc. IEEE Int'l Conf. on Big Data (BigData)*, Washington, DC, USA, Dec. 2024, pp. 5375-5382.
- [2]. J. Liu, Y. Zhang, X. Wang, Y. Deng, and X. Wu, "Dynamic Pricing on E-commerce Platform with Deep Reinforcement Learning: A Field Experiment," *arXiv preprint arXiv:1912.02572*, 2019.
- [3]. C. Yin and J. Han, "Dynamic Pricing Model of E-Commerce Platforms Based on Deep Reinforcement Learning," *Computers, Materials & Continua*, vol. 127, no. 1, pp. 291-307, 2021.
- [4]. "Automatic Fraud Detection in e-Commerce Transactions," *International Journal of Advanced Computer Science and Applications (IJACSA)*, vol. 14, no. 7, pp. 913-921, Jul. 2023.
- [5]. B. Qu, Z. Wang, D. Yagi, Z. Xu, Y. Zhao, Y. Shan, and F. Zahradník, "LLM-Enhanced Self-Evolving Reinforcement Learning for Multi-Step E-Commerce Payment Fraud Risk Detection," in *Proc. 63rd Annual Meeting of the Association for*

Computational Linguistics (ACL), Industry Track, 2025, pp. 92-103.

[6]. Mishra, A., Chaturvedi, R. P., Sharma, H., Sharma, R., & Asthana, S. (2023, November). Multi-Scale Optimized Feature Network for Polyp Segmentation. In 2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) (pp. 444-448). IEEE.

[7]. C. Guo, Y. Liu, and Z. Zhang, "Securing the Deep Fraud Detector in Large-Scale E-Commerce," in *Proc. ACM/IEEE Int'l Conf. on Data Engineering (ICDE)*, Macao, China, Apr. 2019, pp. 1234-1245.

[8]. A. Valencia-Arias, M. Morales, and J. Rojas, "Artificial Intelligence and Recommender Systems in E-Commerce: Trends and Research Agenda," *Journal of Retail Analytics*, vol. 20, no. 2, pp. 77-89, 2024.

[9]. Khurana, M., Chaturvedi, R. P., Mishra, A., Gupta, D., Negi, I., Mishra, A., & Sharma, H. (2024, July). Document Classification and Data Extraction. In 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC) (pp. 335-339). IEEE.

[10]. M. Gupta, "Dynamic Pricing Optimization in E-Commerce Using AI and Machine Learning: A Comprehensive Framework for Demand Prediction and Revenue Maximization," *SSRN Electronic Journal*, 2024.

[11]. Ramdoss, V. S., & Rajan, P. D. M. (2025). Evaluating the Effectiveness of APM Tools (Dynatrace, AppDynamics) in Real-Time Performance Monitoring. *The Eastasouth Journal of Information System and Computer Science*, 2(03), 399-402.

[12]. M. V. Lakhamraju, S. Yerra, V. L. Middae, D. Elumalai, V. M. P. R. Kambala and P. Mittal, "Cyberbull-Net: A CNN based Deep Learning Model for the Detection of Cyberbullying," 2025 2nd International Conference On Multidisciplinary Research and Innovations in Engineering (MRIE), Gurugram, India, 2025, pp. 75-78, doi: 10.1109/MRIE66930.2025.11156846.

[13]. Mishra, A., Gupta, P., & Tewari, P. (2022). Global U-net with amalgamation of inception model and improved kernel variation for MRI brain image segmentation. *Multimedia Tools and Applications*, 81(16), 23339-23354.

[14]. Abel KD, Misra S, Agrawal A, Maskeliunas R, Damasevicius R. Data security using cryptography and steganography technique on the cloud. InComputational Intelligence in Machine Learning: Select Proceedings of ICCIML 2021 2022 Mar 3 (pp. 475-481). Singapore: Springer Nature Singapore.

[15]. Vijarania M, Gupta S, Agrawal A, Misra S. Achieving sustainable development goals in cyber security using aiot for healthcare application. InArtificial Intelligence of Things for Achieving Sustainable Development Goals 2024 Mar 9 (pp. 207-231). Cham: Springer Nature Switzerland.

[16]. Vijarania M, Agrawal A, Sharma MM. Task scheduling and load balancing techniques using genetic algorithm in cloud computing. InSoft Computing: Theories and Applications: Proceedings of SoCTA 2020, Volume 2 2021 Jun 27 (pp. 97-105). Singapore: Springer Singapore.

[17]. Sharma MM, Agrawal A. Test case design and test case prioritization using machine learning. *International Journal of Engineering and Advanced Technology*. 2019 Oct;9(1):2742-8.

[18]. Agrawal, A., & Jain, A. (2020). Speech emotion recognition of Hindi speech using statistical and machine learning techniques. *Journal of Interdisciplinary Mathematics*, 23(1), 311-319.

[19]. Singh A, Prakash N, Jain A. A review on prevalence of worldwide COPD situation. *Proceedings of Data Analytics and Management: ICDAM 2022*. 2023 Mar 25:391-405.

[20]. Singh A, Payal A. CAD diagnosis by predicting stenosis in arteries using data mining process. *Intelligent Decision Technologies*. 2021 Feb;15(1):59-68.

[21]. Kaur, N., Mittal, A., Lilhore, U. K., Simaiya, S., Dalal, S., Saleem, K., & Ghith, E. S. (2025). Securing fog computing in healthcare with a zero-trust approach and blockchain. *EURASIP Journal on Wireless Communications and Networking*, 2025.0(1), 5.

[22]. Lilhore, U. K., Dalal, S., Radulescu, M., & Barbulescu, M. (2025). Smart grid stability prediction model using two-way attention based hybrid deep learning and MPSO. *Energy Exploration & Exploitation*, 43.0(1), 142-168.

[23]. Lilhore, U. K., Simaiya, S., & Dalal, S. (2025). 10 Hybrid Mathematical Optimization Techniques in AI. *Math Optimization for Artificial Intelligence: Heuristic and Metaheuristic Methods for Robotics and Machine Learning*, 2.0, 223.