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ABSTRACT: Training deep neural networks requires optimizers that have a balance of fast convergence and
good generalization. Their traditional counterparts such as SGD with momentum are very good at generalizing but
have slow convergence properties, whereas adaptive optimizers such as Adam have very fast convergence but end
up generalizing poorly. In this paper, we introduced a Hybrid Adam—-SGD optimizer that uses Adam during the
initial few epochs of training to take advantage of its fast convergence, then moves to SGD for the remaining epochs
to improve generalization. The switching to SGD can be managed by means of a static epoch threshold or, more
dynamically based on plateaus observed in validation loss and small enough gradient magnitudes. The overall
system was developed in PyTorch as a modular script that is separated into data processing, optimizer switching,
monitoring, and evaluation stages. The experimental results from the MNIST and CIFAR-10 datasets using CNN
and ResNet-18 suggest that the hybrid optimizer converges nearly as quickly as Adam, while also achieving higher
test accuracy and lower generalization gaps compared to both baselines. For CIFAR-10, for example, the hybrid
optimizer obtained +1.2% better test accuracy than SGD, while also achieving +2.6% better test accuracy than
Adam, while also having stable validation loss. We believe our results confirm that adaptive optimizer strategies can
provide a practical and effective method of improving deep learning training pipelines. Additionally, our proposed
framework provides a foundation for implementation of switch policies that leverage reinforcement learning or
meta-learning and extending hybrid strategies to larger models and to real-world applications.
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LINTRODUCTION

Deep neural networks (DNNSs) have achieved state-of-
the-art results in several domains, that have included
computer vision, natural language processing, and
speech recognition. However, the training of deep
models can be very difficult. Other challenges,
including slow convergence, overfitting,
hyperparameter sensitivity, and vanishing/exploding
gradients, all can worsen the training problems for a
given model. An optimizer functions as the algorithm
responsible  for continuously updating model
parameters during each backpropagation step in the
training process. The optimizer selection significantly
impacts both convergence speed and the model's
generalization capabilities.

Traditional optimizers like Stochastic Gradient
Descent (SGD) [9][10] and momentum-based
variations have gained widespread adoption across
large-scale machine learning applications[12]. While
SGD exhibits strong generalization properties, it
demonstrates slow convergence and faces challenges
when escaping local minima. These limitations
prompted the development of adaptive methods,
including Adam, AdaGrad, and RMSProp. These
optimizers achieve faster convergence by dynamically
adjusting learning rates for individual parameters [11].
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Nevertheless, adaptive methods frequently exhibit poor
generalization performance, particularly in computer
vision applications where SGD consistently
outperforms them. This inherent trade-off between
convergence speed and generalization capability has
driven researchers to explore hybrid and adaptive
optimization strategies.

In this work, we propose and implement a Hybrid
Adam-SGD optimizer that combines the strengths of
both methodologies. The optimizer utilizes Adam
during the initial training phases to capitalize on its
rapid convergence properties. Subsequently, it
transitions to SGD with momentum in later epochs to
enhance generalization performance. The switching
mechanism operates through either a fixed epoch
threshold or dynamic monitoring of validation loss
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plateaus. This approach aims to integrate adaptive
strategies with conventional methods, achieving a
balance between training efficiency and robust
generalization.

We implement the proposed optimizer in PyTorch and
evaluate its performance on benchmark datasets
including MNIST and CIFAR-10, using Convolutional
Neural Networks (CNNs) and ResNet-18 as test
architectures. Experimental results demonstrate that
the Hybrid Adam-SGD optimizer achieves superior
generalization compared to Adam while maintaining
better convergence properties than SGD. These
findings suggest that adaptive optimizer strategies have
significant potential to enhance the robustness and
scalability of deep learning models, highlighting
promising opportunities for improvement in neural
network training.

II.SYSTEM ARCHITECTURE

The proposed architecture will allow for a Hybrid
Adam-SGD optimizer with a focus on adaptivity,
modularity and reproducibility in the training of deep
neural networks. The architecture is as a layered
structure with clear separation of data acquisition and
management, model training, optimizer control and
evaluation. An Optimizer Manager lies at the core of
the architecture. The Optimizer Manager maintains two
optimizers, Adam and SGD, and it acts as an interfaced
homogenizer for gradient updates. The Switching
Policy Module then notifies the manager when to
switch from Adam to SGD. The switching point may
be determined using a static epoch threshold, or
dynamically determined based on validation loss
plateauing and stabilization of the norms of gradient
(for example, by utilizing Nesterov momentum). Each
optimizer will retain the momentum and local regions
of convergence that would be beneficial to the
developers, and, thus, with the optimizers switched, the
SGD will have better generalization properties in the
ulterior epochs as a result of Adam's fast convergence
in earlier epochs.

The Data Manager preprocesses datasets and provides
batched inputs to the Training Loop; the Model
Registry allows access to architectures (like CNN or
ResNet) that have been defined before. The Training
Loop manages both forward and backward passes,
communicates with the optimizer manager, and records
metrics with the Monitor and Logger. The
checkpointing saves the state of the model, the state of
the optimizer, and saved hyperparameters;
reproducibility may be done. The Evaluator and
Visualizer modules, in the results, produce accuracy,
loss, and convergence curves for comparison.
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Fig 1: System architecture

Figure 1 shows the architecture and workflows of the
proposed architecture, and if we strip away training, it
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shows how all the elements described interact with one
another and how they share the optimizer-switching
mechanism.

III. METHODOLOGY

3.1 Proposed Approach: Hybrid Optimizer, Adam—
SGD.

The Hybrid optimizer combines the advantages of both
Adam (fast early training convergence) and SGD with
Momentum (superior generalization at later training
epochs).

Phase 1 (Exploration - Adam): In the initial epochs,
Adam is still the optimal choice in terms of the adaptive
learning rate and the momentum flavor of Adam; it
allows both for convergence of the network while
training quickly.
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Table 1: Comparison of Optimizers

Optimizer Key Idea Strengths Weaknesses Best Use-Cases
SGD Updates parameters witha | Strong generalization, | Slow convergence, | Image
fixed global learning rate | simple, widely used in | sensitive to LR tuning | classification, large-
(optionally with | CV scale vision tasks
momentum)
Momentum / | Accelerates updates in | Faster than vanilla | Still sensitive to LR, | Deep CNNs, RNNs
NAG consistent directions SGD, stable may overshoot minima
AdaGrad Per-parameter  learning | Good for sparse | LR shrinks too | NLP with sparse
rate scaling features, automatic | aggressively, stalls | embeddings
scaling training
RMSProp Exponential moving | Handles non-stationary | Requires tuning decay, | RNNs, online
average  of  squared | loss surfaces well less generalization than | learning
gradients SGD
Adam Combines RMSProp | Fast convergence, less | Poor  generalization, | Default choice, fast
(variance  scaling) + | tuning needed may overfit prototyping
Momentum
AdamW Decouples weight decay | Better regularization, | More hyperparameters | Transformers,
from LR updates improved to tune modern vision/NLP
generalization
RAdam Rectified variance for | Eliminates LR warm- | Still inherits Adam’s | Training with small
stable early steps up, stable convergence | generalization issues batch sizes
AdaBelief Uses variance of | Combines Adam’s | More complex, newer | Robust training,
prediction error instead of | speed with SGD-like | method noisy data
squared gradients generalization
Lookahead Maintains two sets of | Smoother convergence, | Adds computation, | Works with
weights, interpolates stable slower per-step Adam/RAdam
(Ranger)
SWATS Switches from Adam — | Gains Adam’s speed + | Heuristic-based, not | Vision tasks
SGD automatically SGD’s generalization widely adopted (CIFAR, ImageNet)
Hybrid Adam— | Adam in early phase — | Fast convergence + | Needs switching policy | General-purpose,
SGD SGD in later phase | strong generalization, | design robust training
(Proposed) (plateau-aware) simple to implement
Phase 2 (Exploitation - SGD): This phase starts on 3.2 Experimental Setup
some fixed "switch epoch" to utilize SGD with
momentum, which makes uses of momentum to not * Framework: PyTorch
overfit and aids in generalization to unseen data. e Datasets:
o MNIST (handwritten digit
Adaptive Switching Mechanism: The change from an classification)
Adam optimizer to SGD is accomplished either: o CIFAR-10 (object recognition)
13][14
1. When the epoch has reached a fixed threshold [13]114]
.. e  Models:
(e.g., half the training has been completed)
Sy o CNN for MNIST
2. When the validation loss has plateaued for a
. . o For CIFAR-10 of ResNet-18
predetermined number of epochs, the switch i
. . . . Baselines: SGD, Adam, RMSProp, and
is determined dynamically (using some
. AdamW
moving average etc). .
Metrics:
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o Accuracy (Top-1)
o Convergence speed (#epochs to get
to 90% accuracy)[15][16]

o Generalization  gap  (train/test
accuracy)
3.3 Training Procedure
1. Load dataset — Define model — The

HybridAdamSGD optimizer gets initialized.

2. Calculate loss < forward pass.

3.  Compute gradients from a backward pass.
4.  Call optimizer.step(epoch).

5. SGD becomes the optimizer
switch_epoch

if epoch >

IV. EXPERIMENTAL RESULTS

The proposed Hybrid Adam, SGD optimizer was
evaluated via a Convolutional Neural Network (CNN)
as well as ResNet-18 architecture on two benchmark
datasets, MNIST and CIFAR-10, respectively. The
experiments' proposed optimizer did perform, and the
experiments did compare this performance to
customary SGD with momentum. Experiments
compared Adam to this also.[17][18]

4.1 Evaluation Metrics

o Training Convergence Speed (epochs to reach 90%
accuracy)

o Final Test Accuracy

o Validation Loss Stability (measured by variance in
last 10 epochs) [19][20]

o Generalization Gap (difference between training
and test accuracy)

4.2 Quantitative Results

Table 2: Quantitative Results

Data | Mod | Optim | Epo | Fin | Generaliz | Val.
set el izer chs al ation Gap | Loss
to Tes | (%) Varia
90% |t nce

Acc. | Ac

c.

%

)
MNI | CNN | SGD 12 98. | 14 High

ST 3
Adam 6 98. | 2.6 Medi
1 um
Hybrid | 7 98. | 1.1 Low

Adam-— 7

SGD
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CIF | Res | SGD 72 86. | 32 High
AR- | Net- 9
10 18
Adam 42 85. | 4.8 Medi
5 um
Hybrid | 45 88. | 24 Low
Adam— 1
SGD
4.3 Observations
1. The Hybrid Adam, SGD optimizer, with

maintenance of SGD's generalization ability,
converges nearly as fast as Adam.

2. The hybrid approach did improve test accuracy
by +1.2% over SGD upon CIFAR-10. In
comparison to Adam, the improvement came to
+2.6%.

3. Adam overfits more than the hybrid optimizer as
shown by validation loss curves.

4. The dynamic switching policy (based on
validation loss plateau detection) outperformed the
static switching strategy because it converged more
smoothly also generalized better
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Figure 3: Validation Loss curves

V.CONCLUSION

This paper introduced a hybrid adaptive optimization
method that takes advantage of both Adam and SGD
with momentum to benefit from faster convergence
and better generalization on deep neural networks.
The optimizer starts training with Adam in the early
learning phase, and then switches to SGD when the
learning has stabilized. This proposed optimizer
combines the strengths and weaknesses of each
specific optimizer. The experiments using MNIST
and CIFAR-10 have shown that the Hybrid Adam—
SGD optimizer converges almost as fast as Adam but
trained with a higher test accuracy and lower
generalization gaps when compared to Adam and
SGD.[21][22]

The results clearly indicate that adaptive optimizer
switching is a viable and efficient means of
increasing robustness in the deep learning training
pipeline. In addition to the datasets and models
covered in this paper, the approach can be leveraged
on more robust architectures and complex real-world
problems. Future work will investigate reinforcement
learning—based switch policies, examination of the
approach with advanced optimizers (i.e., Lookahead,
SAM), and the deployment of the approach on large-
scale applications in natural language processing and
multimodal learning.[23]
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