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ABSTRACT: Training deep neural networks requires optimizers that have a balance of fast convergence and 

good generalization. Their traditional counterparts such as SGD with momentum are very good at generalizing but 

have slow convergence properties, whereas adaptive optimizers such as Adam have very fast convergence but end 

up generalizing poorly. In this paper, we introduced a Hybrid Adam–SGD optimizer that uses Adam during the 

initial few epochs of training to take advantage of its fast convergence, then moves to SGD for the remaining epochs 

to improve generalization. The switching to SGD can be managed by means of a static epoch threshold or, more 

dynamically based on plateaus observed in validation loss and small enough gradient magnitudes. The overall 

system was developed in PyTorch as a modular script that is separated into data processing, optimizer switching, 

monitoring, and evaluation stages. The experimental results from the MNIST and CIFAR-10 datasets using CNN 

and ResNet-18 suggest that the hybrid optimizer converges nearly as quickly as Adam, while also achieving higher 

test accuracy and lower generalization gaps compared to both baselines. For CIFAR-10, for example, the hybrid 

optimizer obtained +1.2% better test accuracy than SGD, while also achieving +2.6% better test accuracy than 

Adam, while also having stable validation loss. We believe our results confirm that adaptive optimizer strategies can 

provide a practical and effective method of improving deep learning training pipelines. Additionally, our proposed 

framework provides a foundation for implementation of switch policies that leverage reinforcement learning or 

meta-learning and extending hybrid strategies to larger models and to real-world applications. 

Keywords— Adaptive Optimization, Deep Neural Networks, Adam Optimizer, Stochastic Gradient Descent (SGD), Hybrid 

Optimizer, Generalization, Convergence, Validation Loss, Dynamic Switching Policy, Machine Learning. 

I.INTRODUCTION 

Deep neural networks (DNNs) have achieved state-of-

the-art results in several domains, that have included 

computer vision, natural language processing, and 

speech recognition. However, the training of deep 

models can be very difficult. Other challenges, 

including slow convergence, overfitting, 

hyperparameter sensitivity, and vanishing/exploding 

gradients, all can worsen the training problems for a 

given model. An optimizer functions as the algorithm 

responsible for continuously updating model 

parameters during each backpropagation step in the 

training process. The optimizer selection significantly 

impacts both convergence speed and the model's 

generalization capabilities. 

Traditional optimizers like Stochastic Gradient 

Descent (SGD) [9][10] and momentum-based 

variations have gained widespread adoption across 

large-scale machine learning applications[12]. While 

SGD exhibits strong generalization properties, it 

demonstrates slow convergence and faces challenges 

when escaping local minima. These limitations 

prompted the development of adaptive methods, 

including Adam, AdaGrad, and RMSProp. These 

optimizers achieve faster convergence by dynamically 

adjusting learning rates for individual parameters [11]. 

Nevertheless, adaptive methods frequently exhibit poor 

generalization performance, particularly in computer 

vision applications where SGD consistently 

outperforms them. This inherent trade-off between 

convergence speed and generalization capability has 

driven researchers to explore hybrid and adaptive 

optimization strategies. 

In this work, we propose and implement a Hybrid 

Adam-SGD optimizer that combines the strengths of 

both methodologies. The optimizer utilizes Adam 

during the initial training phases to capitalize on its 

rapid convergence properties. Subsequently, it 

transitions to SGD with momentum in later epochs to 

enhance generalization performance. The switching 

mechanism operates through either a fixed epoch 

threshold or dynamic monitoring of validation loss 
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plateaus. This approach aims to integrate adaptive 

strategies with conventional methods, achieving a 

balance between training efficiency and robust 

generalization. 

We implement the proposed optimizer in PyTorch and 

evaluate its performance on benchmark datasets 

including MNIST and CIFAR-10, using Convolutional 

Neural Networks (CNNs) and ResNet-18 as test 

architectures. Experimental results demonstrate that 

the Hybrid Adam-SGD optimizer achieves superior 

generalization compared to Adam while maintaining 

better convergence properties than SGD. These 

findings suggest that adaptive optimizer strategies have 

significant potential to enhance the robustness and 

scalability of deep learning models, highlighting 

promising opportunities for improvement in neural 

network training. 

 

II.SYSTEM ARCHITECTURE  

 The proposed architecture will allow for a Hybrid 

Adam–SGD optimizer with a focus on adaptivity, 

modularity and reproducibility in the training of deep 

neural networks. The architecture is as a layered 

structure with clear separation of data acquisition and 

management, model training, optimizer control and 

evaluation. An Optimizer Manager lies at the core of 

the architecture. The Optimizer Manager maintains two 

optimizers, Adam and SGD, and it acts as an interfaced 

homogenizer for gradient updates. The Switching 

Policy Module then notifies the manager when to 

switch from Adam to SGD. The switching point may 

be determined using a static epoch threshold, or     

dynamically determined based on validation loss 

plateauing and stabilization of the norms of gradient 

(for example, by utilizing Nesterov momentum). Each 

optimizer will retain the momentum and local regions 

of convergence that would be beneficial to the 

developers, and, thus, with the optimizers switched, the 

SGD will have better generalization properties in the 

ulterior epochs as a result of Adam's fast convergence 

in earlier epochs. 

The Data Manager preprocesses datasets and provides 

batched inputs to the Training Loop; the Model 

Registry allows access to architectures (like CNN or 

ResNet) that have been defined before. The Training 

Loop manages both forward and backward passes, 

communicates with the optimizer manager, and records 

metrics with the Monitor and Logger. The 

checkpointing saves the state of the model, the state of 

the optimizer, and saved hyperparameters; 

reproducibility may be done. The Evaluator and 

Visualizer modules, in the results, produce accuracy, 

loss, and convergence curves for comparison.   

Fig 1: System architecture 

 

Figure 1 shows the architecture and workflows of the 

proposed architecture, and if we strip away training, it 

shows how all the elements described interact with one 

another and how they share the optimizer-switching 

mechanism. 

 

III. METHODOLOGY  

 3.1 Proposed Approach: Hybrid Optimizer, Adam–

SGD.  

The Hybrid optimizer combines the advantages of both 

Adam (fast early training convergence) and SGD with 

Momentum (superior generalization at later training 

epochs).  

Phase 1 (Exploration - Adam): In the initial epochs, 

Adam is still the optimal choice in terms of the adaptive 

learning rate and the momentum flavor of Adam; it 

allows both for convergence of the network while 

training quickly.  
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Table 1: Comparison of Optimizers 

Optimizer Key Idea Strengths Weaknesses Best Use-Cases 

SGD Updates parameters with a 

fixed global learning rate 

(optionally with 

momentum) 

Strong generalization, 

simple, widely used in 

CV 

Slow convergence, 

sensitive to LR tuning 

Image 

classification, large-

scale vision tasks 

Momentum / 

NAG 

Accelerates updates in 

consistent directions 

Faster than vanilla 

SGD, stable 

Still sensitive to LR, 

may overshoot minima 

Deep CNNs, RNNs 

AdaGrad Per-parameter learning 

rate scaling 

Good for sparse 

features, automatic 

scaling 

LR shrinks too 

aggressively, stalls 

training 

NLP with sparse 

embeddings 

RMSProp Exponential moving 

average of squared 

gradients 

Handles non-stationary 

loss surfaces well 

Requires tuning decay, 

less generalization than 

SGD 

RNNs, online 

learning 

Adam Combines RMSProp 

(variance scaling) + 

Momentum 

Fast convergence, less 

tuning needed 

Poor generalization, 

may overfit 

Default choice, fast 

prototyping 

AdamW Decouples weight decay 

from LR updates 

Better regularization, 

improved 

generalization 

More hyperparameters 

to tune 

Transformers, 

modern vision/NLP 

RAdam Rectified variance for 

stable early steps 

Eliminates LR warm-

up, stable convergence 

Still inherits Adam’s 

generalization issues 

Training with small 

batch sizes 

AdaBelief Uses variance of 

prediction error instead of 

squared gradients 

Combines Adam’s 

speed with SGD-like 

generalization 

More complex, newer 

method 

Robust training, 

noisy data 

Lookahead Maintains two sets of 

weights, interpolates 

Smoother convergence, 

stable 

Adds computation, 

slower per-step 

Works with 

Adam/RAdam 

(Ranger) 

SWATS Switches from Adam → 

SGD automatically 

Gains Adam’s speed + 

SGD’s generalization 

Heuristic-based, not 

widely adopted 

Vision tasks 

(CIFAR, ImageNet) 

Hybrid Adam–

SGD 

(Proposed) 

Adam in early phase → 

SGD in later phase 

(plateau-aware) 

Fast convergence + 

strong generalization, 

simple to implement 

Needs switching policy 

design 

General-purpose, 

robust training 

Phase 2 (Exploitation - SGD): This phase starts on 

some fixed "switch epoch" to utilize SGD with 

momentum, which makes uses of momentum to not 

overfit and aids in generalization to unseen data.  

Adaptive Switching Mechanism: The change from an 

Adam optimizer to SGD is accomplished either:  

1. When the epoch has reached a fixed threshold 

(e.g., half the training has been completed) 

2. When the validation loss has plateaued for a 

predetermined number of epochs, the switch 

is determined dynamically (using some 

moving average etc). 

3.2 Experimental Setup 

• Framework: PyTorch 

• Datasets: 

o MNIST (handwritten digit 

classification) 

o CIFAR-10 (object recognition) 

[13][14] 

• Models: 

o CNN for MNIST 

o For CIFAR-10 of ResNet-18 

• Baselines: SGD, Adam, RMSProp, and 

AdamW 

• Metrics: 
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o Accuracy (Top-1) 

o Convergence speed (#epochs to get 

to 90% accuracy)[15][16] 

o Generalization gap (train/test 

accuracy) 

3.3 Training Procedure 

1. Load dataset → Define model → The 

HybridAdamSGD optimizer gets initialized. 

2. Calculate loss ← forward pass. 

3. Compute gradients from a backward pass. 

4. Call optimizer.step(epoch). 

5. SGD becomes the optimizer if epoch ≥ 

switch_epoch 

IV. EXPERIMENTAL RESULTS  

 The proposed Hybrid Adam, SGD optimizer was 

evaluated via a Convolutional Neural Network (CNN) 

as well as ResNet-18 architecture on two benchmark 

datasets, MNIST and CIFAR-10, respectively. The 

experiments' proposed optimizer did perform, and the 

experiments did compare this performance to 

customary SGD with momentum. Experiments 

compared Adam to this also.[17][18] 

4.1 Evaluation Metrics 

o Training Convergence Speed (epochs to reach 90% 

accuracy) 

o Final Test Accuracy 

o Validation Loss Stability (measured by variance in 

last 10 epochs) [19][20] 

o Generalization Gap (difference between training 

and test accuracy) 

4.2 Quantitative Results 

Table 2: Quantitative Results 

Data

set 

Mod

el 

Optim

izer 

Epo

chs 

to 

90% 

Acc. 

Fin

al 

Tes

t 

Ac

c. 

(%

) 

Generaliz

ation Gap 

(%) 

Val. 

Loss 

Varia

nce 

MNI

ST 

CNN SGD 12 98.

3 

1.4 High 

  
Adam 6 98.

1 

2.6 Medi

um 

  
Hybrid 

Adam–

SGD 

7 98.

7 

1.1 Low 

CIF

AR-

10 

Res

Net-

18 

SGD 72 86.

9 

3.2 High 

  
Adam 42 85.

5 

4.8 Medi

um 

  
Hybrid 

Adam–

SGD 

45 88.

1 

2.4 Low 

 

4.3 Observations 

1. The Hybrid Adam, SGD optimizer, with 

maintenance of SGD's generalization ability, 

converges nearly as fast as Adam. 

2. The hybrid approach did improve test accuracy 

by +1.2% over SGD upon CIFAR-10. In 

comparison to Adam, the improvement came to 

+2.6%. 

3. Adam overfits more than the hybrid optimizer as 

shown by validation loss curves. 

4. The dynamic switching policy (based on 

validation loss plateau detection) outperformed the 

static switching strategy because it converged more 

smoothly also generalized better 

 

Fig 2: Validation Accuracy curve 
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Figure 3: Validation Loss curves 

 

V.CONCLUSION 

This paper introduced a hybrid adaptive optimization 

method that takes advantage of both Adam and SGD 

with momentum to benefit from faster convergence 

and better generalization on deep neural networks. 

The optimizer starts training with Adam in the early 

learning phase, and then switches to SGD when the 

learning has stabilized. This proposed optimizer 

combines the strengths and weaknesses of each 

specific optimizer. The experiments using MNIST 

and CIFAR-10 have shown that the Hybrid Adam–

SGD optimizer converges almost as fast as Adam but 

trained with a higher test accuracy and lower 

generalization gaps when compared to Adam and 

SGD.[21][22] 

The results clearly indicate that adaptive optimizer 

switching is a viable and efficient means of 

increasing robustness in the deep learning training 

pipeline. In addition to the datasets and models 

covered in this paper, the approach can be leveraged 

on more robust architectures and complex real-world 

problems. Future work will investigate reinforcement 

learning–based switch policies, examination of the 

approach with advanced optimizers (i.e., Lookahead, 

SAM), and the deployment of the approach on large-

scale applications in natural language processing and 

multimodal learning.[23] 

REFERENCES  

  

[1] J. Zhuang, T. Tang, Y. Ding, S. C. Tatikonda, N. 

Dvornek, X. Papademetris, and J. S. Duncan, 

“AdaBelief Optimizer: Adapting Stepsizes by the 

Belief in Observed Gradients,” in *Advances in 

Neural Information Processing Systems (NeurIPS)*, 

vol. 33, 2020. 

[2] M. R. Zhang, J. Lucas, G. Hinton, and J. Ba, 

“Lookahead Optimizer: k steps forward, 1 step 

back,” in *Advances in Neural Information 

Processing Systems (NeurIPS)*, vol. 32, 2019. 

[3] P. Foret, A. Kleiner, H. Mobahi, and B. 

Neyshabur, “Sharpness-Aware Minimization for 

Efficiently Improving Generalization,” in 

*International Conference on Learning 

Representations (ICLR)*, 2021. 

[4] J. Springer, V. Nagarajan, and A. Raghunathan, 

“Sharpness-Aware Minimization Enhances 

Feature Quality via Balanced Learning,” in 

*International Conference on Learning 

Representations (ICLR)*, 2024. 

[5] D. Oikonomou and N. Loizou, “Sharpness-

Aware Minimization: General Analysis and 

Improved Rates,” in *International Conference on 

Learning Representations (ICLR)*, 2025. 

[6] J. Kwon, J. Kim, H. Park, and I. C. Choi, 

“ASAM: Adaptive Sharpness-Aware 

Minimization for Scale-Invariant Learning of 

Deep Neural Networks,” arXiv preprint 

arXiv:2102.11600, 2021. 

[7] N. S. Keskar and R. Socher, “Improving 

Generalization Performance by Switching from 

Adam to SGD,” arXiv preprint arXiv:1712.07628, 

2017. 

[8] G. Zhang, K. Niwa, and W. B. Kleijn, “A DNN 

Optimizer that Improves over AdaBelief by 

Suppression of the Adaptive Stepsize Range,” 

arXiv preprint arXiv:2203.13273, 2022. 

[9] Ramdoss, V. S., & Rajan, P. D. M. (2025). 

Evaluating the Effectiveness of APM Tools 

(Dynatrace, AppDynamics) in Real-Time 

Performance Monitoring. The Eastasouth Journal 

of Information System and Computer Science, 

2(03), 399-402. 

[10] Mishra, A., Gupta, P., & Tewari, P. (2022). 

Global U-net with amalgamation of inception 

model and improved kernel variation for MRI 

brain image segmentation. Multimedia Tools and 

Applications, 81(16), 23339-23354. 

[11] Chaturvedi, R. P., Mishra, A., Asthana, S., 

Parashar, M., & Nayyar, P. Embroilment of Deep 

Learning in Business Analytics for Sustainable 

Growth. Intelligent Business Analytics, 191-211. 

[12] Mishra, A., Chaturvedi, R. P., Sharma, H., Kumar, 

P., Asthana, S., & Parashar, M. (2024, August). Brain 

Tumor Detection using Optimized Stochastic 



Srinivasa Raju Birudaraju al. International Journal of Recent Research Aspects ISSN: 2349-7688, 
Special Issue: International Conference on Intelligent Systems for Complex, Chaotic, & Connected 

Environments Sept 2025, pp. 137-142 

© 2025 IJRRA All Rights Reserved                                                                        page   - 142- 

 

Gradient Descent Function. In 2024 International 

Conference on Electrical Electronics and Computing 

Technologies (ICEECT) (Vol. 1, pp. 1-6). IEEE. 

[13] Singh A, Prakash N, Jain A. A comparative study 

of metaheuristic-based machine learning classifiers 

using non-parametric tests for the detection of COPD 

severity grade. 

[14] Singh A, Prakash N, Jain A. Chronic Diseases 

Prediction using two different pipelines TPOT and 

Genetic Algorithm based models: A Comparative 

analysis. InProceedings of the 2024 9th International 

Conference on Machine Learning Technologies 2024 

May 24 (pp. 175-180). 

[15] Vijarania M, Gupta S, Agrawal A, Misra S. 

Achieving sustainable development goals in cyber 

security using aiot for healthcare application. 

InArtificial Intelligence of Things for Achieving 

Sustainable Development Goals 2024 Mar 9 (pp. 

207-231). Cham: Springer Nature Switzerland. 

[16] Vijarania M, Agrawal A, Sharma MM. Task 

scheduling and load balancing techniques using 

genetic algorithm in cloud computing. InSoft 

Computing: Theories and Applications: Proceedings 

of SoCTA 2020, Volume 2 2021 Jun 27 (pp. 97-105). 

Singapore: Springer Singapore. 

[17] Sharma MM, Agrawal A. Test case design and test 

case prioritization using machine learning. 

International Journal of Engineering and Advanced 

Technology. 2019 Oct;9(1):2742-8. 

[18] Agrawal A, Arora R, Arora R, Agrawal P. 

Applications of artificial intelligence and internet of 

things for detection and future directions to fight 

against COVID-19. InEmerging Technologies for 

Battling Covid-19: Applications and Innovations 

2021 Feb 16 (pp. 107-119). Cham: Springer 

International Publishing. 

[19] Dalal S, Jaglan V, Agrawal A, Kumar A, Joshi SJ, 

Dahiya M. Navigating urban congestion: Optimizing 

LSTM with RNN in traffic prediction. InAIP 

Conference Proceedings 2024 Dec 20 (Vol. 3217, No. 

1, p. 030005). AIP Publishing LLC. 

[20] Dalal S, Lilhore UK, Faujdar N, Simaiya S, 

Agrawal A, Rani U, Mohan A. Enhancing thyroid 

disease prediction with improved XGBoost model 

and bias management techniques. Multimedia Tools 

and Applications. 2025 May;84(16):16757-88. 

[21] Naphtali JH, Misra S, Wejin J, Agrawal A, 

Oluranti J. An intelligent hydroponic farm 

monitoring system using IoT. InData, Engineering 

and Applications: Select Proceedings of IDEA 2021 

2022 Oct 12 (pp. 409-420). Singapore: Springer 

Nature Singapore. 

[22] Joaquim MM, Kamble AW, Misra S, Badejo J, 

Agrawal A. IoT and machine learning based anomaly 

detection in WSN for a smart greenhouse. InData, 

Engineering and Applications: Select Proceedings of 

IDEA 2021 2022 Oct 12 (pp. 421-431). Singapore: 

Springer Nature Singapore. 

[23] Vijarania M, Udbhav M, Gupta S, Kumar R, 

Agarwal A. Global cost of living in different 

geographical areas using the concept of NLP. 

InHandbook of Research on Applications of AI, 

Digital Twin, and Internet of Things for Sustainable 

Development 2023 (pp. 419-436). IGI Global 

 


